ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 17, No.1 , 2024
P. 29-42, Bibliography 106, Engl.
UDC:: 615.3(06)
DOI: https;//doi.org/10.15407/biotech17.01.029
Full text: (PDF, in English)
BIOACTIVE COMPOUNDS AND PHARMACOGNOSTIC POTENTIAL OF Tetragonia tetragonioides
O. B. Onoiko, O. K. Zolotareva
M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv
The use of highly active compounds from plants, which proved their effectiveness in traditional medicine practices, has increased recently because of the pathogen resistance to synthetic antimicrobial drugs. The medicinal plant's extracts often contain a unique species of active ingredients, and a specific combination of them produces a synergistic therapeutic effect. Therefore, analyzing the biochemical composition of cultivated plants and the range of their potential biotechnological application is an urgent task.
Aim. To summarize the information on the potential of the xerophytic plant Tetragonia tetragonioides as a source of functional food ingredients and biologically active substances that increase nonspecific organism resistance and contribute to the prevention and treatment of various diseases.
Results. T. tetragonioides is a salt-tolerant and heat-resistant plant containing valuable nutrients, biologically active substances, and many vitamins, minerals, and dietary fibers. The high level of antioxidant compounds, especially flavonoids and carotenoids, helps reduce the risk of degenerative pathologies associated with excessive oxidative stress. The unique complex of biologically active substances in T. tetragonioides, which includes 6-methoxy flavonols, predominantly derivatives of 6-methoxy kaempferol, as well as megastigmanes and their glucosides, lignanamide, provides significant antioxidant, anti-inflammatory, antitumor, and antimicrobial activity and may be beneficial for the prevention of chronic diseases and age-related health problems. The effectiveness of T. tetragonioides has been demonstrated in animal models in treating metabolic disorders such as obesity, hyperlipidemia, and hyperuricemia.
Conclusions. T. tetragonioides, containing a specific complex of biologically active compounds, primarily 6-methoxyflavonols, may be a promising raw material for obtaining effective medications for treating and preventing various chronic diseases and metabolic disorders.
Key words: Tetragonia tetragonioides, nutritional and biochemical status, antioxidants, therapeutic activity, anti-inflammatory activity.
References
1. Iwasato M., Nagamatsu D. Plant species diversity and habitat conditions in a protected large coastal dune area of western Japan. Landscape and Ecological Engineering. 2018, 14(1):99‒113. https://doi.org/10.1007/s11355‒017‒0334‒x
2. Verret V., Gardarin A., Makowski D. et al. Assessment of the benefits of frost‒sensitive companion plants in winter rapeseed. European Journal of Agronomy. 2017. 91:93‒103. https://doi.org/10.1016/j.eja.2017.09.006
3. Kovar M., Olsovska K. Mechanisms of drought resistance in common spinach (Spinacia oleracea L.) and New Zealand spinach (Tetragonia tetragonioides (Pall.) Kuntze) plants under soil dehydration. Journal of Central European Agriculture. 2020, 21(2):275‒284. https://doi.org/10.5513/JCEA01/21.2.2618
4. Lin H.E., Wang W., Lin G. Effects of salinity on the growth and photosynthetic characteristics of a coastal wetland plant species Tetragonia tetragonioides (Pall.) Kuntze. Chinese Journal of Ecology. 2012, 31(12):3044‒3049.
5. Atzori G., Nissim W., Macchiavelli T. et al. Tetragonia tetragonioides (Pallas) Kuntz. as promising salt‒tolerant crop in a saline agricultural context. Agricultural Water Management. 2020, 240(161), 106261. https://doi.org/10.1016/j.agwat.2020.106261
6. Zolotareva O.K., Topchiy N.M., Fedyuk O.M. Biochemical and pysiological features of New Zeland spinach (Tetragonia tetragonioides) as a new crop for saline soils. Fiziol. rast. genet. 2023, 55(6):506‒518. https://doi.org/10.15407/frg2023.06.506
7. Grubben G.J.H., Denton O.A. Plant resources of tropical Africa 2. Vegetables. Eds. G.J.H. Grubben, O.A. Denton. Wageningen, Netherlands. PROTA Foundation. 2004:667.
