ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 15, No. 1, 2022
P. 23-42. Bibliography 125, Engl.
UDC: 519.8.612.007
https://doi.org/10.15407/biotech15.01.023
MATHEMATICAL MODELS OF HUMAN RESPIRATORY AND BLOOD CIRCULATORY SYSTEMS
N. I. Aralova 1, O. M. Klyuchko 2, V. I. Mashkin1, I. V. Mashkina 3, P. A. Radziejowski 4, M. P. Radziejowski 5
1 V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv
2National Aviation University Kyiv, Ukraine
3Boris Grinhenko Kiyv University, Ukraine
4Kazimiera Milanowska College of Education and Therapy , Poznan, Poland
5Czestochowa University of Technology, Czestochowa, Poland
Aim. To analyze modern approaches to mathematical modeling of human respiratory and blood circulatory systems.
Methods. Comprehensive review of scientific literature sources extracted from domestic and international resources databases.
Results. Historical information and modern data concerning mathematical modeling of human functional respiratory and blood circulatory systems were summarized and analyzed in present ¬review; current trends in approaches to the construction of these models were revealed.
Conclusions. Currently, two main approaches to the mathematical modeling of respiratory and blood circulatory systems exist. One of them is the construction of models of the mechanics of respiration and blood circulation. They are based on the models of mechanics of solid deformable body, thermomechanics, hydromechanics, and continuum mechanics. This approach uses complex mathematical apparatus, including Navier-Stokes equation, which makes it possible to obtain a number of theoretical results, but it is hardly usable for real problems solutions at present time. The second approach is based on the model of F. Grodins, who represented the process of breathing as a controlled dynamic system, described by ordinary differential equations, in which the process control is carried out according to the feedback principle. There is a significant number of modifications of this model, which made it possible to simulate various disturbing influences, such as physical activity, hypoxia and hyperemia, and to predict parameters characterizing functional respiratory system under these disturbing influences.
Key words: mathematical model of respiratory system, mathematical model of blood circulatory system, hypoxic state, theoretical analysis.
© Інститут біохімії ім. О. В. Палладіна НАН України, 2022
References
1. Voropaeva O. F., Shokin Yu. I. Numerical modeling in medicine. Some Statements of Problems and Results of Calculations. Computing technologies. 2012, 17 (4), 29–55. (In Russian).
2. Regier S. A. Lectures on biological mechanics. Moskva: MGU. 1980. (In Russian). ISBN: 978-3-319-41075-3
3. Bailey N. T. G. The mathematical approach to biology and medicine. John Wiley and Sons. London–New York–Sydney. 1967, 296 p. https://doi.org/10.1002/bimj.19690110325
4. Caro C. G., Pedley T. J., Schroter R. C., Seed W. A. The mechanics of the circulation 2nd edition. Cambridge University Press. 2011, 524 p. https://doi.org/10.1017/CBO9781139013406
5. Pedley T. J. The Fluid Mechanics of Large Blood Vessels Cambridge University Press. 1980, 446 p. https://doi.org/10.1017/CBO9780511896996
6. Marchuk G. I. Mathematical models in immunology. Springer. 351 p. ISBN-13:? 978-0387909011
7. Remizov A. N. Medical and biological physics. Moskva: Higher school. 1987, 638 p. (In Russian). ISBN 978-5-9704-5943-0
8. Reznichenko G. Yu. Lectures on mathematical models in biology. RHD. 2011, 560 p. (In Russian). ISBN 978-5-93972-847-8
9. Makarov I. M. Informatics and medicine. Moskva: Science. 1997, 208 p. (In Russian).
10. Computer models and progress in medicine. Ed. O. M. Belotserkovsky, A. S. Kholodov. Moskva: Science. 2001, 300 p. (In Russian). ISBN 5-02-008371-2
11. Medicine in the mirror of informatics. Ed. O. M. Belotserkovsky, A. S. Kholodov. Moskva: Science. 2008, 242 p. (In Russian).
