ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 17, No. 1 , 2024
P. 43-54, Bibliography 46, Engl.
UDC:: 577.344:577.19:582.284.3
DOI:https;//doi.org/10.15407/biotech17.01.043
O.B. Mykchaylova 1,3, A.M. Negriyko 2, O.Ya. Bespalova 3, Ya.V. Polovets 3,
N. Shchotkina 4, N.L. Poyedinok 3
1 M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv
2 Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv
3 Igor Sikorsky Kyiv Polytechnic Institute, Ukraine
4 University of Oregon, Eugene, USA
Understanding the impact of artificial lighting on medicinal mushrooms' biosynthetic and biological activity will help enhance technologies aimed at obtaining bioactive compounds.
The aim of our work was to determine the influence of low-intensity quasi-monochromatic light on biosynthetic activity, including the antioxidant activity of the medicinal fungus Laricifomes officinalis under submerged cultivation conditions.
Methods. The effect of light on the biosynthetic activity of L. officinalis was studied using sources of low-intensity coherent monochromatic laser light and quasi-monochromatic radiation of light-emitting diodes (LEDs) with specified spectral-intensity characteristics.
Results. The most stimulating effect on the biosynthetic activity of the L. officinalis strain was observed when samples were irradiated with blue (488 nm laser and 470 nm LED) and red (650 nm LED) light. Under these conditions, there was an increase in the synthesis of mycelial mass, polysaccharides, and the quantity of total phenolic compounds. Low-intensity light irradiation caused changes in the quantitative and qualitative composition of the fatty acid profile of the mycelial mass. Red light irradiation increased the quantity of polyunsaturated fatty acids. A correlation was established between the amount of total phenolic compounds and antioxidant activity.
Conclusions: The research results provide grounds considering low-intensity visible light as a promising regulator of the biosynthetic activity of L. officinalis in the biotechnology of its cultivation.
Key words: LED; laser; polysaccharides; fatty acids; total phenols; antioxidant activity, fatty acid.
References
1. Hyde K.D., Xu J., Rapior S., Jeewon R., Lumyong S., Niego A.G.T., Abeywickrama P.D., Aluthmuhandiram J.V.S., Brahamanage R.S., Brooks S., Stadler, M. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity. 2019, v.97(1):1‒136. https://doi.org/10.1007/S13225-019-00430-9
2. Niego A.G., Rapior S., Thongklang N., Raspé O., Jaidee W., Lumyong S., & Hyde K.D. Macrofungi as a Nutraceutical Source: Promising Bioactive Compounds and Market Value. Journal of Fungi. 2021, 7(5):397. https://doi.org/10.3390/JOF7050397
3. Badalyan S.M., & Borhani A. Medicinal, nutritional, and cosmetic values of macrofungi distributed in mazandaran province of northern iran (Review). International Journal of Medicinal Mushrooms. 2019, 21(11):1099–1106. https://doi.org/10.1615/IntJMedMushrooms.2019032743
4. Deshmukh S.K., Sridhar K.R., & Badalyan S.M. Fungal Biotechnology Prospects and Avenues. 2022; CRC Press : 450. https://doi.org/10.1201/9781003248316
5. Fijałkowska A., Muszyńska B., Sułkowska-Ziaja K., Kała K., Pawlik A., Stefaniuk D., Matuszewska A., Piska K., Pękala E., Kaczmarczyk P., Piętka J., & Jaszek M. Medicinal potential of mycelium and fruiting bodies of an arboreal mushroom Fomitopsis officinalis in therapy of lifestyle diseases. Scientific Reports. 2020, 10(1). https://doi.org/10.1038/s41598-020-76899-1
6. Muszyńska B., Fijałkowska A., Sułkowska-Ziaja K., Włodarczyk A., Kaczmarczyk P., Nogaj E., & Piętka J. Fomitopsis officinalis: a Species of Arboreal Mushroom with Promising Biological and Medicinal Properties. Chemistry and Biodiversity. 2020, 17(6). https://doi.org/10.1002/cbdv.202000213
