ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 6 , 2023
P. 69-75, Bibliography 23, Engl.
UDC:: 571.27; 57.083.3; 615.281.8
DOI: https://doi.org/10.15407/biotech16.06.069
Full text: (PDF, in English)
1 Taras Shevchenko National University of Kyiv, Ukraine
2 Bogomolets National Medical University, Kyiv, Ukraine
3 Latvian Biomedical Research and Study Centre, Riga, Latvia
Aim. This study aimed to examine the effect of Larifan on metabolic characteristics of human blood monocytes and granulocytes in vitro.
Methods. Four healthy adult men aged 21-26 years were recruited to participate in the study as blood donors. The metabolic profile of human blood monocytes and granulocytes was evaluated by phagocytic activity, reactive oxygen species production, nitric oxide generation, and arginase activity. Phagocytosis of FITC-labeled inactivated Staphylococcus aureus and reactive oxygen species generation was estimated by flow cytometry. Arginase activity was assessed in cell lysates. The nitric oxide generation in supernatants was examined using the Griess reaction.
Results. Phagocytic index and reactive oxygen species generation were found to be lower in both human blood monocytes and granulocytes treated with Larifan. The drug caused a dose-dependent increase in nitric oxide production, as well as a decrease in the arginase activity of blood monocytes.
Conclusions. Our results indicated the ability of Larifan to reinforce the antiviral properties of resting phagocytes along with the containment of oxidative stress development.
Key words: monocytes, granulocytes, phagocytosis, reactive oxygen species, nitric oxide, arginase, metabolic polarization.
References
- Kim Y.M., Shin E.C. Type I and III interferon responses in SARS-CoV-2 infection. Exp Mol Med. 2021, 53(5), 750-760. https://doi.org/10.1038/s12276-021-00592-0
- Mantovani S., Oliviero B., Varchetta S., Renieri A., Mondelli M.U. TLRs: Innate Immune Sentries against SARS-CoV-2 Infection. Int J Mol Sci. 2023, 24(9), 8065. https://doi.org/10.3390/ijms24098065
- Montazersaheb S., Hosseiniyan Khatibi S.M., Hejazi M.S., Tarhriz V., Farjami A., Sorbeni F.G., Farahzadi R., Ghasemnejad T. COVID-19 infection: an overview on cytokine storm and related interventions. Virol J. 2022; 19 (92). https://doi.org/10.1186/s12985-022-01814-1
- Sun M., Yu Z., Luo M., Li B., Pan Z., Ma J., Yao H. Screening Host Antiviral Proteins under the Enhanced Immune Responses Induced by a Variant Strain of Porcine Epidemic Diarrhea Virus. Microbiol Spectr. 2022, 10 (4), e0066122. https://doi.org/10.1128/spectrum.00661-22
- Vaivode K., Verhovcova I., Skrastina D., Petrovska R., Kreismane M., Lapse D., Kalnina Z., Salmina K., Rubene D., Pjanova D. Bacteriophage-Derived Double-Stranded RNA Exerts Anti-SARS-CoV-2 Activity In Vitro and in Golden Syrian Hamsters In Vivo. Pharmaceuticals (Basel). 2022,15(9), 1053. https://doi.org/10.3390/ph15091053
- Hurmach Y., Rudyk M., Svyatetska V., Senchylo N., Skachkova O., Pjanova D., Vaivode K., Skivka L. The effect of intranasally administered TLR3 agonist larifan on metabolic profile of microglial cells in rat with C6 glioma. Biochem. J. 2018, 90 (6), 110-119. https://doi.org/10.15407/ubj90.06.110
- Pjanova D., Hurmach Y., Rudyk M., Khranovska N., Skachkova O., Verhovcova I., Skivka L. Effect of Bacteriophage-Derived Double Stranded RNA on Rat Peritoneal Macrophages and Microglia in Normoxia and Hypoxia. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 2021, 75 (5), 343‒349. https://doi.org/10.2478/prolas-2021-0050
- Kolliniati O., Ieronymaki E., Vergadi E., Tsatsanis C. Metabolic Regulation of Macrophage Activation. J Innate Immun. 2022, 14 (1), 51–68. https://doi.org/10.1159/000516780
- Menck K., Behme D., Pantke M., Reiling N., Binder C., Pukrop T., Klemm F. Isolation of human monocytes by double gradient centrifugation and their differentiation to macrophages in teflon-coated cell culture bags. J Vis Exp. 2014, (91), e51554. https://doi.org/10.3791/51554
- Rudyk M., Fedorchuk O., Susak Y., Nowicky Y., Skivka L. Introduction of antineoplastic drug NSC631570 in an inpatient and outpatient setting: Comparative evaluation of biological effects. Asian Journal of Pharmaceutical Sciences. 2016, 11 (2), 308–17. https://doi.org/10.1016/j.ajps.2016.02.004
- Reiner N.E. Methods in molecular biology. Macrophages and dendritic cells. Methods and protocols. Preface. Methods Mol Biol. 2009, 531: v-vi. https://doi.org/10.1007/978-1-59745-396-7
- Bahnan W., Wrighton S., Sundwall M., Bläckberg A., Larsson O., Höglund U., Khakzad H., Godzwon M., Walle M., Elder E., Strand A.S., Happonen L., André O., Ahnlide J.K., Hellmark T., Wendel-Hansen V., Wallin R.P., Malmstöm J., Malmström L., Ohlin M., Rasmussen M., Nordenfelt P. Spike-Dependent Opsonization Indicates Both Dose-Dependent Inhibition of Phagocytosis and That Non-Neutralizing Antibodies Can Confer Protection to SARS-CoV-2. Front Immunol. 2022, 12, 808932. https://doi.org/10.3389/fimmu.2021.808932.