12. Begun P. I., Afonini P. N. Modeling in biomechanics. Moskva: Higher school. 2004, 389 p. (In Russian). ISBN 5-06-004798-9
13. Smolyaninov V. V. Mathematical models of biological tissues. Moskva: Science. 1980, 368 p. (In Russian).
14. Romanovsky Yu. M., Stepanov N. V., Chernavsky D. S. Mathematical biophysics. Moskva: Science. 1984, 304 p. (In Russian).
15. Systems computer biology. Ed. N A. Kolchanova, S. S. Goncharova, V. A. Likhoshvaya, V. A. Ivanisenko. Novosibirsk: Publishing House of the SO RAN. 2008, 769 p. (In Russian). ISBN 978-5-7692-0871-3
16. Circulatory system and arterial hypertension: Biophysical and genetic-physiological mechanisms, mathematical and computer research. Ed. L. N. Ivanova, A. M. Blokhin, A. L. Markel. Novosibirsk: Publishing House of the SO RAN. 2008, 252 p. (In Russian). ISBN 978-5-7692-1021-1
17. Sudakov K. V., Andrianov V. V., Vagin Yu. I., Kiselev I. I. Human physiology. Atlas of dynamic schemes. Moskva: GEOTAR-Media. 2009, 416 p. (In Russian). ISBN 978-5-9704-3234-1
18. Fundamental Medical and Engineering Investigations on Protective Artificial Respiration. A Collection of Papers from the DFG funded Research Program PAR (Notes on Numerical Fluids Mechanics and Multidisciplinary Desig. V. 116). Eds. M. Klaas, E. Koch, W. Schr?der. Springer-Verlag. 2011, 186 p. https://doi.org/10.1007/978-3-642-20326-8
19. Petrov I. B. Mathematical modeling in medicine and biology based on models of continuum mechanics. Proceedings of the Moscow Institute of Physics and Technology. 2009, 1 (1), 5–16. (In Russian).
20. Keener J., Sneyd J. Mathematical physiology. Springer. 2001, 766 p. https://doi.org/10.1007/978-0-387-75847-3
21. Anokhin P. K. Fundamental questions of the general theory of functional systems. Principles of systemic organization of functions. Moskva: Nauka. 1973, 258 p. (In Russian).
22. Anokhin P. K. Essays on the physiology of functional systems. Moskva: Medicine. 1975, 447 p. (In Russian).
23. Meerson F. Z., Golubeva L. Yu., Dvoryantsev S. N., Khatkevich A. N. Adaptation to hypoxia, unlike adaptation to stress, fails to protect the isolated heart from reperfusion after total ischemia (An NMR study). Bull. Exp. Biol. Med. 1995, 120 (5), 1103–1106. https://doi.org/10.1007/BF02445476
24. Meerson F. Z., Pshennikova M. G. Adaptation to stressed situations and physical loadings. Moskva: Medicina. 1988, 256 p. (In Russian). ISBN 5-225-00115-7
25. Onopchuk Yu. N., Beloshitsky P. V., Aralova N. I. To the question of the reliability of functional organism systems. Kibernetika i vy?islitelna? tehnika. 1999, Is. 122, P. 72–82. (In Russian).
26. Beloshitsky P. V., Onopchuk Yu. M., Aralova N. I. Mathematical methods for the investigation of the problem of organism functioning reliability at extreme high mountains conditions Physiol. J. 2003, 49 (3), 47–54. (In Russian). ISSN 0201-8489
27. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Software for the reliability investigation of operator professional activity for “human-machine” systems. Electronics and control systems. 2017, V. 1, P. 107–115. https://doi.org/10.18372/1990-5548.51.11712
28. Balanter B. I. Introduction to mathematical modeling of pathological processes. Moskva: Medicine. 1980, 262 p.
29. Bobryakova I. L. The sensitivity of the mathematical model and the optimality of the regulation of the functional respiratory system. Diss. Candidate of Physics and Mathematics Sciences. Kyiv. 2000, 179 p. (In Russian).