8. Friday C., Igwe O.U. Phytochemical and nutritional profiles of Tetragonia tetragonioides leaves grown in Southeastern Nigeria. ChemSearch J. 2021, 12(2):1‒5.
9. Jaworska G., Kmiecik W. Effect of the date of harvest on the selected traits of the chemical composition of spinach (Spinacia oleracea L.) and New Zealand spinach (Tetragonia expansa Murr.). Acta Agraria et Silvestria. Series Agraria. 1999, 37:15‒26.
10. Słupski J., Achrem‒Achremowicz J., Lisiewska Z., Korus A. Effect of processing on the amino acid content of New Zealand spinach (Tetragonia tetragonioides Pall. Kuntze). Inter. J. Food Sci. Technol. 2010, 45(8):1682‒1688. https://doi.org/10.1111/j.1365‒2621.2010.02315.x
11. Venu S., Khushbu S.G., Santhi S. et al. Photochemical profile and therapeutic properties of leafy vegetables: phytochemistry and molecular aspects. In: Plant and human health. 2019, 2I:627‒660. https://doi.org/10.1007/978‒3‒030‒03344‒6_26
12. https://fdc.nal.usda.gov/fdc‒app.html#/food‒details/168441/nutrients
13. https://fdc.nal.usda.gov/fdc‒app.html#/food‒details/168462/nutrients
14. Jaworska G., Kmiecik W. Content of selected mineral compounds, nitrates III and V, and oxalates in spinach [Spinacia oleracea L.] and New Zealand spinach [Tetragonia expansa Murr.] from spring and autumn growing seasons. Electronic J. Polish Agric. Univ. Ser. Food Sci. Technol. 1999, 2(2).
15. Erikson K.M., Aschner M. Manganese: its role in disease and health. In: Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic. 2019, 19:253‒266. https://doi.org/10.1515/9783110527872‒016
16. Li C., Zhou H.M. The role of manganese superoxide dismutase in inflammation defense. Enzyme research, 2011. Article ID 387176 https://doi.org/10.4061/2011/387176
17. De Azevedo‒Meleiro C.H., Rodriguez‒Amaya D.B. Carotenoids of endive and New Zealand spinach as affected by maturity, season and minimal processing. J. Food Composit. Anal. 2005, 18(8):845‒855. https://doi.org/10.1016/j.jfca.2004.10.006
18. Bunea A., Andjelkovic M., Socaciu C., Bobis O. et al. Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry. 2008, 108(2):649‒656. https://doi.org/10.1016/j.foodchem.2007.11.056
19. Cho M.J., Howard L.R., Prior R.L., Morelock T. Flavonoid content and antioxidant capacity of spinach genotypes determined by high‒performance liquid chromatography/mass spectrometry. J. Sci. Food Agric. 2008, 88(6):1099‒1106. https://doi.org/10.1002/jsfa.3206
20. Basset G.J., Latimer S., Fatihi A., Soubeyrand E., Block A. Phylloquinone (Vitamin K1): Occurrence, Biosynthesis and Functions. Mini Rev. Med. Chem. 2017, 17(12):1028‒1038. https://doi.org/10.2174/1389557516666160623082714.
