ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 15, No. 1, 2022
P. 52-60. Bibliography 31, Engl.
UDC: 616.12-005.8:577.175.82:612.82.015.38.08
https://doi.org/10.15407/biotech15.01.052
CARDIOPROTECTIVE EFFECT OF ENKEPHALINS UNDER IMMOBILIZATION STRESS
Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Objective: The aim of this study was to investigate the cardioprotective effect of dalargin, a synthetic leu-enkephalin.
Methods: The induction of myocardial infarction in rats, which were kept on a diet with excess fat and calcium/sodium salts for two months, by the use of immobilization stress. The experimental results indicated that the applied model allowed to induce the development of myocardial infarction within one three days, which was confirmed by electrocardiography, enzyme-linked immunosorbent assay and histological examination.
Results: Pre-treatment of rats with dalargin had no prevented myocardial infarction, however, it increased the resistance to immobilization stress and reduced infarction-induced myocardial lesions. Simultaneous administration of naloxone, an opiate receptor antagonist, together with dalargin eliminated its cardioprotective effect in experimental animals.
Conclusion: The use of synthetic leu-enkephalin dalargin significantly reduced the risk of myocardial infarction caused by excessive neuromuscular stress. The dalargin effect on the myocardium was mediated by opiate receptors.
Key words: myocardial infarction, immobilization stress, dalargin.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2022
References
1. Virani S. S., Alonso A., Aparicio H. J., Benjamin E. J., Bittencourt M. S., Callaway C. W., Carson A. P., Chamberlain A. M., Cheng S., Delling F. N., Elkind M. S. V., Evenson K. R., Ferguson J. F., Gupta D. K., Khan S. S., Kissela B. M., Knutson K. L., Lee C. D., Lewis T. T., Liu J., Loop M. S., Lutsey P. L., Ma J., Mackey J., Martin S. S., Matchar D. B., Mussolino M. E., Navaneethan S. D., Perak A. M., Roth G. A., Samad Z., Satou G. M., Schroeder E. B., Shah S. H., Shay C. M., Stokes A., VanWagner L. B., Wang N. Y., Tsao C. W. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics – 2021 Update: A Report From the American Heart Association. Circulation. 2021, 143 (8), e254-e743. https://doi.org/10.1161/CIR.0000000000000950
2. Kruglyakov P. V., Sokolova I. B., Polyntsev D. G. Cell therapy for myocardial infarction. Tsitologiya. 2008, V. 50, P. 521–528. (In Russian).
3. Gulevsky A. K., Abakumova E. S., Moiseyeva N. N. Perspectives of Application of Low-Molecular Fraction (up to 5 kDa) from Hearts of Newborn Piglets for Myocardial Regeneration. Problems of Cryobiology. 2012, V. 22, P. 320.
4. Gulevsky A. K., Grischenko V. I., Tereschenko O. S., Zagnoiko V. I., Akhremenko A. K. The effect of a (1?10 kD) brain fraction of Equus coballus of Yakut region on the kinetic parameters of Ca2+-transporting systems in cardiomyocyte sarcolemma vesicles. Cryo-Letters. 1994, V. 15, P. 27–32.
5. Maslov L. N., Lishmanov Y. B., Arbuzov A. G., Krylatov A. V., Budankova E. V., Konkovskaya Y. N., Burkova V. N., Severova E. A. Antiarrhythmic activity of phytoadaptogens in short-term ischemia-reperfusion of the heart and postinfarction cardiosclerosis. Bull. Exp. Biol. Med. 2009, V. 147, P. 303–306. https://doi.org/10.1007/s10517-009-0502-6
6. Gomes I., Dale C. S., Casten K., Geigner M. A., Gozzo F. C., Ferro E. S., Heimann A. S., Devi L. A. Hemoglobin-derived peptides as novel type of bioactive signaling molecules. AAPS J. 2010, 12 (4), 658?669. https://doi.org/10.1208/s12248-010-9217-x
7. Ziganshin R. K., Sviryaev V. I., Vas'kovskii B. V., Mikhaleva I. I., Ivanov V. T., Kokoz Y. M., Alekseev A. E., Korystova A. F., Sukhova G. S., Emel'yanova T. G., Usenko A. B. Biologically active peptides isolated from the brain of hibernating ground squirrels. Bioorg. Khim. 1994, V. 20, P. 899–918. Russian.