30. Aralova N. I. Mathematical models of functional respiratory system for solving the applied problems in occupational medicine and sports. Saarbr?cken: LAP LAMBERT Academic Publishing GmbH & Co, KG. 2019, 368 p. (In Russian). ISBN 978-613-4-97998-6
31. Onopchuk Yu. N. On one general scheme of regulation of external respiration regimes, minute volume of blood and tissue blood flow in response to oxygen demand. Cybernetics. 1980, V. 6, P. 110–115.
32. Khanin M. A. Extreme principles in biology and medicine. Moskva: Nauka. 1978, 256 p. (In Russian).
33. Poon Chi-Sang, Ji Xin-Bao. Resolution of pulmonary ventilation-perfusion distribution recovered by enforced smoothing. Proc. 15th Annu. Northhest. Bioeng.Conf., Boston, Mass., March 27–28, 1989. New York (N. Y.). 1989, V. 3, P. 135–136. https://doi.org /10.1109/NEBC.1989.36737
34. De Lazzaria C., Darowski M., Ferraria G., Clementea F., Guaragnoa M. Computer simulation of haemodynamic parameters changes with left ventricle assist device and mechanical ventilation. Computers in Biology and Medicine. 2000, 30 (2), 55–69. https://doi.org/10.1016/S0010-4825(99)00026-8
35. H?m?lainen J. J. Optimal arterial resistance for normal and failing heart. Proc. Annu. Int. Conf. IEEE Eng. 1991. https://doi.org/10.1109/IEMBS.1991.684884
36. Karam Elie H. Modelling of cardiac growth and hypertrophy: regulating factors. Ann. Biomed. Eng. 1993, 21 (3), 309–310. https://doi.org/10.1007/BF02368187
37. Dietmar P. F. M?ller: Introduction to Transportation Analysis, Modeling and Simulation - Computational Foundations and Multimodal Applications. Simulation Foundations, Methods and Applications. Springer. 2014, P. 1–334. ISBN 978-1-4471-5636-9
38. Sherman T. F., Popel A. S., Koller A., Johnson P. C. The cost of departure from optimal radii in microvascular networks. J. Theor. Biol. 1989, 136 (6), 245–265. https://doi.org/10.1016/S0022-5193(89)80162-6
39. Bukharov I. B. Optimal structural and functional organization of circulatory and external respiration systems. Mathematical modeling. 2005, 17 (9), 3–26. (In Russian).
40. Fursova I. V. Extreme principles in mathematical biology. Advances in modern biology. 2003, 123 (2), 115–117. (In Russian).
41. Mezentseva L. V., Pertsov S. S. Mathematical modeling in biomedicine. Bulletin of new medical technologies. 2013, XX (1), 11–14. (In Russian). https://doi.org/10.24411/issn.2075-4094
42. Grodins F. Theory of regulation and biological systems. Moskva: Mir. 1966, 315 p. (In Russian).
43. Lyubimov G. A., Steklov V. A. Models of the human lungs and the study of the mechanics of breathing with their help. Proceedings of the Mathematical Institute. 1998, V. 223, P. 196–206. (In Russian).
44. Kholodov A. S. Some dynamical models of external breathing and blood circulation regarding to their interaction and substances transfer. Computational Models and Medical Progress. 2001, P. 127–163.
45. Simakov S. S., Kholodov A. S. Computational study of oxygen concentration in human blood under low frequency disturbances. Mathematical Models and Computer Simulations. Springer. 2009, 1 (2), 283. https://doi.org/10.1134/S2070048209020112
46. Ben-Tal A. Simplified models for gas exchange in the human lungs. J. Theor. Biol. 2006, V. 238, P. 474–495. https://doi.org/10.1016/j.jtbi.2005.06.005
47. Benallal H., Beck K. C., Jonson B. D., Busso T. Evaluation of cardiac output from a tidally ventilated homogeneous lung model. Eur. J. Appl. Physiol. 2005, V. 95, P. 153–162. https://doi.org/10.1007/s00421-005-1376-6
48. Kuwahara F., Sano Y., Liu J., Nakayama A. A. Porois Media Approach for Bifurcating Flow aqnd Mass Transfer in a Human Lung. J. Heat Transfer. 2009, (131) 10. https://doi.org/10.1115/1.3180699
49. Weibel E. R. Morphometry of the human lungs. Moskva: Medicine. 1970, 175 p. (In Russian).
50. Misyura A. G. Modeling the mechanisms of alveolar ventilation disorders. Cybernetics and computer technology. 1987, V. 74, P. 51–55. (In Russian).