21. Popa D‒S., Bigman G., Rusu M.E. The role of vitamin K in humans: Implication in aging and age‒associated diseases. Antioxidants (Basel). 2021, 10(4):566. https://doi.org/10.3390/antiox10040566
22. Roje S. Vitamin B biosynthesis in plants. Phytochemistry. 2007, 68(14):1904‒1921. https://doi.org/10.1016/j.phytochem.2007.03.038
23. Wolf G. The discovery of the visual function of vitamin A. J. Nutr. 2001, 131(6):1647‒1650. https://doi.org/10.1093/jn/131.6.1647
24. Zhuang C., Yuan J., Du Y. et al. Effects of oral carotenoids on oxidative stress: a systematic review and meta‒analysis of studies in the recent 20 years. Front. Nutrit. 2022, 9:‒15. https://doi.org/10.3389/fnut.2022.754707
25. Lee Y‒G., Lee H., Ryuk J.A. et al. 6‒Methoxyflavonols from the aerial parts of Tetragonia tetragonioides (Pall.) Kuntze and their anti‒inflammatory activity. Bioorganic Chem. 2019, 88:102922. https://doi.org/10.1016/j.bioorg.2019.102922
26. Choi H.S., Cho J‒Y., Kim S‒J., Ham K‒S., Moon J‒H. New lignan tyramide, phenolics, megastigmanes, and their glucosides from aerial parts of New Zealand spinach, Tetragonia tetragonioides. Food Sci. Biotechnol. 2019, 29(5):599‒608. https://doi.org/10.1007/s10068‒019‒00700‒x
27. Ranneh Y., Ali F., Akim A.M. et al. Crosstalk between reactive oxygen species and pro‒inflammatory markers in developing various chronic diseases: a review. J. Appl. Biol. Chem. 2017, 60(5):327‒338. https://doi.org/10.1007/s13765‒017‒0285‒9
28. Sha’a K.K., Clarkson G.P., Artimas S.P. Phytochemical analysis, proximate composition and antinutritional factors of Corchorus oliterius plant. Inter. J. Biol. Chem. Sci. 2019, 13(4):2147‒2157. https://doi.org/10.4314/ijbcs.v13i4.21
29. Lee K.H., Park K.M., Kim K.R. et al. Three new flavonol glycosides from the aerial parts of Tetragonia tetragonioides. Heterocycles. 2008, 75(2):419‒426. https://doi.org/10.3987/COM‒07‒11227
30. Lee M.A., Choi H.J., Kang J.S., Choi Y.W., Joo W.H. Antioxidant activities of the solvent extracts from Tetragonia tetragonioides. Journal of Life Science. 2008, 18(2):220‒227. https://doi.org/10.5352/JLS.2008.18.2.220
31. Halliwell B. Free radicals, antioxidants, and human diseases: curiosity, cause, or consequence? Lancet. 1994, 334(8924):721‒724. https://doi.org/10.1016/s0140‒6736(94)92211‒x
32. Wang T.Y., Li Q., Bi K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13(1):12‒23. https://doi.org/10.1016/j.ajps.2017.08.004
33. Braca A., Fico G., Morelli I. et al. Antioxidant and free radical scavenging activity of flavonol glycosides from different Aconitum species. J. Ethnopharmacol. 2003, 86(1):63‒67. https://doi.org/10.1016/s0378‒8741(03)00043‒6
34. Catarino M.D., Alves‒Silva J.M, Pereira O.R., Cardoso S.M. Antioxidant capacities of flavones and benefits in oxidative‒stress related diseases. Curr Top Med Chem. 2015, 15(2):105‒19. https://doi.org/10.2174/1568026615666141209144506
35. Leopoldini M., Pitarch I.P., Russo N., Toscano M. Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. J. Phys. Chem. A. 2004, 108(1):92‒96. https://doi.org/10.1021/jp035901j
36. Heim K.E., Tagliaferro A.R., Bobilya D.J. Flavonoid antioxidants: chemistry, metabolism and structure‒activity relationships. J. Nutr. Biochem. 2002, 13(10):572‒584. https://doi.org/10.1016/S0955‒2863(02)00208‒5
37. Cao G.H., Sofic E., Prior R.L. Antioxidant and prooxidant behavior of flavonoids: Structure‒activity relationships. Free Radical Bio. Med. 1997, 22(5):749‒760. https://doi.org/10.1016/s0891‒5849(96)00351‒6
38. Kaurinovic B., Popovic M. Liposomes as a tool to study lipid peroxidation. In Lipid Peroxidation. Ed. A. Catala. 2012. https://doi.org/10.5772/46020
39. Maritim А.C., Sanders R.A., Watkins J.B. Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxic. 2003, 17(1):24‒38. https://doi.org/10.1002/jbt.10058
40. Ahmadi N., Tsimikas S., Hajsadeghi F. et al. Relation of oxidative biomarkers, vascular dysfunction, and progression of coronary artery calcium. Am. J. Cardiol. 2010, 105:459‒466. https://doi.org/10.1016/j.amjcard.2009.09.052
