ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 5 , 2023
P. 5-21, Bibliography 115, Engl.
UDC:: 606:577.112:551.583
DOI: https://doi.org/10.15407/biotech16.05.005
Full text: (PDF, in English)
BIOCATALYTIC CARBON DIOXIDE CAPTURE PROMOTED BY CARBONIC ANHYDRASE
Zolotareva O .K ., Topchiy N .M ., Fediuk O. M
Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv
The rapid and steady increase in the concentration of CO2, the most abundant greenhouse gas in the atmosphere, leads to extreme weather and climate events. Due to the burning of fossil fuels (oil, coal, and natural gas), the concentration of CO2 in the air has been increasing in recent decades by more than 2 ppm per year and in the last year alone - by 3.29 ppm. To prevent the "worst" scenarios of climate change, immediate and significant reductions in CO2 emissions through carbon management are needed.
Aim. Analysis of the current state of research and prospects for the use of carbonic anhydrase in environmental decarbonization programs.
Results. Carbonic anhydrase (CA) is an enzyme that accelerates the exchange of CO2 and HCO3 in solution by a factor of 104 to 106. To date, 7 types of CAs have been identified in different organisms. CA is required to provide a rapid supply of CO2 and HCO3 for various metabolic pathways in the body, explaining its multiple independent origins during evolution. Enzymes isolated from bacteria and mammalian tissues have been tested in CO2 sequestration projects using carbonic anhydrase (CA). The most studied is one of the isoforms of human KAz - hCAII - the most active natural enzyme. Its drawbacks have been instability over time, high sensitivity to temperature, low tolerance to contaminants such as sulfur compounds and the impossibility of reuse. Molecular modeling and enzyme immobilisation methods were used to overcome these limitations. Immobilisation was shown to provide excellent thermal and storage stability and increased reusability.
Conclusions. Capturing carbon dioxide using carbonic anhydrase (CA) is one of the most cost-effective methods to mitigate global warming, the development of which requires significant efforts to improve the stability and thermal stability of CAs.
Key words: climate, decarbonization, biosequestration of CO2, carbonic anhydrase, immobilization of enzymes.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
References
- Prentice I.C., Farquhar G.D., Fasham M.J.R., Goulden M.L., Heimann M., Jaramillo V. J., ... & Yool A. 2001, The carbon cycle and atmospheric carbon dioxide.
- Bosok B., Bazeev E. Global warming: problems, discussions and forecasts ISSN 1819-7329. Svitohliad, 2020, 6 (86).
- Dessler A.E. Introduction to modern climate change. Cambridge University Press. 2021. https://doi.org/10.1017/9781108879125
- Benson S.M., Surles T. Carbon dioxide capture and storage: An overview with emphasis on capture and storage in deep geological formations. Proc. IEEE. 2006, 94 (10), 1795 https://doi.org/10.1109/JPROC.2006.883718
- Sabine C.L., Feely R.A., Gruber N., Key R. M., Lee K., Bullister J. L., ... & Rios, A. F. The oceanic sink for anthropogenic CO science, 2004, 305 (5682), 367–371. https://doi.org/10.1126/science.1097403
- Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham, Y. C., ... & Williams, S. E. Extinction risk from climate change. 2004, 427 (6970), 145–148. https://doi.org/10.1038/nature02121
- Wigley T.M., Richels R., & Edmonds J.A. Economic and environmental choices in the stabilization of atmospheric CO2 Nature. 1996, 379 (6562), 240‒243. https://doi.org/10.1038/379240a0