51. Reis A. H., Miguel A. F., Aydin M. Constructal theory of flow architecture of the lungs. J. Med. Physics. 2004, V. 31, P. 1135–1140. https://doi.org/10.1118/1.1705443
52. Trusov P. V., Zaitseva N. V., Tsinker M. Yu. Modeling of human breath: conceptual and mathematical statements. Math. Biol. Bioinf. 2016, 11 (1), 64–80. https://doi.org/10.17537/2016.11.64
53. Dyachenko A. I. Study of a one-component model of lung mechanics. Medical biomechanics. 1986, V. 1, P. 147–152. (In Russian).
54. Chen X. B., Leong S. C., Lee H. P., Chong V. F., Wang D. Y. Aerodynamic effects of inferior turbinate surgery on nasal airflow--a computational fluid dynamics model. Rhinology. 2010, 48 (4), 394–400. https://doi.org/10.4193/Rhino09.196
55. Doorly D. J., Taylor D. J., Gambaruto A. M., Schroter R. C., Tolley N. Nasal Architecture form and flow. Phil. Trans. R. Soc. A. 2008, V. 386, P. 3225–3246. https://doi.org/10.1098/rsta.2008.0083
56. Fomin V. M., Vetlutsky V. M., Ganimedov V. L., Muchnaya M. I., Shepelenko V. I., Melnikov M. N., Savina A. A. Investigation of air flow in the human nasal cavity. Prikl. Mechanics Tech. Physics. 2010, 51 (2), 107–115. (In Russian). https://doi.org/10.1007/s10808-010-0033-y
57. Jiayao Yuan. Alveolar Tissue Fibers and Surfactant Effects on Lung Mechanics – Model Development and Validation on ARDS and IPF Patients January 2021IEEE. Open J. Engineering in Medicine and Biology PP. 1999, V. 1. https://doi.org/10.1109/OJEMB.2021.3053841
58. Gattinoni L., Chiumello D., Rossi S. COVID-19 pneumonia: ARDS or not? Crit. Care. 2020, 24 (1), 154. https://doi.org/10.1186/s13054-020-02880-z
59. Popovi? N., Naumovi? M., Roganovi? S. Basics of mathematical modeling of pulmonary ventilation mechanics and gas exchange. In: Badnjevic A. (eds) CMBEBIH 2017. IFMBE Proceedings. Springer, Singapore. 2017, V. 62. https://doi.org/10.1007/978-981-10-4166-2_55
60. Khoo M. C. K. Physiological Control Systems. IEEE Press series on biomedical engineering. Wiley. 1999, 344 p. ISBN-13: 978-0780334083, ISBN-10: 0780334086
61. Timischl-Teschl S., Batzel J., Kappel F. Modeling the Control of the Human Cardiovascular-Respiratory System: An Optimal Control Approach with Application to the Transition to Non-Rem Sleep. Mathematical Biosciences and Engineering. 2004. http://math.asu.edu/~mbe.