8. Ross A. P., Drew K. L. Potential for discovery of neuroprotective factors in serum and tissue from hibernating species. Mini Rev. Med. Chem. 2006, 6 (8), 875–884. https://doi.org/10.2174/138955706777934964
9. Kokoz Y. M., Zenchenko K. I., Alekseev A. E., Korystova A. F., Lankina D. A., Ziganshin R. H., Mikhaleva I. I., Ivanov V. T. The effect of some peptides from the hibernating brain on Ca2+ current in cardiac cells and on the activity of septal neurons. FEBS Lett. 1997, 411 (1), 71–76. https://doi.org/10.1016/S0014-5793(97)00607-8
10. Headrick J. P., See Hoe L. E., Du Toit E. F., Peart J. N. Opioid receptors and cardioprotection — opioidergic conditioning’ of the heart. Br. J. Pharmacol. 2015, V. 172, P. 2026–2050. https://doi.org/10.1111/bph.13042
11. Peart J. N., Gross E. R., Gross G. J. Effect of exogenous kappaopioid receptor activation in rat model of myocardial infarction. J. Cardiovasc. Pharmacol. 2004, V. 43, P. 410–415. https://doi.org/10.1097/00005344-200403000-00012
12. Maslov L. N., Lishmanov Y. B., Oeltgen P. R., Barzakh E. I., Krylatov A. V, Govindaswami M., Brown S. A. Activation of peripheral ?2-opioid receptors increases cardiac tolerance to ischemia/reperfusion injury: Involvement of protein kinase C, NO-synthase, K+-ATP channels and the autonomic nervous system. Life Sci. 2009, V. 84, P. 657–663. https://doi.org/10.1016/j.lfs.2009.02.016
13. Peart J. N., Gross E. R., Gross G. J. Opioid-induced preconditioning: recent advances and future perspectives. Vascul. Pharmacol. 2005, 42 (5?6). 211–218. https://doi.org/10.1016/j.vph.2005.02.003
14. Borlongan C. V., Hayashi T., Oeltgen P. R., Su T. P., Wang Y. Hibernation-like state induced by an opioid peptide protects against experimental stroke. BMC Biol. 2009, V. 7, P. 31. https://doi.org/10.1186/1741-7007-7-31
15. Kolaeva S. G., Semenova T. P., Santalova I. M., Moshkov D. A., Anoshkina I. A., Golozubova V. Effects of L-thyrosyl ? L-arginine (kyotorphin) on the behavior of rats and goldfish. Peptides. 2000, 21 (9), 1331–1336. https://doi.org/10.1016/S0196-9781(00)00275-8
16. Ignat'ev D. A., Sukhova G. S., Liashkov A. E. [Temperature and cardiotropic effects of kyotorphin and neokyotorphin in hibernating and nonhibernating animals]. Usp. Fiziol. Nauk. 2009, 40 (3), 68–88. (In Russian).
