ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 5 , 2023
P. 45-54, Bibliography 47, Engl.
UDC: 612.8: 573.7
DOI: https://doi.org/10.15407/biotech16.05.045
Full text: (PDF, in English)
1 Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
2 Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv
Graphene materials are widely used in different technologies and certainly released into aquatic and air surroundings being environmental pollution components. Nitrogen‑doped graphene nanomaterials have great potential for application, in particular, in energy storage, as electrochemical sensors and waste water treatment.
Aim. Evaluate neurotoxic risk of nitrogen-doped multilayer graphene.
Methods. Here, nitrogen-doped multilayer graphene nanoparticles (N-MLG) were synthesized by means of electrochemical exfoliation of high-purity graphite rods in NaN3-based electrolyte and characterised using TEM, AFM and UV-vis spectroscopy. Neuroactive features of N-MLG were assessed in isolated cortex nerve terminals (synaptosomes) analysing the extracellular level of excitatory neurotransmitter L-[14C] glutamate and inhibitory one [3H]GABA.
Results. It was revealed that N-MLG did not affect the extracellular synaptosomal levels of L-[14C] glutamate and [3H]GABA within the concentration range 0.01–0.5 mg/ml, and an increase in a concentration up to 1 mg/ml caused an insignificant increase (tendency to increase) in these levels for both neurotransmitters. To analyse a capability of interaction with heavy metals in biological system, N-MLG was investigated using model of acute Cd2+/Pb2+/Hg2+-induced neurotoxicity in nerve terminals. In was revealed that Cd2+/Pb2+/Hg2+-induced increase in the extracellular level of L-[14C] glutamate and [3H]GABA was not changed by N-MLG.
Conclusions. N-MLG does not possess neurotoxic signs and is biocompatible within the concentration range 0.01–1 mg/ml. In biological system, N-MLG did not mitigate/aggravate Cd2+/Pb2+/Hg2+-induced neurotoxicity in nerve terminals.
Key words: nitrogen-doped multilayer graphene, nanoparticles, heavy metals, neurotoxicity, glutamate, GABA, brain nerve terminals.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
References
1. Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vázquez E, León Castellanos V, Bandiera T, Cesca F, Benfenati F (2016) Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano 10:7154–7171. https://doi.org/10.1021/ACSNANO.6B03438
2. Yokwana K, Ntsendwana B, Nxumalo EN, Mhlanga SD (2023) Recent advances in nitrogen-doped graphene oxide nanomaterials: Synthesis and applications in energy storage, sensor electrochemical applications and water treatment. 38:3239–3263. https://doi.org/10.1557/S43578-023-01070-1
3. Xiong B, Zhou Y, Zhao Y, Wang J, Chen X, O’Hayre R, Shao Z (2013) The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon N Y Complete:181–192. https://doi.org/10.1016/J.CARBON.2012.09.019
4. Chen F, Guo L, Zhang X, Leong ZY, Yang S, Yang HY (2016) Nitrogen-doped graphene oxide for effectively removing boron ions from seawater. Nanoscale 9:326–333. https://doi.org/10.1039/C6NR07448K
5. Liu Y, Liu H, Zhou Z, Wang T, Ong CN, Vecitis CD (2015) Degradation of the Common Aqueous Antibiotic Tetracycline using a Carbon Nanotube Electrochemical Filter. Environ Sci Technol 49:7974–7980. https://doi.org/10.1021/ACS.EST.5B00870