62. Milhorn H. T., Benton H., Ross H., Guyton A. C. A mathematical model of the human respiratory control system. Biophys. J. 1965, V. 5, P. 27–46. https://doi.org/10.1016/S0006-3495(65)86701-7
63. Batzel J., Fink M., Schneditz D., eds. Proceedings of the Workshop on Cardiovascular-Respiratory Control Modeling, University of Graz, Austria, June 14–16. 2001, 366 p. ISBN: 978-3-642-32882-4
64. Guyton A. C., Hall J. E. Medicinska fiziologija.Zagreb. 2012, 186 p. ISBN 978-953-176-785-9
65. Hernandez A. M., Ma?anas M. A., Costa-Castello R. Learning Respiratory System Function in BME Studies by Means of a Virtual Laboratory: RespiLab. IEEE Transactions on Education. 2008, 51 (1), 24–34. https://doi.org/10.1109/TE.2007.893355
66. Hernandez A. M., Herrera G. P., Ma?anas M. A., Costa-Castello R. Cardiolab: A Virtual Laboratory for the analysis of Human Circulatory System. 2009, 51 (1), 24–34.https://doi.org/10.1109/TE.2007.893355
67. Ben-Tal A., Tawhai M. H. Integrative approaches for modeling regulation and function of the respiratory system. WIREs Syst. Biol. Med. 2013, V. 5, P. 687–699. https://doi.org/10.1002/wsbm.1244
68. MacIntyre N. R. Respiratory System Simulations and Modeling. Respir. Care. 2004, 49 (4), 401–408. PMID: 15030613
69. Cheng L., Ivanova O., Fan H. H., Khoo M. C. An integrative model of respiratory and cardiovascular control in sleep-disordered breathing, Respir. Physiol. Neurobiol. 2010, V. 174, P. 4–28, https://doi.org/10.1016/j.resp.2010.06.001
70. O'Connor R., Segers L. S., Morris K. F., Nuding S. C., Pitts T., Bolser D. C., Davenport P. W., Lindsey B. G. A joint computational respiratory neural network-biomechanical model for breathing and airway defensive behaviors. Frontiers in Physiology. 2012, V. 3, P. 264. https://doi.org/10.3389/fphys.2012.00264
71. Ben-Tal A., Smith J. C. Control of breathing: two types of delays studied in an integrated model of the respiratory system. Respir. Physiol. Neurobiol. 2010, V. 170, P. 103–112. https://doi.org/10.1016/j.resp.2009.10.008
72. Lu K., Clark J. W. Jr., Ghorbel F. H., Ware D. L. Whole-body gas exchange in human predicted by a cardiopulmonary mode. Cardiovascular Engineering. 2003, 8 (3), 1–19. https://doi.org/10.1016/j.jtbi.2007.12.018
73. Molkov Y. I., Shevtsova N. A., Park C., Ben-Tal A., Smith J. C., Rubin J. E., Rybak I. A. A Closed-Loop Model of the Respiratory System: Focus on Hypercapnia and Active Expiration. PLoS ONE. 2014, 9 (10), e109894. https://doi.org/10.1371/journal.pone.0109894
74. Molkov Y. I., Bacak B. J., Dick T. E., Rybak I. A. Control of breathing by interacting pontine and pulmonary feedback loops. Frontiers in Neural Circuits. 2013, 7 (16), 342–357. https://doi.org/10.3389/fncir.2013.00016
75. Srinivas P., Rao P. D. P. Steady state and stability analysis of respiratory control system using LabView. Int. J. Control Theory and Computer Modelling (IJCTCM). 2012, 2 (6). https://doi.org/10.5121/ijctcm.2012.2602
76. Kappel F. Modeling the Dynamics of the Cardiovascular-respiratory System (CVRS) in Humans, a Survey. Math. Model. Nat. Phenom. 2012, 7 (5), 65–77.
https://doi.org/10.1051/mmnp/20127506
77. Lee R. M., Chiu H. L. Mathematical Model of Interactive Respiration/Cardiovascular Composite System, Int. Conference on Trends in Mechanical and Industrial Engineering (ICTMIE’2011). Bangkok. 2011, P. 55–67.