41. Berim A., Gang D.R. Methoxylated flavones: occurrence, importance, biosynthesis. Phytochem Rev. 2015, 15(3). https://doi.org/10.1007/s11101‒015‒9426‒0
42. Nijveldt R.J., van Nood E.; van Hoorn D.E. et al. Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74(4):418‒25. https://doi.org/10.1093/ajcn/74.4.418
43. Dajas F., Andres A‒C.J., Florencia A. et al. Neuroprotective actions of flavones and flavonols: mechanisms and relationship to flavonoid structural features. Cent Nerv Syst Agents Med Chem. 2013, 13(1):30‒35. https://doi.org/10.2174/1871524911313010005
44. Szabo C., Thiemermann C., Wu C.C. et al. Attenuation of the induction of nitric oxide synthase by endogenous glucocorticoids accounts for endotoxin tolerance in vivo. Proc. Natl. Acad. Sci. USA. 1994, 91(1):271‒275. https://doi.org/10.1073/pnas.91.1.271
45. Galli S.J., Tsai M., Piliponsky A.M. The development of allergic inflammation. Nature. 46. 2008, 454(7203):445‒454. https://doi.org/10.1038/nature07204
46. Kim S.H., Lee S., Suk K. et al. Discoidin domain receptor 1 mediates collagen‒induced nitric oxide production in J774A.1 murine macrophages. Free Radic. Biol. Med. 2007, 42(3):343‒352. https://doi.org/ 10.1016/j.freeradbiomed.2006.10.052
47 McCartney‒Francis N., Allen J.B., Mizel D.E. et al. Suppression of arthritis by an inhibitor of nitric oxide synthase. J. Exp. Med. 1993, 178(2):749‒754. https://doi.org/10.1084/jem.178.2.749
48. Hung S.C., Kuo P.C., Hung H.Y. et al. Ionone derivatives from the mycelium of Phellinus linteus and the inhibitory effect on activated rat hepatic stellate cells. Int. Mol. Sci. 2016, 17(5):681‒689. https://doi.org/10.3390/ijms17050681
49. Trang T.T.T., Cuong T.D., Hung T.M. et al. Anti‒inflammatory compounds from the aerial parts of Aceriphyllum rossii. Chem. Pharm. Bull. 2014, 62(2):185‒190. https://doi.org/10.1248/cpb.c13‒00664
50. Rice‒Evans C.A., Miller N.J., Paganga G. Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20(7):933‒956. https://doi.org/10.1016/0891‒5849(95)02227‒9
51. Cai Y.Z., Sun M., Xing J. et al. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78(25):2872‒2888. https://doi.org/10.1016/j.lfs.2005.11.004
52. Leonard W., Zhang P., Yingb D., Fang Z. Lignanamides: sources, biosynthesis and potential health benefits – a minireview. Crit. Rev. Food Sci. Nutr. 2020, 61(8):1404‒1414. https://doi.org/10.1080/10408398.2020.1759025
53. Zheng X‒H., Huang Y‒P., Liang Q‒P. et al. A new lignanamide from the root of Lycium yunnanense kuang and its antioxidant activity. Molecules. 2018, 23(4):770. https://doi.org/10.3390/molecules23040770
54. Luo Q., Yan X., Bobrovskaya L. et al. Anti‒neuroinflammatory effects of grossamide from hemp seed via suppression of TLR‒4‒mediated NF‒kB signaling pathways in lipopolysaccharide‒stimulated BV2 microglia cells. Mol. Cell. Biochem. 2017, 428(1‒2):129‒37. https://doi.org/10.1007/s11010‒016‒2923‒7
55. Fiedor J., Fiedor L., Haessner R., Scheer H. Cyclic ednoperoxides of β‒carotene, potential pro‒oxidants, as products of chemical quenching of singlet oxygen. Biochim. Biophys. Acta. 2005, 1709(1):1‒4. https://doi.org/10.1016/j.bbabio.2005.05.008
56. Edge R., Truscott T.G. Properties of carotenoid radicals and excited states and their potential role in biological systems. In Carotenoids: physical, chemical, and biological functions and properties. Ed. J.T. Landrum. CRC Press: Boca Raton, FL, USA, 2010:283‒307. https://doi.org/10.1201/9781420052312‒c14
57. Fiedor J., Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 2014, 6(2):466‒488. https://doi.org/10.3390/nu6020466
58. Agarwal M., Parameswari R.P., Vasanthi H.R. et al. Dynamic action of carotenoids in cardioprotection and maintenance of cardic health. Molecules. 2012, 17(4):4755‒4769. https://doi.org/10.3390/molecules17044755
59. Milani A., Basirnejad M., Shahbazi S., Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol. 2017, 174(11):1290‒1324. https://doi.org/10.1111/bph.13625
60. Seyedzadeh M.H., Safari Z., Zare A. et al. Study of curcumin immunomodulatory effects on reactive astrocyte cell function. Int. Immunopharmacol. 2014, 22:230‒235.