- Zolotaryova O., Shnyukova E. Where biofuel industry goes to. Visnyk NAN Ukrainy, 2010, 4, 10–
- Mazari S.A., Ali B.S., Jan B.M., Saeed I.M., & Nizamuddin S. An overview of solvent management and emissions of amine-based CO2 capture technology. International Journal of Greenhouse Gas Control. 2015, 34, 129–140. https://doi.org/10.1016/j.ijggc.2014.12.017
- Olajire A.A. Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes. Journal of CO2 Utilization. 2013, 3, 74– https://doi.org/10.1016/j.jcou.2013.10.004
- Raven J.A., & Beardall J. CO2 concentrating mechanisms and environmental change. Aquatic Botany, 2014, 118, 24– https://doi.org/10.1016/j.aquabot.2014.05.008
- Hills C.D., Tripathi N., & Carey, P. J. Mineralization technology for carbon capture, utilization, and storage. Frontiers in Energy Research, 2020, 8,142. https://doi.org/10.3389/fenrg.2020.00142
- Lee S.W., Park S.B., Jeong S.K., Lim K.S., Lee S.H., & Trachtenberg, M. C. On carbon dioxide storage based on biomineralization strategies. Micron,201041 (4), 273– https://doi.org/10.1016/j.micron.2009.11.012
- Koytsoumpa E.I., Bergins C., & Kakaras E. The CO2 economy: Review of CO2 capture and reuse technologies. The Journal of Supercritical Fluids. 2018,132 (1), 3– https://doi.org/10.1016/j.supflu.2017.07.029
- Ren S., Jiang S., Yan X., Chen R., Cui H. Challenges and opportunities: porous supports in carbonic anhydrase immobilization. Journal of CO2 Utilization, 2020, 42, 101305. https://doi.org/10.1016/j.jcou.2020.101305
- BondM., Stringer J., Brandvold D.K., Simsek F A., Medina M.G., & Egeland G. Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase. Energy & Fuels. 2001, 15 (2), 309–316. https://doi.org/10.1021/ef000246p
- Ramanan R., Kannan K., Sivanesan S.D., Mudliar S., Kaur S., Tripathi A. K., & Chakrabarti T. Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii. World Journal of Microbiology and Biotechnology, 2009, 25, 981– https://doi.org/10.1007/s11274-009-9975-8
- Favre N., Christ M. L.,Pierre A. C. Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate. Journal of Molecular Catalysis B: Enzymatic, 2009, 60 (3-4), 163– https://doi.org/10.1016/j.molcatb.2009.04.018
- Mirjafari P., Asghar, K., & Mahinpey N. Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Industrial & engineering chemistry research, 2007, 46 (3), 921– https://doi.org/10.1021/ie060287u
- G.The carbon dioxide hydration activity of carbonic anhydrase: I. Stop-flow kinetic studies on the native human isoenzymes B and C. Journal of Biological Chemistry, 1971, 246 (8), 2561–2573. https://doi.org/10.1016/S0021-9258(18)62326-9
- Sanyal G., Pessah N.I., Maren T.H. Kinetics and inhibition of membrane-bound carbonic anhydrase from canine renal cortex. Biochimica et Biophysica Acta (BBA)-Enzymology, 1981, 657 (1), 128– https://doi.org/10.1016/0005-2744(81)90136-4
- Smith K.S., & Ferry J.G. A plant-type (β-class) carbonic anhydrase in the thermophilic methanoarchaeon Methanobacterium thermoautotrophicum. Journal of bacteriology, 1999, 181 (20), 6247– https://doi.org/10.1128/jb.181.20.6247-6253.1999
- Tripp B C., Smith K.S., and Ferry J.G. Carbonic anhydrase: New insightsfor an ancient enzyme, a minireview. Journal of Biological Chemistry, 2001, 276, 48615–48618. https://doi.org/10.1074/jbc.R100045200
- Supuran C.T. Structure and function of carbonic anhydrases. Biochemical Journal, 2016, 473 (14), 2023– https://doi.org/10.1042/BCJ20160115