78. Maury B. The Respiratory System in Equations. Springer. 2013, P. 300, 978–8847052130. (hal-00929739). https://doi.org/10.1007/978-88-470-5214-7
79. Simakov S. S. Modern methods of mathematical modeling: of blood flow using reduced order methods. Computer Research and Modeling. 2018, 10 (5), 581–604. https://doi.org/10.20537/2076-7633-2018-10-5-581-604
80. Abakumov M. V., Gavrilyuk K. V., Esikova N. B., Koshelev V. B., Lukshin A. B., Mukhin S. I., Sosnin N. V., Tishkin V. F., Favorsky A. P. Mathematical model of hemodynamics cardiovascular system. Differencial Equations. 1997, 33 (7), 892–898. (In Russian).
81. Abakumov M. V., Ashmetkov I. V., Esikova N. B., Koshelev V. B., Mukhin S. I., Sosnin N. V., Tishkin V. F., Favorskii A. P., Khrulenko A. B. Strategy of mathematical cardiovascular system modeling. Matematicheskoe modelirovanie. 2000, 12 (2), 106–117. (In Russian).
82. Simakov S. S. Modern methods of mathematical modeling of blood flow using reduced order methods. Computer Research and Modeling. 2018, 10 (5), 581–604 https://doi.org/10.20537/2076-7633-2018-10-5-581-604
83. Mukhin S. I., Menyailova M. A., Sosnin N. V., Favorsky A. P. Analytical study of stationary hemodynamic flows in an elastic tube, taking into account friction. Dif. equations. 2007, 43 (7), 987–992. (In Russian). https://doi.org/10.1134/S0012266107070142
84. Kiselev I. N., Semisalov B. V., Biberdorf E. A., Sharipov R. N., Blokhin A. M., Kolpakov F. A. Modular modeling of the human cardiovascular system. Mathematical Biology and Bioinformatics. 2012, 7 (2), 703–736. (In Russian). https://doi.org/10.17537/2012.7.703
85. Kolpakov F. A., Sharapov R. N., Evshin E. S. Computer modeling of the circulatory system. The circulatory system and arterial hypertension. Biophysical and genetic-physiological mechanisms, mathematical and computer modeling. Ed. L. N. Ivanova, A. M. Blokhin. A. L. Markel. Novosibirsk: Publishing House of the SO RAN. 2008, P. 135–204. (In Russian).
86. Semisalov B. P. Construction and analysis of a complex model of the human cardiovascular system, including biophysical and biochemical blocks. Bulletin of NGU. Maths. Mechanics. Informatics. 2010, 10 (1), 95–107. (In Russian). http://mi.mathnet.ru/rus/vngu/v10/i1/p95
87. Medvedev A. E., Samsonov V. I., Fomin V. M. Mathematical modeling of blood flow in vessels. The circulatory system and arterial hypertension. Biophysical and genetic-physiological mechanisms, mathematical and computer modeling. Ed. L. N. Ivanova, A. M. Blokhin, A. L. Markel. Novosibirsk: Publishing House of the SO RAN. 2008, P. 80–105. (In Russian). https://www.researchgate.net/publication/287284650_Mathematical_modeling_of_the_blood_flow_in_blood_vessels
88. Sung C., Kiris C., Kwak D., David T. Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation. AIAA Paper. 2004, No 1092, 12 p. https://doi.org/ 10.2514/6.2004-1092