61. Rasmus P., Kozlowska E. Antioxidant and anti‒Inflammatory effects of carotenoids in mood disorders: An overview. Antioxidants (Basel). 2023, 12(3):676. https://doi.org/10.3390/antiox12030676
62. Abdel‒Aal E‒S.M., Akhtar H., Zaheer K., Ali R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients. 2013, 5(4):1169‒1185. https://doi.org/10.3390/nu5041169
63. Beatty S., Koh H.H., Henson D. et al. The role of oxidative stress in the pathogenesis of age‒related macular degeneration. Surv. Ophthalmol. 2000, 45(2):115‒134. https://doi.org/10.1016/s0039‒6257(00)00140‒5
64. Laar von J., Stahl W., Bolsen K. et al. β‒Carotene serum levels in patients with erythropoietic protoporphyria on treatment with the synthetic all‒trans isomer or a natural isomer mixture of β‒carotene. J. Photochem. Photobiol. B. 1996, 33(2):157‒162. https://doi.org/10.1016/1011‒1344(95)07234‒9
65. Jelodar G., Akbari A., Nazifi S. The prophylactic effect of vitamin C on oxidative stress indexes in rat eyes following exposure to radiofrequency wave generated by a BTS antenna model. Int J Radiat Biol. 2013, 89(2):128‒31. https://doi.org/10.3109/09553002.2012.721051.
66. Akbari A., Jelodar G., Nazifi S., Sajedianfard J. An overview of the characteristics and function of vitamin C in various tissues: relying on its antioxidant function. Zahedan Journal of Research in Medical Sciences. 2016, 18(11):e4037. https://doi.org/10.17795/zjrms‒4037
67. Lee J., Koo N., Min D.B. Reactive oxygen species, aging, and antioxidative nutraceuticals. Comp. Rev. Food Sci. Food Saf. 2004, 3(1):21‒33. https://doi.org/10.1111/j.1541‒4337.2004.tb00058.x
68. Abraham S.E. Biochemistry of free radicals and antioxidants. Sch. Acad. J. Biosci. 2014, 2(2):110‒118.
69. Khan M.R., Younus T. Prevention of CCl(4)‒induced oxidative damage in adrenal gland by Digera muricata extract in rat. Pak J Pharm Sci. 2011, 24(4):469‒473.
70. Haskell M.J. The challenge to reach nutritional adequacy for vitamin A, B‒carotene bioavailability and conversion evidence in humans. Am. J. Clin. Nutr. 2012, 96(5):1193S‒1203S. https://doi.org/10.3945/ajcn.112.034850
71. Wintergerst E.S., Maggini S., Hornig D.H. Immune‒enhancing role of vitamin C and zinc and effect on clinical conditions. Ann Nutr Metab. 2006, 50(2):85‒94. https://doi.org/10.1159/000090495.
72. Ricciarelli R., Zingg J‒M., Azzi A. Vitamin E: Protective role of a Janus molecule. FASEB J. 2001, 15(13):2314‒2325. https://doi.org/10.1096/fj.01‒0258rev
73. Ham A.J., Liebler D.C. Vitamin E oxidation in rat liver mitochondria. Biochemistry. 1995, 34(17):5754‒5761. https://doi.org/10.1021/bi00017a007
74. Howard A.C., Anna K., McNeil A.K., McNeil P. Promotion of plasma membrane repair by vitamin E. Nat Commun. 2011, 20:597. https://doi.org/10.1038/ncomms1594
75. Tran K., Wong J.T., Lee E. et al. Vitamin E potentiates arachidonate release and phospholipase A2 activity in rat heart myoblastic cells. Biochem J. 1996, 319 (Pt2):385‒391. https://doi.org/10.1042/bj3190385
76. Kojo S. Vitamin C: basic metabolism and its function as an index of oxidative stress. Curr Med Chem. 2004, 11(8):1041‒1064. https://doi.org/10.2174/0929867043455567
77. Li D., Saldeen T., Romeo F., Mehta J.L. Different isoforms of tocopherols enhance nitric oxide synthase phosphorylation and inhibit human platelet aggregation and lipid peroxidation: Implications in therapy with vitamin E. J Cardiovasc Pharmacol Ther. 2001, 6(2):155‒161. https://doi.org/10.1177/107424840100600207
78. Rizvi S., Raza S.T., Ahmed F. et al. The role of vitamin e in human health and some dis79.юeases. Sultan Qaboos Univ. Med. J. 2014, 14(2):e157‒165.