7. Han J., Li L., Zhong J., Tohtaton Z., Ren Q., Han L., Huang X., & Yuan T. Officimalonic acids A-H, lanostane triterpenes from the fruiting bodies of Fomes officinalis. Phytochemistry. 2016, 130:193–200. https://doi.org/10.1016/J.PHYTOCHEM.2016.05.004
8. Han J., Liu W., Li M., Gu Y., Zhang Y., & Yuan T. Lanostane triterpenoids from the fruiting bodies of Fomes officinalis and their anti-inflammatory activities. Molecules, 2020, 25(20). https://doi.org/10.3390/molecules25204807
9. Gafforov Y., Muszyńska B., Sułkowska-Ziaja K., Tomšovský M., Yarasheva M., Pecoraro L., Mykchaylova O., & Rapior S. Laricifomes officinalis (Vill.) Kotl. & Pouzar ‒ FOMITOPSIDACEAE. 2023, :1237–1251. https://doi.org/10.1007/978-3-031-23031-8_116
10. Flores G.A., Cusumano G., Ianni F., Blasi F., Angelini P., Cossignani L., Pellegrino R.M., Emiliani C., Venanzoni R., Zengin G., Acquaviva A., Di Simone S.C., Libero M.L., Nilofar Orlando G., Menghini L., & Ferrante C. Fomitopsis officinalis: Spatial (Pileus and Hymenophore) Metabolomic Variations Affect Functional Components and Biological Activities. Antibiotics. 2023, 12(4). https://doi.org/10.3390/ANTIBIOTICS12040766
11. Zhang H., Aisa H.A., Liu Y., Tohtahon Z., Xin X., & Abdulla R. Characterization and identification of chemical constituents in aqueous extract of Fomes officinalis Ames based on ultrahigh‐performance liquid chromatography-tandem quadrupole‐Orbitrap high‐resolution mass spectrometry. Phytochemical Analysis. 2023. https://doi.org/10.1002/pca.3295
12. Vedenicheva N.P., Al-Maali G.A., Bisko N.A., Shcherbatiuk M.M., Lomberg M. L., Mytropolska N.Y., Mykchaylova O.B., & Kosakivska I.V. Comparative analysis of cytokinins in mycelial biomass of medicinal mushrooms. International Journal of Medicinal Mushrooms. 2018, 20(9):837–847. https://doi.org/10.1007/s11142-013-9235-x
13. Vedenicheva N.P., Al-Maali G.A., Mytropolska N.Yu., Mykchaylova O.B., Bisko, N.A., Kosakivska I.V. Endogenous cytokinins in medicinal basidiomycetes mycelial biomass. Biotechnologia Acta. 2016, 9(1):55–63. https://doi.org/10.15407/biotech9.01.055
14. Girometta C. Antimicrobial properties of Fomitopsis officinalis in the light of its bioactive metabolites: a review. Mycology. 2018, 10(1):32–39. https://doi.org/10.1080/21501203.2018.1536680
15. Corrochano L.M. Fungal photoreceptors: Sensory molecules for fungal development and behaviour. Photochemical and Photobiological Sciences. 2007, 6(7):725–736. https://doi.org/10.1039/b702155k
16. Corrochano L.M. Light in the Fungal World: From Photoreception to Gene Transcription and Beyond. Annual Review of Genetics. 2019, 53:149–170. https://doi.org/10.1146/annurev-genet-120417-031415
17. Poyedinok N.L., Mykchaylova O., Negriyko, A., Dudka I.A., Vasilyeva B.F., Efremenkova O.V. Induction of antimicrobial activity of some macromycetes by low-intensity light. Biotechnologia Acta. 2015, 8(1):63–70. https://doi.org/10.15407/BIOTECH8.01.063
18. Poyedinok N.L., Tugay T.I., Tugay A.V., Mykchaylova O.B., Negriyko, A. Influence of nitrogen concentration on photoinduced growth, enzymatic activity and melanine synthesis by Inonotus obliquus (Ach.:Pers.) Pilát. Biotechnologia Acta. 2019, 12(4):34–41. https://doi.org/10.15407/biotech12.04.034
19. Tisch D., & Schmoll M. Light regulation of metabolic pathways in fungi. Applied Microbiology and Biotechnology, 2010, 85(5):1259–1277. https://doi.org/10.1007/S00253-009-2320-1
20. Halabura M.I.W., Avelino K.V., Araújo N.L., Kassem A.S.S., Seixas F.A.V., Barros L., Fernandes Â., Liberal Â., Ivanov M., Soković M., Linde G.A., Colauto N.B., & do Valle J.S. Light conditions affect the growth, chemical composition, antioxidant and antimicrobial activities of the white-rot fungus Lentinus crinitus mycelial biomass. Photochemical & Photobiological Sciences, 2023, 22(3):669–686. https://doi.org/10.1007/S43630-022-00344-7
