ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 15, No. 1, 2022
P. 43-51. Bibliography 29, Engl.
UDC: 615.214.22.015.11
https://doi.org/10.15407/biotech15.01.043
M. Golovenko 1, A. Reder 2, V. Larionov 1, S. Andronati 1
1 Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odesa
2 SLC «INTERCHEM», Odesa, Ukraine
The aim of this study was to identify the Propoxazepam metabolites, formed by suspension of cryopreserved human hepatocytes, using the precise method of mass LC-MS/MS analysis.
Methods. A suitable chromatographic method was developed for the profiling of Propoxazepam and its metabolites. Samples were analyzed using a Waters Vion high resolution LC-MS/MS instrument, and data were examined using Waters Unifi software to determine the identity of the most abundant metabolites. Following a 4-hour incubation with human hepatocytes, intact Propoxazepam molecule accounted for 96.0% of the profile. Its most abundant metabolite was the oxidize.
Results. Propoxazepam (3-hydroxyderivative), which accounted for approximately 2.5% of the total peak response in the 4-hour sample. Two minor components were also found, each accounting for < 10% of the total peak response. Glucuronic conjugates have not been found under the experimental conditions. All metabolites formed represented less than 10% of the total chromatographic peak response.
Coclusion. The data obtained indicate the absence of reactive electrophilic derivatives among the metabolites of Propoxazepam.
Key words: Propoxazepam, humanhepatocytes, metabolism, LC-MS/MS analysis.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2022
References
1. Golovenko N. Ya., Voloshchuk N. I., Andronati S. A., Taran I. V., Reder А. S., Pashynska О. S., Larionov V. B. Antinociception induced by a novel benzodiazepine receptor agonist and bradykinin receptor antagonist in rodent acute and chronic pain models. Eur. J. Biomed. Pharmacol. Sci. 2018, 5 (12), 79–88.
2. Golovenko M., Larionov V., Reder A., Valivodz I., Tsapenko Z. Sedative-hypnotic and muscle relaxant activities of propoxazepam in animal models and investigation on possible mechanisms. Drug Discovery. 2020, 14 (33), 155?162.
3. Desai A., Kherallah Y., Szabo C., Marawar R. Gabapentin or pregabalin induced myoclonus: A case series and literature review. J. Clin. Neurosci. 2019, V. 61, P. 225–234. https://doi.org/10.1016/j.jocn.2018.09.019
4. Golovenko N. Ya., Larionov V. B., Andronati S. A., Valivodz` I. P., Yurpalova T. A. Рharmacodynamic analysis of propoxazepam interaction with GABA-benzodiazepine-receptor-ionophore complex. Neurophysiol. 2018, 50 (1), 2–11. https://doi.org/10.1007/s11062-018-9711-9
5. Golovenko N. Ya., Larionov V. B., Reder A. S., Valivodz I. P. An effector analysis of the interaction of propoxazepam with antagonists of GABA and glycine receptors. Neurochem. J. 2017, 11 (4), 302–308. https://doi.org/10.1134/S1819712417040043
6. Golovenko M., Reder A., Andronati S., Larionov V. Evidence for the involvement of the GABA-ergic pathway in the anticonvulsant and antinociception activity of Propoxazepam in mice and rats. J. Pre-Clin. Clin. Res. 2019, 13 (3), 99?105. https://doi.org/10.26444/jpccr/110430
7. Dambach D. M., Andrews B. A., Moulin F. New technologies and screening strategies for hepatotoxicity: use of in vitro models. Toxicol. Pathol. 2005, V. 33, P. 17–26. https://doi.org/10.1080/01926230590522284
8. Xu J. J., Henstock P. V., Dunn M. C., Smith A. R., Chabot J. R., de Graaf D. Cellular imaging predictions of clinical drug-induced liver injury. Toxicol. Sci. 2008, V. 105, P. 97–105. https://doi.org/10.1093/toxsci/kfn109
9. Chu V., Einolf H. J., Evers R. In vitro and in vivo induction of cytochrome P450: a survey of the current practices and recommendations: a Pharmaceutical Research and Manufacturers of America perspective. Drug Metab. Dispos. 2009, V. 37, P. 1339–1354. https://doi.org/10.1124/dmd.109.027029
10. McGinnity D. F., Tucker J., Trigg S., Riley R. J. Prediction of CYP2C9-mediated drug-drug interactions: a comparison using data from recombinant enzymes and human hepatocytes. Drug Metab. Dispos. 2005, V. 33, P. 1700–1707. https://doi.org/10.1124/dmd.105.005884
11. Kikkawa R., Fujikawa M., Yamamoto T., Hamada Y., Yamada H., Horii I. In vivo hepatotoxicity study of rats in comparison with in vitro hepatotoxicity screening system. J. Toxicol. Sci. 2006, V. 31, 23–34. https://doi.org/10.2131/jts.31.23
12. Reder A. S. Dispersed substance 7-bromo-5-(o-chlorophenyl)-3-propiloxy-1,2-dihydro-3H-1,4-benzodiazepine-2-one (I) with at least 50% volume fraction of particles less than 30 ?m for use as anticonvulsive and analgesic drug. Patent UA 118626.