79. Böhm F., Edge R., McGarvey D.J., Truscott T.G. β‒Carotene with vitamin E and C offers synergistic cell protection against NOx. FEBS Lett. 1998, 436(3):387‒389. https://doi.org/10.1016/s0014‒5793(98)01173‒9
80. Palozza P., Krinsky N.I. beta‒Carotene and alpha‒tocopherol are synergistic antioxidants. Arch. Biochem. Biophys. 1992, 297(1):184‒187. https://doi.org/10.1016/0003‒9861(92)90658‒j
81. Wrona M., Korytowski W., Rozanowska M. et al. Cooperation of antioxidants in protection against photosensitized oxidation. Free Radic. Biol. Med. 2003, 35(10):1319‒1329. https://doi.org/10.1016/j.freeradbiomed.2003.07.005
82. Pomilio A., Vitale A., Lazarowski A. COVID‒19 and Alzheimer’s disease: neuroinflammation, oxidative stress, ferroptosis, and mechanisms involved. Curr. Med. Chem. 2023, 30:3993‒4031. https://doi.org/10.2174/0929867329666221003101548
83. Stockwell B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 2022, 185(14):2401‒2421. https://doi.org/10.1016/j.cell.2022.06.003
84. Simes D., Viegas C., Araujo N., Marreiros C. Vitamin K as a diet supplement with impact in human health: Current evidence in age‒related diseases. Nutrients. 2020, 12(1):138. https://doi.org/10.3390/nu12010138
85. Kato M., Takeda T., Ogihara Y. et al. Studies on the structure of polysaccharide from Tetragonia tetragonioides. I. Chem. Pharm. Bull. 1985, 33(9):3675‒3680. https://doi.org/10.1248/cpb.33.3675.
86. Okuyama E., Yamazaki M. The principles of Tetragonia tetragonoides having anti‒ulcerogenic activity. II. Isolation and structure of cerebrosides. Chem Pharma Bull. 1983, 31(7):2209‒2219. https://doi.org/10.1248/cpb.31.2209
87. Ko E‒Y., Cho S‒H., Kang K.P. et al. Anti‒inflammatory activity of hydrosols from Tetragonia tetragonoides in LPS‒induced RAW 264.7 cells. EXCLI J. 2017, 16:521‒530. https://doi.org/10.17179/excli2017‒121
88. Calderon‒Montano J.M., Burgos‒Moron E., Perez‒Guerrerp. C., Lopez‒Lаzar, M.A. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011, 11(4):298‒344. https://doi.org/10.2174/138955711795305335
89. Al‒Numair K.S., Chandramohan G., Veeramani C., Alsaif M.A. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin‒induced diabetic rats. Redox Rep. 2015, 20(5):198‒209. https://doi.org/10.1179/1351000214Y.0000000117
90. Jorge A.P., Horst H., de Sousa E., Pizzolatti M.G., Silva F.R. Insulinomimetic effects of kaempferitrin on glycaemia and on 14c‒glucose uptake in rat soleus muscle. Chem. Biol. Interact. 2004, 149(2‒3):89‒96. https://doi.org/10.1016/j.cbi.2004.07.001
91. Varshney R., Mishra R., Das N., Sircar D., Roy P. A comparative analysis of various flavonoids in the regulation of obesity and diabetes: an in vitro and in vivo study. J. Function. Foods. 2019, 59:194‒205. https://doi.org/10.1016/j.jff.2019.05.004
82. Lee Y‒S., Kim S‒H., Yuk H.J., Lee G‒J., Kim D‒S. Tetragonia tetragonoides (Pall.) Kuntze (New Zealand spinach) prevents obesity and hyperuricemia in high‒fat diet‒induced obese mice. Nutrients. 2018, 10(8):1087. https://doi.org/10.3390/nu10081087
93. Lee K.Y., Kim S‒H., Yang W‒K., Lee G‒J. Effect of Tetragonia tetragonioides (Pall.) Kuntze extract on andropause symptoms. Nutrients. 2022, 14(21):4572. https://doi.org/10.3390/nu14214572