21. Castrillo M., García-Martínez J., & Avalos J. Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Applied and Environmental Microbiology, 2013, 79(8):2777–2788. https://doi.org/10.1128/AEM.03110-12
22. Avalos J., & Carmen Limón M. Biological roles of fungal carotenoids. Current Genetics. 2015, 61(3):309–324. https://doi.org/10.1007/S00294-014-0454-X
23. Poyedinok N., Buchalo A., Negriyko A., Potemkina J., & Mykchaylova O. The Action of Argon and Helium-Neon Laser Radiation on Growth and Fructification of Culinary-Medicinal Mushrooms Pleurotus ostreatus (Jacq.:Fr.) Kumm., Lentinus edodes (Berk.) Singer, and Hericium erinaceus (Bull.:Fr.)Pers. International Journal of Medicinal Mushrooms. 2003, 5(3):8. https://doi.org/10.1615/InterJMedicMush.v5.i3.70
24. Poyedinok N.L., Negriyko A., Bisko N.A., Mykchaylova O. Energy Efficient Systems of Artificial Lighting in Technologies of Edible and Medicinal Mushroom Cultivation. Nauka ta Innovacii, 2013, 9(3):46–56. https://doi.org/10.15407/SCIN9.03.046
25. Poyedinok N.L. USE OF ARTIFICIAL LIGHT IN MUSHROOM CULTIVATION. Biotechnologia Acta, 2013, 6(6):58–70. https://doi.org/10.15407/BIOTECH6.06.058
26. Jang M.J., Lee Y.H., Ju Y.C., Kim S.M., & Koo H.M. Effect of Color of Light Emitting Diode on Development of Fruit Body in Hypsizygus marmoreus. Mycobiology. 2018, 41(1):63–66. https://doi.org/10.5941/MYCO.2013.41.1.63
27. Mykchaylova O.B., Poyedinok N.L., & Shchetinin V.M. Screening of strains of the medicinal mushroom Fomitopsis officinalis (Vill.) Bondartsev & Singer promising for biotechnological use. Innovative Biosystems and Bioengineering. 2022, 6(3–4):110–118. https://doi.org/10.20535/IBB.2022.6.3-4.271383
28. Bisko N., Lomberg M., & Mykchaylova O. The IBK Mushroom Culture Collection of the M.G. Kholodny Institute of Botany. IBK Mushroom Culture Collection. (2023). Version 1.5.
29. Mykchaylova O.B., Bisko N.A., Sukhomlyn M.M., Lomberg M.L., Pasaylyuk M.V., Petrichuk Yu.V., Gryganskyi A.Ph. Biological peculiarities of a rare medicinal mushroom Fomitopsis officinalis (Fomitopsidaceae, Polyporales) on agar media and plant substrates. Regulatory Mechanisms in Biosystems. 2017, 8(4):469–475. https://doi.org/10.15421/021772
30. Mykchaylova O., Dubova H., Lomberg M., Negriyko A., Poyedinok N. Influence of low-intensity light on the biosynthetic activity of the edible medicinal mushroom Hericium erinaceus (Bull.: Fr.) Pers. in vitro. Archives of Biological Sciences. 2023, 75(4):40. https://doi.org/10.2298/ABS230821040M
31. Bisko N., Mustafin K., Al-Maali G., Suleimenova Z., Lomberg M., Narmuratova Z., Mykchaylova O., Mytropolska N., & Zhakipbekova A. Effects of cultivation parameters on intracellular polysaccharide production in submerged culture of the edible medicinal mushroom Lentinula edodes. Czech Mycology. 2020, 72(1):1–17. https://doi.org/10.33585/CMY.72101
32. Dubova H., Dotsenko N., Mykchaylova О., & Poyedinok N. Study of aromatic components in the course of initiating enzymatic reactions in the edible mushroom Pleurotus ostreatus. Food Science and Technology, 2022, 15(4). https://doi.org/10.15673/FST.V15I4.2254
33. Rašeta M., Popović M., Knežević P., Šibul F., Kaišarević S., & Karaman M. Bioactive Phenolic Compounds of Two Medicinal Mushroom Species Trametes versicolor and Stereum subtomentosum as Antioxidant and Antiproliferative Agents. Chemistry & Biodiversity. 2020, 17(12):e2000683. https://doi.org/10.1002/CBDV.202000683
34. Jaszek M, Osińska-Jaroszuk M, Janusz G, Matuszewska A, Stefaniuk D, Sulej J, Polak J, Ruminowicz M, Grzywnowicz K, Jarosz-Wilkołazka A. New bioactive fungal molecules with high antioxidant and antimicrobial capacity isolated from Cerrena unicolor idiophasic cultures. Biomed Res Int. 2013, :497492. https://doi.org/10.1155/2013/497492.