- Lee W.S., Wheatley A.K., Kent S.J., DeKosky B.J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. 2020, 5(10), 1185‒1191. https://doi.org/10.1038/s41564-020-00789-5
- Ikewaki N., Kurosawa G., Levy G.A., Preethy S., Abraham S.J.K. Antibody dependent disease enhancement (ADE) after COVID-19 vaccination and beta glucans as a safer strategy in management. Vaccine. 2023, 41 (15), 2427-2429. https://doi.org/10.1016/j.vaccine.2023.03.005.
- Herb M., Schramm M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel). 2021, 10(2), 313. https://doi.org/10.3390/antiox10020313.
- Lang P.A., Xu H.C., Grusdat M., McIlwain D.R., Pandyra A.A., Harris I.S., Shaabani N., Honke N., Maney S.K., Lang E., Pozdeev V.I., Recher M., Odermatt B., Brenner D., Häussinger D., Ohashi P.S., Hengartner H., Zinkernagel R.M., Mak T.W., Lang K.S. Reactive oxygen species delay control of lymphocytic choriomeningitis virus. Cell Death Differ. 2013, 20, 649–658. https://doi.org/10.1038/cdd.2012.167
- To E.E., Vlahos R., Luong R., Halls M.L., Reading P.C., King P.T., Chan C., Drummond G.R., Sobey C.G., Broughton B.R.S., Malcolm R. Starkey M.R., van der Sluis R., Sharon R. Lewin S.R., Bozinovski S., O’Neill L.A.J., Quach T., Porter C.J.H., Brooks D.A., O’Leary J.J., Selemidis S. Endosomal nox2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy. Commun. 2017, 8, 69. https://doi.org/10.1038/s41467-017-00057-x
- Wieczfinska J., Kleniewska P., Pawliczak R. Oxidative Stress-Related Mechanisms in SARS-CoV-2 Infections. Oxid Med Cell Longev. 2022, 2022, 5589089. https://doi.org/10.1155/2022/5589089
- Auch C.J., Saha R., Sheikh F.G., Liu X., Jacobs B.L., Pahan K. Role of protein kinase R in double-stranded RNA-induced expression of nitric oxide synthase in human astroglia. FEBS Lett. 2004, 563, 223–228. https://doi.org/10.1016/S0014-5793(04)00302-3
- Kieler M., Hofmann M., Schabbauer G. More than just protein building blocks: how amino acids and related metabolic pathways fuel macrophage polarization. FEBS J. 2021, 288, 3694‒3714. https://doi.org/10.1111/febs.15715
- Lisi F., Zelikin A.N., Chandrawati R. Nitric Oxide to Fight Viral Infections. Sci. 2021, 8, 2003895. https://doi.org/10.1002/advs.202003895
22.Iwata M, Inoue T, Asai Y, Hori K, Fujiwara M, Matsuo S, Tsuchida W, Suzuki S. The protective role of localized nitric oxide production during inflammation may be mediated by the heme oxygenase-1/carbon monoxide pathway. Biochem Biophys Rep. 2020, 23, 100790. https://doi.org/10.1016/j.bbrep.2020.100790
23.Ghosh A, Joseph B, Anil S. Nitric Oxide in the Management of Respiratory Consequences in COVID-19: A Scoping Review of a Different Treatment Approach. Cureus. 2022, 14(4), e23852. https://doi.org/10.7759/cureus.23852
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023