- Boone C.D., Habibzadegan A., Tu C., Silverman D. N., &McKenna R. Structural and catalytic characterization of a thermally stable and acid-stable variant of human carbonic anhydrase II containing an engineered disulfide bond. Acta Crystallographica Section D: Biological Crystallography, 2013, 69 (8), 1414– https://doi.org/10.1107/S0907444913008743
- Sharma A., & Bhattacharya A. Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains. Journal of molecular catalysis B: Enzymatic, 2010,67(1-2), 122– https://doi.org/10.1016/j.molcatb.2010.07.016
- Meldrum N.U., Roughton F.J. Carbonic anhydrase. Its preparation and properties. The Journal of physiology,1933, 80 (2), 113. https:// 10.1113/jphysiol.1933.sp003077
- Fukuzawa H., Fujiwara S., Yamamoto Y., Dionisio-Sese M. L., & Miyachi, cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration. Proceedings of the National Academy of Sciences, 1990, 87 (11), 4383–4387. https://doi.org/10.1073/pnas.87.11.4383
- Fujiwara S, Fukuzawa H, Tachiki A, Miyachi S. Structure and differential expression of 2 genes encoding carbonic-anhydrase in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA, 1990, 87:9779-9783. https://doi.org/1073/pnas.87.24.9779
- Moroney J.V., Ma Y., Frey W.D., Fusilier K.A., Pham T.T., Simms T.A., ... & Mukherjee B. The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynthesis Research, 2011, 109, 133– https://doi.org/10.1007/s11120-011-9635-3
- Tuskan G.A., Difazio S., Jansson S., Bohlmann J., Grigoriev I., Hellsten U., Putnam N.,…… Rokhsar D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313: 1596–1604. https://doi.org/10.1126/science.1128691
- Soltes-Rak E., Mulligan M.E., Coleman J.R. Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. Journal of Bacteriology, 1997, 179 (3), 769– https://doi.org/10.1128/jb.179.3.769-774.1997
- Elleby B., Chirica L. C., Tu C., Zeppezauer M., Lindskog S. Characterization of carbonic anhydrase from Neisseria gonorrhoeae. European Journal of Biochemistry, 2001, 268 (6), 1613– https://doi.org/10.1046/j.1432-1327.2001.02031.x
- Chirica L.C., Elleby B., Lindskog S. Cloning, expression and some properties of α-carbonic anhydrase from Helicobacter pylori. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 2001, 1544 (1-2), 55– https:// doi:10.1016/s0167-4838(00)00204-1
- Elleuche S., Pöggeler S. Carbonic anhydrases in fungi. Microbiology, 2010, 156(1), 23-29. https://doi.org/10.1099/mic.0.032581-0
- Kumar R.S.S., Ferry J.G. Prokaryotic Carbonic Anhydrases of Earth’s Environment. In: Frost, S., McKenna, R. (eds) Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcellular Biochemistry, 2014, https://doi.org/10.1007/978-94-007-7359-2_5
- Mangani S., Hakansson K. Crystallographic studies of the binding of protonated and unprotonated inhibitors to carbonic anhydrase using hydrogen sulphide and nitrate anions. J. Biochem, 1992, 210, 867–871. https://doi.org/ 10.1111/j.1432-1033.1992.tb17490.x
- West D., Kim C.U., Tu C., Robbins A.H., Gruner S.M., Silverman D.N., McKenna R. Structural and kinetic effects on changes in the CO2 binding pocket of human carbonic anhydrase II. Biochemistry, 2012, 51, 9156–9163. https://doi.org/10.1021/bi301155z
- Kupriyanova E., Pronina N., & Los D. Carbonic anhydrase–A universal enzyme of the carbon-based life. Photosynthetica, 2017, 55 (1), 3-19. https://doi.org/10.1007/s11099-017-0685-4
- Esbaugh A.J., & Tufts B.L. The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates. Respiratory physiology & neurobiology, 2006, 154 (1-2), 185– https://doi.org/10.1016/j.resp.2006.03.007
- Tashian R.E., Hewett-Emmett D., Carter N., Bergenhem N.C.H. Carbonic anhydrase (CA)-related proteins (CA-RPs), and transmembrane proteins with CA or CA-RP domains. In: Chegwidden, W.R., Carter, N.D., Edwards, Y.H. (eds) The Carbonic Anhydrases. EXS 90, 2000, vol 90. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8446-4_6