89. Waters S. L., Alastruby J., Beard D. A., Bovendeerd P. H., Davies P. F., Jayaraman G., Jensen O. E., Lee J., Parker K. H., Popel A. S., Secomb T. W., Siebes M., Sherwin S. J., Shipley R. J., Smith N. P., van de Vosse F. N. Review. Theoretical models for coronary vascular biomechanics. Progree & Challenges. Progress in Biophysics and Molecular Biology. 2011, V. 104. P. 49–76. https://doi.org/10.1016/j.pbiomolbio.2010.10.001
90. Quarteroni A., Rozza G. Reduced order methods for modeling and computational reduction. Springer International Publishing. 2014, 334 p. ISBN: 978-3-319-02090-7
91. Formaggia L., Quarteroni A., Veneziani A. Cardiovascular mathematics. Springer, Heidelberg. 2009, V. 1, 552 p. ISBN: 978-88-470-1152-6
92. Blanco R. A., Feijoo R. A. A 3D-1D-0D computational model for the entire cardiovascular system. Computational Mechanics. Eds. E. Dvorking, M. Goldschmidt, M. Storti. 2010, V, XXIX, 5887–5911. ISSN 2591-3522
93. Xiao N., Alastruey-Arimon J., Figueroa C. A. A systematic comparison between 1D and 3D hemodynamics in compliant arterial models. Int. J. Numer. Method Biomed. Eng. 2014, 30 (2). 204–231. https://doi.org/10.1002/cnm.2598
94. Sazonov I., Khir A. W., Hacham W. S., Boileau E., Carson J. M., van Loon R., Ferguson C., Nithiarasu P. A novel method for non-invasively detecting the severity and location of aortic aneurisms. Biomechanics and Modeling in Mechanobiology. 2017, V. 16, P. 1225–1242. https://doi.org/10.1007/s10237-017-0884-8
95. Liu J., Yan Z., Pu Y., Shiu W. S., Wu J., Chen R., Leng X., Qin H., Liu X., Jia B., Song L., Wang Y., Miao Z., Wang Y., Liu L., Cai X. C. Functional assessment of cerebral artery stenosis: A pilot study based on computational fluid dynamics. J. Cereb. Blood Flow Metab. 2017, 37 (7), 2567–2576. https://doi.org/10.1177/0271678X16671321
96. Khe A. K., Cherevko A. A., Chupakhin A. P., Bobkova M. S., Krivoshapkin A. L., Orlov K. Yu. Haemodynamics of giant cerebral aneurysm: A comparison between the rigid-wall, one-way and two-way FSI models. J. Phys.: Conf. Ser. 2016, V. 722, P. 012042. https://doi.org/10.1088/1742-6596/722/1/012042
97. Donina Zh. A. Intersystem relationships of respiration and circulation. Human Physiology. 2011, 37 (2), 117–128. (In Russian). https://doi.org/10.1134/S0362119711020034
98. Gamilov T. D. Mathematical modeling of blood flow under mechanical effects on the vessels. Diss. Cand. Phys.-Math. Sciences. 05.13.18 mathematical modeling, numerical methods and software packages. Moscow, MIPT. 2017, 157 p. (In Russian).
99. Timischl S. A Global Model for the Cardiovascular and Respiratory System. Dissertation presented to the Faculty for Natural Sciences, Karl-Franzens University of Graz,in partial fulfillment of the requirements for the degree Doktor Rerum Naturalium. 1998, 115 p.
100. Khoo M. C. K. ARMA modeling of gas exchange during spontaneous breathing. Proc. 9th Annu. Conf. IEEE Eng. Med. and Biol. Soc., Boston, Mass., 1987, Nov. 13–16. New York. 1987, V. 4, P. 2060–2061.
101. Kolchynskaja A. Z., Dudarev V. P., Kerefov M. T. Secondary tissue hypoxia. Ed. Kolchinskaya A. Z. Kyiv, Nauk. dumka. 1983, 253 p. (In Russian).