94. Fernandez‒Miro M., Chillaron J.J., Pedro‒Botet J. Testosterone deficiency, metabolic syndrome and diabetes mellitus. Medicina Clinica. 2016, 146(2):69‒73. https://doi.org/10.1016/j.medcli.2015.06.020
95. Ryuk J.A., Ko B‒S., Lee H.W. et al. Tetragonia tetragonioides (Pall.) Kuntze protects estrogen‒deficient rats against disturbances of energy and glucose metabolism and decreases proinflammatory cytokines. Exp. Biol. Medic. 2017, 242(6):593‒605. https://doi.org/10.1177/1535370216683835
96. Yang H., Kim H.J., Hong E‒J. et al. Antidepressant effect of Tetragonia tetragonioides (Pall.) Kuntze extract on serotonin turnover. Evidence‒Based Complementary and Alternative Medicine. 2019(3):1‒7. https://doi.org/10.1155/2019/7312842
97. Lu J., Guo P., Liu X. et al. Herbal formula Fo Shou San attenuates Alzheimer’s disease‒related pathologies via the gut‒liver‒brain axis in the APP/PS1 mouse model of Alzheimer’s disease. Evidence‒based Complementary and Alternative Medicine. 2019:8302950. https://doi.org/10.1155/2019/8302950
98. Liu R., Kang J.D., Sartor R.B. et al. Neuroinflammation in murine cirrhosis is dependent on the gut microbiome and is attenuated by fecal transplant. Hepatology. 2020, 71(2):611‒626. https://doi.org/10.1002/hep.30827
99. Cerovic M., Forloni G., Balducci C. Neuroinflammation and the gut microbiota: possible alternative therapeutic targets to counteract Alzheimer’s disease? Frontiers in Aging Neuroscience. 2019, 11:284. https://doi.org/10.3389/fnagi.2019.00284
100. De Felice F.G., Lourenco M.V., Ferreira S.T. How does brain insulin resistance develop in Alzheimer’s disease? Alzheimer’s and Dementia. 2014, 10(1 Suppl):S26‒S32. https://doi.org/10.1016/j.jalz.2013.12.004
101. Fang E.F., Hou Y., Palikaras K. et al. Mitophagy inhibits amyloid‒beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nature Neuroscience. 2019, 22:401‒412. https://doi.org/10.1038/s41593‒018‒0332‒9
102. Paudel Y.N., Angelopoulou E., Piperi C. et al. Impact of HMGB1, RAGE, and TLR4 in Alzheimer’s Disease (AD): from risk factors to therapeutic targeting. Cells. 2020, 9(2):383. https://doi.org/10.3390/cells9020383
103. Greenberg S.M., Bacskai B.J., Hernandez‒Guillamon M. et al. Cerebral amyloid angiopathy and Alzheimer disease ‒ one peptide, two pathways. Nature Reviews Neurology. 2020, 16(1):30‒42. https://doi.org/10.1038/s41582‒019‒0281‒2
104. Takeda S. Progression of Alzheimer’s disease, tau propagation, and its modifiable risk factors. Neuroscience Research. 2019, 141:36‒42. https://doi.org/10.1016/j.neures.2018.08.005
105. мKim D.S., Ko B‒S., Ryuk J.A., Park S. Tetragonia tetragonioides protected against memory dysfunction by elevating hippocampal amyloid‒deposition through potentiating insulin signaling and altering gut microbiome composition. Inter. J. Mol. Sci. 2020, 21(8):2900. https://doi.org/10.3390/ijms21082900
106. Choi H.J., Yee S.‒T., Kwon G.‒S., Joo W.H. Antiinflammatory and anti‒tumor effects of Tetragonia tetragonioides extracts. Microbiol. Biotechnol. Lett. 2015, 43(4):391‒395. https://doi.org/10.4014/mbl.1509.09001
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2024