- Burnell J.N., Gibbs M.J., & Mason J.G. Spinach chloroplastic carbonic anhydrase: nucleotide sequence analysis of cDNA. Plant physiology, 1990, 92 (1), 37– https://doi.org/10.1104/pp.92.1.37
- Fawcett T.W., Browse J.A., Volokita M., & Bartlett S. G. Spinach carbonic anhydrase primary structure deduced from the sequence of a cDNA clone. Journal of Biological Chemistry, 1990, 265 (10), 5414– https://doi.org/10.1016/S0021-9258(19)39375-5
- Yu J.W., Price G.D., Song L., & Badger M. R. Isolation of a putative carboxysomal carbonic anhydrase gene from the cyanobacterium Synechococcus PCC7942. Plant Physiology, 1992, 100 (2), 794– https://doi.org/10.1104/pp.100.2.794
- Eriksson M., Karlsson J., Ramazanov Z., Gardestrom P., Samuelsson G.: Discovery of an algal mitochondrial carbonic anhydrase: molecular cloning and characterization of low CO2 induced polypeptide in Chlamydomonas reinhardtii. – nat. Acad. Sci, 1996, 93: 12031–12034. https://doi.org/10.1073/pnas.93.21.12031
- Hewett-Emmett D., Tashian R.E. Functional diversity, conservation and convergence in the evolution of the α-, β- and γ- carbonic anhydrase gene families. Phylogenet. Evol, 1996, 5: 50–77, https://doi.org/10.1006/mpev.1996.0006
- Gotz R, Gnann A., Zimmermann F.K. Deletion of the carbonic anhydrase-like gene NCE103 of the yeast Saccharomyces cerevisiae causes an oxygen-sensitive growth defect. Yeast, 1999, 15:855–864. https://doi.org/1002/(SICI)1097-0061(199907)15:10A<855::AID-YEA425>3.0.CO;2-C
- Rowlett R.S., Chance M.R., Wirt M.D., Sidelinger D.E., Royal J.R., Woodroffe M., ... & Lam M. G. Kinetic and structural characterization of spinach carbonic anhydrase. Biochemistry, 1994, 33 (47), 13967– https://doi.org/10.1021/bi00251a003
- Bracey M.H, Christiansen J., Tovar P., Cramer S. P, Bartlett S. G. Spinach carbonic anhydrase: investigation of the zinc-binding ligands by site-directed mutagenesis, elemental analysis, and Exafs. Biochemistry, 1994, 33:13126–13131. https://doi.org/1021/bi00248a023
- Kimber M.S., Pai E.F. The active site architecture of Pisum sativum β-carbonic anhydrase is a mirror image of that of α-carbonic anhydrases. The EMBO journal, 2000, 19 (7), 1407– https://doi.org/10.1093/emboj/19.7.1407
- Mitsuhashi S., Mizushima T., Yamashita E., Yamamoto M., Kumasaka T., Moriyama H., ... & Tsukihara X-ray structure of β-carbonic anhydrase from the red alga, Porphyridium purpureum, reveals a novel catalytic site for CO2 hydration. Journal of Biological Chemistry, 2000, 275 (8), 5521–5526. https://doi.org/10.1074/jbc.275.8.5521
- Cronk J.D., Rowlett R.S., Zhang K.Y., Tu C., Endrizzi J.A., Lee J., Gareiss P.C., Preiss J.R. Identification of a novel noncatalytic bicarbonate binding site in eubacterial beta-carbonic anhydrase. Biochemistry, 2006, 45, 43514361. https://doi.org/1021/bi052272q
- Rowlett R.S. Structure and catalytic mechanism of the β-carbonic anhydrases. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2010, 1804 (2), 362–https://doi.10.1016/j.bbapap.2009.08.002
- Parisi G., Perales M., Fornasari M., Colaneri A., Schain N., Casati D., ... & Zabaleta, E. Gamma carbonic anhydrases in plant mitochondria. Plant molecular biology, 2004, 55, 193– https://doi.org/10.1007/s11103-004-0149-7
- Alber B.E., Ferry J.G., Characterization of heterologously produced carbonic anhydrase from Methanosarcina thermophile, Bacteriol, 1996, 178, 3270–3274, https://doi.org/10.1128/jb.178.11.3270-3274.1996.