35. Yu Z., & Fischer R. Light sensing and responses in fungi. Nature Reviews Microbiology. 2019; 17(1):25–36. https://doi.org/10.1038/S41579-018-0109-X
36. Badalyan S., & Rapior S. Perspectives of Biomedical Application of Macrofungi. Current Trends in Biomedical Engineering & Biosciences. 2020, 19(5). https://doi.org/10.19080/CTBEB.2020.19.556024
37. Zhang M., Zhang Y., Zhang L., & Tian Q. Mushroom polysaccharide lentinan for treating different types of cancers: A review of 12 years clinical studies in China. Progress in Molecular Biology and Translational Science, 2019, 163:297–328. https://doi.org/10.1016/BS.PMBTS.2019.02.013
38. Huang M.Y., Lin K.H., Lu C.C., Chen L.R., Hsiung T.C., & Chang W.T. The intensity of blue light-emitting diodes influences the antioxidant properties and sugar content of oyster mushrooms (Lentinus sajor-caju). Scientia Horticulturae, 2017, 218:8–13. https://doi.org/10.1016/J.SCIENTA.2017.02.014
39. Ribeiro B., Guedes de Pinho P., Andrade P. B., Baptista P., & Valentão P. Fatty acid composition of wild edible mushrooms species: A comparative study. Microchemical Journal, 2009, 93(1):29–35. https://doi.org/10.1016/J.MICROC.2009.04.005
40. Kozarski M., Klaus A., Jakovljevic D., Todorovic N., Vunduk J., Petrović P., Niksic M., Vrvic M. M., & Van Griensven L. Antioxidants of edible mushrooms. Molecules. 2015, 20(10):19489–19525. https://doi.org/10.3390/MOLECULES201019489
41. Cheung L.M., Cheung P.C.K., & Ooi V.E.C. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chemistry. 2003, 81(2):249–255. https://doi.org/10.1016/S0308-8146(02)00419-3
42. Reis F.S., Barros L., Martins A., & Ferreira I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food and Chemical Toxicology, 2012, 50(2):191–197. https://doi.org/10.1016/J.FCT.2011.10.056
43. Sułkowska-Ziaja K., Fijałkowska A., & Muszyńska B. Selected Species of Medicinal/Arboreal Mushrooms as a Source of Substances with Antioxidant Properties. In Reference Series in Phytochemistry 2022, 95–121. Springer Science and Business Media B.V. https://doi.org/10.1007/978-3-030-78160-6_38
44. Dubost N., Ou B., & Beelman R. Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chemistry, 2007. 105(2):727–735. https://doi.org/10.1016/j.foodchem.2007.01.030
45. Damaso E.J., Dulay R.M., Kalaw S., & Reyes R. Effects of Color Light Emitting Diode (LED) on the Mycelial Growth, Fruiting Body Production, and Antioxidant Activity of Lentinus tigrinus. CLSU International Journal of Science & Technology. 2018. https://doi.org/10.22137/ijst.2018.v3n2.02
46. Tiniola R.C., Pambid R.C., Bautista A.S., & Milton Dulay R.R. Light emitting diode enhances the biomass yield and antioxidant activity of Philippine wild mushroom Lentinus swartziiLentinus swartzii. Asian J. Agric. Biol, 2021, (2):202008435. https://doi.org/10.35495/ajab.2020.08.435
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2024