6. Zhao J, Wang Z, White JC, Xing B (2014) Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environ Sci Technol 48:9995–10009. https://doi.org/10.1021/ES5022679
7. Bussy C, Ali-Boucetta H, Kostarelos K (2013) Safety considerations for graphene: Lessons learnt from carbon nanotubes. Acc Chem Res 46:692–701. /ASSET/IMAGES/MEDIUM/AR-2012-00199E_0007.GIF https://doi.org/10.1021/ar300199e
8. Landrigan PJ, Fuller R, Acosta NJRR, Adeyi O, Arnold R, Basu N (Nil), Baldé AB, Bertollini R, Bose-O’Reilly S, Boufford JI, Breysse PN, Chiles T, Mahidol C, Coll-Seck AM, Cropper ML, Fobil J, Fuster V, Greenstone M, Haines A, Hanrahan D, Hunter D, Khare M, Krupnick A, Lanphear B, Lohani B, Martin K, Mathiasen K V., McTeer MA, Murray CJLL, Ndahimananjara JD, Perera F, Potočnik J, Preker AS, Ramesh J, Rockström J, Salinas C, Samson LD, Sandilya K, Sly PD, Smith KR, Steiner A, Stewart RB, Suk WA, van Schayck OCPP, Yadama GN, Yumkella K, Zhong M (2018) The Lancet Commission on pollution and health. Lancet 391:462–512. https://doi.org/10.1016/S0140-6736(17)32345-0
9. Borisova T (2018) Nervous System Injury in Response to Contact With Environmental, Engineered and Planetary Micro- and Nano-Sized Particles. Front Physiol 9:728. https://doi.org/10.3389/fphys.2018.00728
10. Tranvik LJ (2018) New light on black carbon. 11:547–548. https://doi.org/10.1038/s41561-018-0181-x
11. Deuschl G, Beghi E, Fazekas F, Varga T, Christoforidi KA, Sipido E, Bassetti CL, Vos T, Feigin VL (2020) The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017. Lancet Public Heal 5:e551–e567. https://doi.org/10.1016/S2468-2667(20)30190-0
12. The Lancet Neurology (2021) Long COVID: understanding the neurological effects. Lancet Neurol 20:247. https://doi.org/10.1016/S1474-4422(21)00059-4
13. Jarrahi A, Ahluwalia M, Khodadadi H, Da Silva Lopes Salles E, Kolhe R, Hess DC, Vale F, Kumar M, Baban B, Vaibhav K, Dhandapani KM (2020) Neurological consequences of COVID-19: what have we learned and where do we go from here? J Neuroinflammation 17:286. https://doi.org/10.1186/s12974-020-01957-4
14. Jew K, Herr D, Wong C, Kennell A, Morris-Schaffer K, Oberdörster G, O’Banion MK, Cory-Slechta DA, Elder A (2019) Selective memory and behavioral alterations after ambient ultrafine particulate matter exposure in aged 3xTgAD Alzheimer’s disease mice. Part Fibre Toxicol 16:. https://doi.org/10.1186/S12989-019-0323-3
15. Morris-Schaffer K, Merrill A, Jew K, Wong C, Conrad K, Harvey K, Marvin E, Sobolewski M, Oberdörster G, Elder A, Cory-Slechta DA (2019) Effects of neonatal inhalation exposure to ultrafine carbon particles on pathology and behavioral outcomes in C57BL/6J mice. Part Fibre Toxicol 16:. https://doi.org/10.1186/S12989-019-0293-5
16. Kim EA (2017) Particulate matter (fine particle) and urologic diseases. Int Neurourol J 21:155–162. https://doi.org/10.5213/INJ.1734954.477
17. Gładka A, Rymaszewska J, Zatoński T (2018) Impact of air pollution on depression and suicide. Int J Occup Med Environ Health 31:711–721. https://doi.org/10.13075/IJOMEH.1896.01277
18. Klocke C, Allen JL, Sobolewski M, Mayer-Pröschel M, Blum JL, Lauterstein D, Zelikoff JT, Cory-Slechta DA (2017) Neuropathological consequences of gestational exposure to concentrated ambient fine and ultrafine particles in the mouse. Toxicol Sci 156:492–508. https://doi.org/10.1093/TOXSCI/KFX010
19. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of Inhaled Ultrafine Particles to the Brain. Inhal Toxicol 16:437–445. https://doi.org/10.1080/08958370490439597
20. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–39. https://doi.org/10.1289/ehp.7339
21. Borysov A, Tarasenko A, Krisanova N, Pozdnyakova N, Pastukhov A, Dudarenko M, Paliienko K, Borisova T (2020) Plastic smoke aerosol: Nano-sized particle distribution, absorption/fluorescent properties, dysregulation of oxidative processes and synaptic transmission in rat brain nerve terminals. Environ Pollut 263:114502. https://doi.org/10.1016/j.envpol.2020.114502
22. Tarasenko A, Pozdnyakova N, Paliienko K, Borysov A, Krisanova N, Pastukhov A, Stanovyi O, Gnatyuk O, Dovbeshko G, Borisova T (2022) A comparative study of wood sawdust and plastic smoke particulate matter with a focus on spectroscopic, fluorescent, oxidative, and neuroactive properties. Environ Sci Pollut Res Int 29:38315–38330. https://doi.org/10.1007/s11356-022-18741-x
23. Islam N, Dihingia A, Khare P, Saikia BK (2020) Atmospheric particulate matters in an Indian urban area: Health implications from potentially hazardous elements, cytotoxicity, and genotoxicity studies. J Hazard Mater 384:. https://doi.org/10.1016/J.JHAZMAT.2019.121472
24. Islam N, Saikia BK (2022) An overview on atmospheric carbonaceous particulate matter into carbon nanomaterials: A new approach for air pollution mitigation. Chemosphere 303:135027. https://doi.org/10.1016/J.CHEMOSPHERE.2022.135027
25. Ustavytska O, Kurys Y, Koshechko V, Pokhodenko V (2017) One-Step Electrochemical Preparation of Multilayer Graphene Functionalized with Nitrogen. Nanoscale Res Lett 12:1–7.FIGURES/7 https://doi.org/10.1186/s11671-017-1957-4
26. McGrath J, Drummond G, McLachlan E, Kilkenny C, Wainwright C (2010) Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol 160:1573–1576. https://doi.org/10.1111/j.1476-5381.2010.00873.x
27. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG (2010) Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br J Pharmacol 160:1577–1579. https://doi.org/10.1111/j.1476-5381.2010.00872.x
28. Nicholls DG (1993) The glutamatergic nerve terminal. Eur J Biochem 212:613–31. https://doi.org/10.1111/j.1432-1033.1993.tb17700.x
29. Petr GT, Sun Y, Frederick NM, Zhou Y, Dhamne SC, Hameed MQ, Miranda C, Bedoya EA, Fischer KD, Armsen W, Wang J, Danbolt NC, Rotenberg A, Aoki CJ, Rosenberg PA (2015) Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 35:5187–5201. https://doi.org/10.1523/JNEUROSCI.4255-14.2015
30. Györffy BA, Kun J, Török G, Bulyáki É, Borhegyi Z, Gulyássy P, Kis V, Szocsics P, Micsonai A, Matkó J, Drahos L, Juhász G, Kékesi KA, Kardos J (2018) Local apoptotic-like mechanisms underlie complementmediated synaptic pruning. Proc Natl Acad Sci U S A 115:6303–6308. https://doi.org/10.1073/pnas.1722613115
31. Cotman CW (1974) Isolation of synaptosomal and synaptic plasma membrane fractions. Methods Enzymol 31:445–452 https://doi.org/10.1016/0076-6879(74)31050-6
32. Borisova TA, Himmelreich NH (2005) Centrifuge-induced hypergravity: [3H]GABA and l-[14C]glutamate uptake, exocytosis and efflux mediated by high-affinity, sodium-dependent transporters. Adv Sp Res 36:1340–1345. https://doi.org/10.1016/j.asr.2005.10.007
33. Krisanova N V., Trikash IO, Borisova TA (2009) Synaptopathy under conditions of altered gravity: changes in synaptic vesicle fusion and glutamate release. Neurochem Int 55:724–731. https://doi.org/10.1016/J.NEUINT.2009.07.003