- Price G.D., Howitt S.M., Harrison K., & Badger M. R. Analysis of a genomic DNA region from the cyanobacterium Synechococcus sp. strain PCC7942 involved in carboxysome assembly and function. Journal of bacteriology,1993, 175 (10),2871– https://doi.org/10.1128/jb.175.10.2871-2879.1993
- Peña K.L., Castel S.E., de Araujo C., Espie G.S., & Kimber, M.S. Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM. Proceedings of the National Academy of Sciences, 2010, 107 (6), 2455– https://doi.org/10.1073/pnas.0910866107
- Iverson T.M., Alber B.E., Kisker C., Ferry J.G.,C. A closer look at the active site of gamma-class carbonic anhydrases: High-resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. Biochemistry, 2000, 39, 9222–9231. https://doi.org/10.1021/bi000204s
- Kisker C., Schindelin H., Alber B.E., Ferry J.G., Rees D.C. A left-hand beta-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. EMBO J, 1996, 15, 2323– https://doi.org/10.1002/j.1460-2075.1996.tb00588.x
- Long B.M., Badger M.R., Whitney S.M., & Price G.D. Analysis of carboxysomes from Synechococcus PCC7942 reveals multiple Rubisco complexes with carboxysomal proteins CcmM and CcaA. Journal of Biological Chemistry, 2007, 282 (40), 29323– https://doi.org/10.1074/jbc.M703896200
- de Araujo C., Arefeen D., Tadesse Y., Long B. M., Price G. D., Rowlett R. S., ... & Espie G. S. Identification and characterization of a carboxysomal γ-carbonic anhydrase from the cyanobacterium Nostoc sp. PCC 7120. Photosynthesis research, 2014, 121, 135– https://doi.org/10.1007/s11120-014-0018-4
- Klodmann J., Sunderhaus S., Nimtz M., Jänsch L., & Braun, H. P. Internal architecture of mitochondrial complex I from Arabidopsis thaliana. The Plant Cell, 2010, 22 (3), 797– https://doi.org/10.1105/tpc.109.073726
- Sunderhaus S., Dudkina, N. V., Jänsch L., Klodmann J., Heinemeyer J., Perales M., ... & Braun H. P. Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants. Journal of Biological Chemistry, 2006,281 (10), 6482– https://doi.org/10.1074/jbc.M511542200
- Roberts S. B., Lane T. W., & Morel F. M. Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae) 1. Journal of Phycology, 1997, 33 (5), 845– https://doi.org/10.1111/j.0022-3646.1997.00845.x
- Sawaya M.R., Cannon G.C., Heinhorst S., Tanaka S., Williams E.B., Yeates T.O., & Kerfeld C.A. The structure of β-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. Journal of Biological Chemistry, 2006, 281 (11), 7546– https://doi.org/10.1074/jbc.M510464200
- Cox E.H., McLendon G.L., Morel F.M., Lane T.W., Prince R.C., Pickering, I.J., & George G.N. The active site structure of Thalassiosira weissflogii carbonic anhydrase 1. Biochemistry, 2000, 39 (40), 12128–https://doi.org/10.1021/bi001416s
- Park H., Song B., & Morel F.M. Diversity of the cadmium‐containing carbonic anhydrase in marine diatoms and natural waters. Environmental microbiology, 2007, 9 (2), 403– https://doi.org/10.1111/j.1462-2920.2006.01151.x
- Lane T.W., & Morel F.M. Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant physiology, 2000, 123 (1), 345– https://doi.org/10.1104/pp.123.1.345
- Lane T.W., Saito M.A., George G.N., Pickering I.J., Prince R.C., & Morel F. M.A cadmium enzyme from a marine diatom. Nature, 2005, 435(7038), 42– https://doi.org/10.1038/435042a
- Alterio V., Di Fiore A., D’Ambrosio K., Supuran C.T., & De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chemical reviews, 2012, 112 (8), 4421-4468. https://doi.org/10.1021/cr200176r
- Del Prete S., Vullo D., Fisher G. M., Andrews K. T., Poulsen S. A., Capasso C., & Supuran C. T. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum—The η-carbonic anhydrases. Bioorganic & Medicinal Chemistry Letters, 2014, 24 (18), 4389– https://doi.org/10.1016/j.bmcl.2014.08.015
- De Simone G., Monti S. M., Alterio V., Buonanno M., De Luca V., Rossi, M., ... & Di Fiore A. Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorganic & Medicinal Chemistry Letters, 2015, 25 (9), 2002– https://doi.org/10.1016/j.bmcl.2015.02.068
- Jensen E.L., Clement R., Kosta A., Maberly S. C., Gontero B. A new widespread subclass of carbonic anhydrase in marine phytoplankton. The ISME Journal, 2019, 13 (8), 2094– https://doi.org/10.1038/s41396-019-0426-8