17. Perazzo J., Castanho M. A., S? Santos S. Pharmacological Potential of the Endogenous Dipeptide Kyotorphin and Selected Derivatives. Front. Pharmacol. 2017, V. 7, P. 530. https://doi.org/10.3389/fphar.2016.00530
18. Gulevsky O. K., Schenyavsky I. I. Antihypoxant Activity of Low Molecular Weight Fraction Bovine Blood Cryohemolysate at Different Stages of Ontogenesis. Problems of Cryobiology and Cryomedicin. 2017, 27 (1), 41–50. https://doi.org/10.15407/cryo27.01.041
19. Gulevsky A. K., Abakumowa E. S., Shenyavsky I. I. Biological activity of low molecular weight fraction obtained from cord and peripheral blood in cows of different ages. Fiziol. Zh. 2017, 63 (2), 73?79. https://doi.org/10.15407/fz63.02.073
20. Rohoza L. A. Biological Effect of Exract of Cryopreserved Piglet’s Heart Fragments in Ischemia and Spontaneous Myocardial Infarction. Problems of Cryobiology and Cryomedicine. 2017, 27 (2), 167. https://doi.org/10.15407/cryo27.02.167
21. Chyzh M. O., Babaieva G. G., Rohoza L. A., Halchenko S. Ye. Extract of pigs’ heart cryopreserved fragments as a regulator of state of rats heart muscle in myocardial necrosis model. Bulletin of problems biology and medicine. 2020, 4 (158), 78–83. https://doi.org/10.29254/2077-4214-2020-4-158-78-83
22. Scheniavsky I. J. Improving the model of myocardial infarction in rats. Exp. Clin. Physiol. Biochem. ECPB. 2021, 92 (1), 40–47. (In Ukrainian). https://doi.org/10.25040/ecpb2021.01-02.040
23. Ambroskina V. V., Kriachok T. A., Larionov O. P., Bratus' V. V., Talaieva T. V. Hypertrygliceridemia as a factor of atherogenesis: significance and mechanisms of action. Fiziol. Zh. 2008, 54 (5), 61–70. (In Ukrainian).
24. Seredenin S. B., Badyshtov B. A., Neznamov G. G., Makhnycheva A. L., Kolotilinskaia N. V., Nadorov S. A. Predicting individual reactions to emotional stress and benzodiazepine tranquilizers. Eksp. Klin. Farmakol. 2001, 64 (1), 3–12. (In Russian).
25. Hou Y. C., Lu C. L., Zheng C. M., Chen R. M., Lin Y. F., Liu W. C., Yen T. H., Chen R., Lu K. C. Emerging Role of Vitamins D and K in Modulating Uremic Vascular Calcification: The Aspect of Passive Calcification. Nutrients. 2019, 11 (1), 152. https://doi.org/10.3390/nu11010152
26. Rohrmann S., Garmo H., Malmstr?m H., Hammar N., Jungner I., Walldius G., Van Hemelrijck M. Association between serum calcium concentration and risk of incident and fatal cardiovascular disease in the prospective AMORIS study. Atherosclerosis. 2016, V. 251, P. 85–93. https://doi.org/10.1016/j.atherosclerosis.2016.06.004
27. Lee S. J., Lee I. K., Jeon J. H. Vascular Calcification-New Insights Into Its Mechanism. Int. J. Mol. Sci. 2020, 21 (8), 2685. https://doi.org/10.3390/ijms21082685
28. H?naut L., Candellier A., Boudot C., Grissi M., Mentaverri R., Choukroun G., Brazier M., Kamel S., Massy Z. A. New Insights into the Roles of Monocytes/Macrophages in Cardiovascular Calcification Associated with Chronic Kidney Disease. Toxins (Basel). 2019, 11 (9), 529. https://doi.org/10.3390/toxins11090529
29. Wick M. R. The hematoxylin and eosin stain in anatomic pathology – An often-neglected focus of quality assurance in the laboratory. Seminars in Diagnostic Pathology. 2019, 36 (5), 303–311. https://doi.org/10.1053/j.semdp.2019.06.003
30. Shchenyavsky I. I., Gulevsky O. K. Study of Protective Effect of Synthetic Neuropeptide Dalargin Under Cold Stress. Probl. Cryobiol. Cryomed. 2019, V. 29, P. 246–254. https://doi.org/10.15407/cryo29.03.246
31. Shcheniavsky I. Anti-Apoptotic Effect of Synthetic Leu-Enkephalin Dalargin on Rat Leukocytes in Cold Stress Model in Vivo. Probl. Cryobiol. Cryomed. 2021, V. 31, P. 3–13. https://doi.org/10.15407/cryo31.01.003