34. Larson E, Howlett B, Jagendorf A (1986) Artificial reductant enhancement of the Lowry method for protein determination. Anal Biochem 155:243–248. https://doi.org/10.1016/0003-2697(86)90432-X
35. Pozdnyakova N, Pastukhov A, Dudarenko M, Galkin M, Borysov A, Borisova T (2016) Neuroactivity of detonation nanodiamonds: dose-dependent changes in transporter-mediated uptake and ambient level of excitatory/inhibitory neurotransmitters in brain nerve terminals. J Nanobiotechnology 14:25. https://doi.org/10.1186/s12951-016-0176-y
36. Krisanova N, Pozdnyakova N, Pastukhov A, Dudarenko M, Maksymchuk O, Parkhomets P, Sivko R, Borisova T (2019) Vitamin D3 deficiency in puberty rats causes presynaptic malfunctioning through alterations in exocytotic release and uptake of glutamate/GABA and expression of EAAC-1/GAT-3 transporters. Food Chem Toxicol 123:. https://doi.org/10.1016/j.fct.2018.10.054
37. Borisova T, Krisanova N, Sivko R, Borysov A (2010) Cholesterol depletion attenuates tonic release but increases the ambient level of glutamate in rat brain synaptosomes. Neurochem Int 56:466–478. https://doi.org/10.1016/j.neuint.2009.12.006
38. Borisova T, Borysov A (2016) Putative duality of presynaptic events. Rev Neurosci 27:377–83. https://doi.org/10.1515/revneuro-2015-0044
39. Borisova T, Borysov A, Pastukhov A, Krisanova N (2016) Dynamic Gradient of Glutamate Across the Membrane: Glutamate/Aspartate-Induced Changes in the Ambient Level of L-[(14)C]glutamate and D-[(3)H]aspartate in Rat Brain Nerve Terminals. Cell Mol Neurobiol 36:1229–1240. https://doi.org/10.1007/s10571-015-0321-4
40. Borisova T, Nazarova A, Dekaliuk M, Krisanova N, Pozdnyakova N, Borysov A, Sivko R, Demchenko AP (2015) Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals. Int J Biochem Cell Biol 59:203–15. https://doi.org/10.1016/j.biocel.2014.11.016
41. Krisanova, Dudarenko MV, Pastukhov AO, Sivko RV, Kalynovska LM, Driuk MM, Nazarova AG, Gutich IІ, Shliakhovyi VV, Pozdnyakova NG (2023) Evaluation of the potential neuroactivity in the brain nerve terminals of the C60 fullerene planetary dust component. Sp Sci Technol 29:
42. Pastukhov A, Paliienko K, Pozdnyakova N, Krisanova N, Dudarenko M, Kalynovska L, Tarasenko A, Gnatyuk O, Dovbeshko G, Borisova T (2023) Disposable facemask waste combustion emits neuroactive smoke particulate matter. Sci Reports 2023 131 13:1–16. https://doi.org/10.1038/s41598-023-44972-0
43. Madadrang CJ, Kim HY, Gao G, Wang N, Zhu J, Feng H, Gorring M, Kasner ML, Hou S (2012) Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl Mater Interfaces 4:1186–1193. https://doi.org/10.1021/AM201645G
44. Mi X, Huang G, Xie W, Wang W, Liu Y, Gao J (2012) Preparation of graphene oxide aerogel and its adsorption for Cu 2+ ions. Carbon N Y 50:4856–4864. https://doi.org/10.1016/J.CARBON.2012.06.013
45. Deng X, Lü L, Li H, Luo F (2010) The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. J Hazard Mater 183:923–930. https://doi.org/10.1016/J.JHAZMAT.2010.07.117
46. Zhao G, Jiang L, He Y, Li J, Dong H, Wang X, Hu W (2011) Sulfonated graphene for persistent aromatic pollutant management. Adv Mater 23:3959–3963. https://doi.org/10.1002/ADMA.201101007
47. Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462. https://doi.org/10.1021/ES203439V