- Silverman D.N., Lindskog S. The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water. Accounts of Chemical Research, 1988, 21 (1), 30– https://doi.org/10.1021/ar00145a005
- Rowlett R.S., Chance M.R., Wirt M.D., Sidelinger D.E., Royal J.R., Woodroffe M., Lam M. G. Kinetic and structural characterization of spinach carbonic anhydrase. Biochemistry, 1994, 33(47), 13967– https://doi.org/10.1021/bi00251a003
- Xu Y., Feng, L., Jeffrey P.D., Shi Y., Morel F.M. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature, 2008, 452 (7183), 56– https://doi.org/10.1038/nature06636
- Boone C.D., Rasi V., Tu C., McKenna R. Structural and catalytic effects of proline substitution and surface loop deletion in the extended active site of human carbonic anhydrase II. The FEBS journal, 2015, 282 (8), 1445– https://doi.org/10.1111/febs.13232
- Supuran C.T. Carbonic anhydrases-an overview. Current pharmaceutical design, 2008, 14(7), 603– https://doi.org/10.2174/138161208783877884
- Domsic J.F., Avvaru B.S., Kim C.U., Gruner S.M., Agbandje-McKenna, M., Silverman, D. N., & McKenna, R. Entrapment of Carbon Dioxide in the Active Site of Carbonic Anhydrase II. Journal of Biological Chemistry, 2008, 283 (45), 30766– https://doi.org/10.1074/jbc.M805353200
- Phan D.T., Burns, R.C., Puxty G., Williams M., Haritos V.S., & Maeder M. A study of bovine and human carbonic anhydrases as a model enzyme system for CO2 hydration in post combustion capture. International Journal of Greenhouse Gas Control, 2015, 37, 85–89. https://doi:10.1016/j.ijggc.2015.03.016
- Vullo D., De Luca V., Scozzafava A., Carginale V., Rossi M., Supuran C. T., Capasso C. The first activation study of a bacterial carbonic anhydrase (CA). The thermostable α-CA from Sulfurihydrogenibium yellowstonense YO3AOP1 is highly activated by amino acids and amines. Bioorganic & medicinal chemistry letters, 2012, 22 (20), 6324– https://doi.org/10.1016/j.bmcl.2012.08.088
- Schlicker C., Hall R. A., Vullo D., Middelhaufe S., Gertz M., Supuran C. , ... & Steegborn, C. Structure and inhibition of the CO2-sensing carbonic anhydrase Can2 from the pathogenic fungus Cryptococcus neoformans. Journal of molecular biology, 2009, 385 (4), 1207–1220. https://doi.org/10.1016/j.jmb.2008.11.037
- Monti S.M., De Simone G., Dathan N.A., Ludwig M., Vullo D., Scozzafava A., Supuran C. T. Kinetic and anion inhibition studies of a β-carbonic anhydrase (FbiCA 1) from the C4 plant Flaveria bidentis. Bioorganic & medicinal chemistry letters, 2013, 23 (6), 1626–1630. https://doi.org/10.1016/j.bmcl.2013.01.087
- Del Prete S., Vullo D., De Luca V., Carginale V., Scozzafava A., Supuran, C. T., & Capasso, C. A highly catalytically active γ-carbonic anhydrase from the pathogenic anaerobe Porphyromonas gingivalis and its inhibition profile with anions and small molecules. Bioorganic & medicinal chemistry letters, 2013, 23 (14), 4067– https://doi.org/10.1016/10.1016/j.bmcl.2013.05.063
- Viparelli F., Monti S.M., De Simone G., Innocenti A., Scozzafava A., Xu, Y., ... & Supuran, C. T. Inhibition of the R1 fragment of the cadmium-containing ζ-class carbonic anhydrase from the diatom Thalassiosira weissflogii with anions. Bioorganic & medicinal chemistry letters, 2010, 20 (16), 4745– https://doi.org/10.1016/j.bmcl.2010.06.139
- da Costa Ores , Sala L., Cerveira G.P., & Kalil S.J. Purification of carbonic anhydrase from bovine erythrocytes and its application in the enzymic capture of carbon dioxide. Chemosphere, 2012, 88 (2), 255–259. https://doi.org/10.1016/j.chemosphere.2012.03.059
- Vinoba M., Kim D.H., Lim K.S., Jeong S. K., Lee S.W., Alagar M. Biomimetic sequestration of CO2 and reformation to CaCO3 using bovine carbonic anhydrase immobilized on SBA-15. Energy & fuels, 2011,25 (1), 438– https://doi.org/10.1021/ef101218a
- Kernohan. The pH-activity curve of bovine carbonic anhydrase and its relationship to the inhibition of the enzyme by anions, Biochim. Biophys. Acta-Enzymol.Biol. 1965, 96 304–317, https://doi.org/10.1016/0926-6593(65)90014-7.