13. Andronati S. A. Pavlovsky V. I., Golovenko M. Ya., Reder A. S., Larionov V. B., Valivodz’ I. P. Synthesis and extraction efficiency from biological fluids of [214C]Propoxazepam: a potent analgesic with multifunctional mechanism of action. JCBPS, Section A. 2019, 9 (4), 323?333. https://doi.org/10.24214/jcbps.A.9.4.32333
14. Feng W.-Y., Wen J., Stauber K. In vitro Drug Metabolism Investigation of 7-Ethoxycoumarin in Human, Monkey, Dog and Rat Hepatocytes by High Resolution LC-MS/MS. Drug Metab. Lett. 2018, 12 (1), 33?53. https://doi.org/10.2174/1872312812666180418142056
15. Shuguang Ma, Raju Subramanian. Detecting and characterizing reactive metabolites by liquid chromatography/tandem mass spectrometry. J. Mass Spectrom. 2006, V. 41. P. 1121?1139. https://doi.org/10.1002/jms.1098
16. Golovenko N. Mechanisms of xenobiotic metabolism reactions in biological membranes. Kyiv: Nauk. dumka. 1984, 220 p. (In Russian).
17. Whirl-Carrillo M., McDonagh E. M., Hebert J. M., Gong L., Sangkuhl K., Thorn C. F., Altman R. B., Klein T. E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92 (4), 414?417. https://doi.org/10.1038/clpt.2012.96
18. Andronati S. A. Pavlovsky V. I., Golovenko M. Ya., Reder A. S., Larionov V. B., Valivodz’ I. P. Synthesis and extraction efficiency from biological fluids of [214C]Propoxazepam: a potent analgesic with multifunctional mechanism of action. JCBPS, Section A. 2019, 9 (4), 323?333. https://doi.org/10.24214/jcbps.A.9.4.32333
19. Valivodz I., Golovenko N., Larionov V. ADME properties and tentative identification of metabolites of propoxazepam in mice by radioactive carbon and UPLC-MS/MS methods. Abstracts of X International Scientific and Practical Conference. San Francisco, USA. 2020, P. 335?338.
20. Golovenko N. Y., Zinkovskii V. G., Bogatskii A. V., Sharbatyan P. A., Andronati S. A. Metabolism of phenazepam in the rat organism. Pharm. Chem. J. 1981, V. 14, P. 208?213. (In Russian). https://doi.org/10.1007/BF00777451
21. Testa B. Principles of drug metabolism. Burger’s Medicinal Chemistry, Drug Discovery, and Development. Seventh Edition, edited by Donald J. Abraham and David P. Rotella. 2010, P. 405?455. https://doi.org/10.1002/0471266949.bmc033.pub2
22. Bogatsky A. V., Zinkovsky V. G., Golovenko N. Ya. Metabolic pathways of 3H-5-bromo-2-chloro-2-amino-benzophenone in rats and mice (model of aromatic hydroxylation of phenazepam). Izvestia of the Academy of Sciences of the USSR. Ser. biological. 1983, V. 5, P. 770?776. (In Russian).
23. Bogatsky A. V., GolovenkoN. Ya., Andronati S. A., Kolomeichenko G. Yu., Zhilina Z. I. Participation of the redox chain of rat liver microsomes in the narrowing of the 1,4-benzodiazepine ring. Dokl. Academy of Sciences of the USSR. 1977, 234 (1), 215?218. (In Russian).
24. Golovenko N. Ya., Zinkovsky V. G., Andronati S. A., Yavorsky A. S. Mass spectrometric analysis of 2-aminobenzophenone derivatives and their metabolites. Bioorg. chem. 1986, V. 5, P. 686?694. (In Russian).
25. Mizuno K., Katoh M., Okumura H., Nakagawa N., Negishi T., Hashizume T., Nakajima M., Yokoi T. Metabolic Activation of Benzodiazepines by CYP3A4. Drug Metab. Dispos. 2009, 37 (2), 345–351. https://doi.org/10.1124/dmd.108.024521
26. Olsson R., Zettergren L. Anticonvulsant-induced liver damage. Am. J. Gastroenterol. 1988, V. 83, P. 576–577. https://doi.org/10.1590/S0074-02761988000500070
27. Kedderis G. L., Argenbright L. S., Miwa G. T. Covalent interaction of 5-nitroimidazoles with DNA and protein in vitro: mechanism of reductive activation. Chem. Res. Toxicol. 1989, 2 (3), P. 146–149. https://doi.org/10.1021/tx00009a004
28. Golovenko N. Ya., Kovalenko V. N., Larionov V. B., Reder A. S. Dose and time-dependent acute and sub-chronic oral toxicity study of propoxazepam in mice and rats. EAS J. Pharmacy Pharmacol. 2020, 8 (1), 1?7. https://doi.org/10.14419/ijpt.v8i1.29531
29. Golovenko M., Larionov V., Reder A. Investigation of safety profile of propoxazepam by Salmonella/Microsome test. Information, its impact on social and technical processes. Abstracts of VIII International Scientific and Practical Conference. SH SCW "NEW ROUTE" Haifa, Israel. 2020, P. 162?164.