- Ye X., & Lu Y. CO2 absorption into catalyzed potassium carbonate–bicarbonate solutions: Kinetics and stability of the enzyme carbonic anhydrase as a biocatalyst. Chemical engineering science, 2014, 116, 567. https://doi.org/10.1016/j.ces.2014.05.040
- Lionetto M.G., Caricato R., Giordano M. E., Erroi E., Schettino T. Carbonic anhydrase and heavy metals. 1st edition. Intech, Rijeka,2012, 205–224.
- Belyavskaya N.A., Fediuk O.M., Zolotareva E.K. Plants and hеavy metals: perception and signaling. Kharkiv Nat. Agrar. Univ. Ser. Biol, 2018, 3 (45) : 10–30.https://doi.org/10.35550/vbio2018.03.010
- Semenihin A.V., & Zolotareva O.K. Carbonic anhydrase activity of integral-functional complexes of thylakoid membranes of spinach chloroplasts. Biochem. J, 2015, 87(3), 47–56. https://doi.org/10.15407/ubj87.03.047
- Polishchuk A.V., Semenikhin A.V., Topchyi N.M., & Zolotareva E.K. Inhibition of multiple forms of carbonic anhydrases of spinach chloroplasts by Cu ions. Rep Nat Acad Sci Ukraine, 2018, 4, 94–
https://doi.org/10.15407/dopovidi2018.04.094 - Topchiy N.M., Polishchuk O.V., Zolotareva E.K., & Sytnyk S.K. The influence of Cd2+ ions on the activity of stromal carbonic anhydrases of spinach chloroplasts. Fiziologia rastenij and genetika, 2019, 51 (2), 172– https://doi.org/10.15407/frg2019.02.172
- Vieille C., Zeikus G.J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiology and molecular biology reviews, 2001, 65(1), 1– https://doi.org/10.1128/MMBR.65.1.1-43.2001
- Lavecchia R., Zugaro M. Thermal denaturation of erythrocyte carbonic anhydrase. FEBS letters, 1991, 292 (1-2), 162– https://doi.org/10.1016/0014-5793(91)80858-Z
- Di Fiore A., Capasso C., De Luca V., Monti S. M., Carginale V., Supuran C. T.,De Simone G. X-ray structure of the firstextremo-α-carbonic anhydrase', a dimeric enzyme from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. Acta Crystallographica Section D: Biological Crystallography,2013, 69 (6), 1150– https://doi.org/10.1107/S0907444913007208
- Yong J.K., Stevens G.W., Caruso F., Kentish S.E. The use of carbonic anhydrase to accelerate carbon dioxide capture processes. Journal of Chemical Technology & Biotechnology, 2015, 90 (1), 3– https://doi.org/10.1002/jctb.4502
- Fisher Z., Boone C. D., Biswas S.M., Venkatakrishnan B., Aggarwal , Tu C., McKenna R. Kinetic and structural characterization of thermostabilized mutants of human carbonic anhydrase II. Protein Engineering, Design & Selection, 2012, 25 (7), 347–355. https://doi.org/10.1093/protein/gzs027
- Russo M.E., Capasso C., Marzocchella A., Salatino P. Immobilization of carbonic anhydrase for CO2 capture and utilization. Applied Microbiology and Biotechnology, 2022,106 (9-10), 3419– https://doi.org/10.1007/s00253-022-11937-8
- Wu S., Chen, J., Ma L., Zhang K., Wang X., Wei Y., Xu X. Design of carbonic anhydrase with improved thermostability for CO2 capture via molecular simulations. Journal of CO2 utilization, 2020, 38, 141– https://doi.org/10.1016/j.jcou.2020.01.017
- De Luca V., Vullo D., Scozzafava A., Carginale V., Rossi M., Supuran C. T., & Capasso C. An α-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction. Bioorganic & medicinal chemistry, 2013, 21 (6), 1465– https://doi.org/10.1016/j.bmc.2012.09.047
- Effendi S.S. W., Chiu C.Y., Chang Y.K., Ng I.S. Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration. International journal of biological macromolecules, 2020,152, 930– https://doi.org/10.1016/j.ijbiomac.2019.11.234
- Watanabe K., Masuda T., Ohashi H., Mihara H., Suzuki, Y. Multiple Proline Substitutions Cumulatively Thermostabilize Bacillus Cereus ATCC7064 Oligo‐1, 6‐Glucosidase: Irrefragable Proof Supporting the Proline Rule. European journal of biochemistry, 1994, 226 (2), 277–283. https://doi.org/10.1111/j.1432-1033.1994.tb20051.x.
- Villbrandt B., Sagner G., Schomburg D. Investigations on the thermostability and function of truncated Thermus aquaticus DNA polymerase fragments. Protein engineering, 1997, 10 (11), 1281–1288. https://doi.org/10.1128/MMBR.65.1.1-43.2001.
- Barbosa O., Torres R., Ortiz C., Berenguer-Murcia Á., Rodrigues R. C.,Fernandez-Lafuente R. Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules, 2013, 14 (8), 2433–2462. https://doi.org/10.1021/bm400762h
- Molina-Fernández C., Luis P. Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: a review. Journal of CO2 Utilization, 2021,47, 101475. https://doi.org/10.1016/j.jcou.2021.101475
- Rasouli H., Nguyen K.,Iliuta M. C. Recent advancements in carbonic anhydrase immobilization and its implementation in CO2 capture technologies: A review. Separation and Purification Technology, 2022, 296, 121299. https://doi.org/10.1016/j.seppur.2022.121299
- Mirjafari P., Asghari K., & Mahinpey N. Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Industrial & engineering chemistry research, 2007, 46 (3), 921–926. https://doi.org/10.1021/ie060287u
- Capasso C., De Luca V., Carginale V., Cannio R., & Rossi M. Biochemical properties of a novel and highly thermostable bacterial α-carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1. Journal of enzyme inhibition and medicinal chemistry, 2012, 27 (6), 892–897. https://doi.org/10.3109/14756366.2012.703185
- Vieille C., Zeikus G. J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiology and molecular biology reviews, 2001, 65 (1), 1–43. https://doi.org/10.1128/MMBR.65.1.1-43.2001
- Spahn C., Minteer S. D. Enzyme immobilization in biotechnology. Recent patents on engineering, 2008, 2 (3), 195– https://doi.org/10.2174/187221208786306333
- Boucif , Roizard D., & Favre E. The carbonic anhydrase promoted carbon dioxide capture. Membranes for Environmental Applications, 2020, 1–44. https://doi.org/10.1007/978-3-030-33978-4_1
- Guisan J. M. Immobilization of enzymes as the 21st Century begins: an already solved problem or still an exciting challenge?. Immobilization of enzymes and cells, 2006, 1– https://doi.org/10.1007/978-1-59745-053-9_1
- Shao P., Chen H., Ying Q., & Zhang S. Structure–activity relationship of carbonic anhydrase enzyme immobilized on various silica-based mesoporous molecular sieves for CO2 absorption into a potassium carbonate solution. Energy & Fuels, 2020, 34 (2), 2089– https://doi.org/10.1021/acs.energyfuels.9b03860