102. Albanese A., Cheng L., Ursino M., Chbat N. W. An integrated mathematical model of the human cardiopulmonary system: model development. Am. J. Physiol. Heart Circ. Physiol. 2016, 310 (7), H899?921. https://doi.org/10.1152/ajpheart.00230.2014
103. Cheng L., Albanese A., Ursino M., Chbat N. W. An integrated mathematical model of the human cardiopulmonary system: model validation under hypercapnia and hypoxia. Am. J. Physiol. Heart Circ. Physiol. 2016, 310 (7), H922?937. https://doi.org/10.1152/ajpheart.00923.2014
104. Topor Z. L., Pawlicki M., Remmers J. E. A computational model of the human respiratory control system: responses to hypoxia and hypercapnia. Ann. Biomed. Eng. 2004, 32 (11), 1530–1545. https://doi.org/10.1114/B:ABME.0000049037.65204.4c
105. Grodins F. S., Buell J., Bart A. J. Mathematical analysis and digital simulation of the respiratory control system. J. Appl. Physiol. 1967, 22 (2), 260–76. https://doi.org/10.1152/jappl.1967.22.2.260
106. Wolf M. B., Garner R. P. A mathematical model of human respiration at altitude. Ann. Biomed. Eng. 2007, 35 (11), 2003?2022. https://doi.org/10.1007/s10439-007-9361-3
107. Chiari L., Avanzolini G., Ursino M. A comprehensive simulator of the human respiratory system: validation with experimental and simulated data. Ann. Biomed. Eng. 1997, 25 (6), 985–999. PMID: 9395044 https://doi.org/10.1007/BF02684134
108. Fresiello L., Meyns B., Di Molfetta A., Ferrari G. A Model of the Cardiorespiratory Response to Aerobic Exercise in Healthy and Heart Failure Conditions. Front. Physiol. 2016, 8 (7), 189. https://doi.org/10.3389/fphys.2016.00189
109. Magosso E., Ursino M. Cardiovascular response to dynamic aerobic exercise: a mathematical model. Med. Biol. Eng. Comput. 2002, 40 (6), 660–674.https://doi.org/10.1007/BF02345305
110. Sarmiento C. A., Hern?ndez A. M., Serna L. Y., Ma?anas M. ?. An integrated mathematical model of the cardiovascular and respiratory response to exercise: model-building and comparison with reported models. Am. J. Physiol. Heart Circ. Physiol. 2021, 320 (4), H1235–H1260. https://doi.org/10.1152/ajpheart.00074.2020
111. Iconaru E. I., Georgescu L., Ciucurel C. A mathematical modelling analysis of the response of blood pressure and heart rate to submaximal exercise. Acta Cardiol. 2019, 74 (3), 198–205. https://doi.org/10.1080/00015385.2018.1478241
112. Magosso E., Ursino M. A mathematical model of CO2 effect on cardiovascular regulation. Am. J. Physiol. Heart Circ. Physiol. 2001, 281 (5), H2036?2052. https://doi.org/10.1152/ajpheart.2001.281.5.H2036
113. Ursino M., Magosso E., Avanzolini G. An integrated model of the human ventilatory control system: the response to hypoxia. Clin. Physiol. 2001, 21 (4), 465–477.https://doi.org/10.1046/j.1365-2281.2001.00350.x
114. Serna L. Y., Ma?anas M. A., Hern?ndez A. M., Rabinovich R. A. An Improved Dynamic Model for the Respiratory Response to Exercise. Front. Physiol. 2018, 7 (9), 69. https://doi.org/10.3389/fphys.2018.00069
115. Curcio L., D'Orsi L., De Gaetano A. Seven Mathematical Models of Hemorrhagic Shock. Comput. Math. Methods Med. 2021, Jun 3, 6640638. https://doi.org/10.1155/2021/6640638
116.Curcio L., D'Orsi L., Cibella F., Wagnert-Avraham L., Nachman D., De Gaetano A. A Simple Cardiovascular Model for the Study of Hemorrhagic Shock. Comput. Math. Methods Med. 2020, Dec 24, 7936895. https://doi.org/10.1155/2020/7936895
117. Curcio L., Cusimano V., D'Orsi L., Yokrattanasak J., Gaetano A. Comparison between two different cardiovascular models during a hemorrhagic shock scenario. Math. Biosci. Eng. 2020, 17 (5), 5027?5058. https://doi.org/10.3934/mbe.2020272
118. Lauer N. B., Kolchinskaya A. Z. About the oxygen organism regime Oxygen organism regime and its regulation. Kyiv: Nauk. dumka. 1966, P. 157–200. (In Russian).
119. Kolchinskaya A. Z. Oxygen regimes of organism of a child and a teenager. Kyiv: Nauk. dumka. 1973, 320 p. (In Russian).
120. Klyuchko O. M., Aralova N. I., Aralova A. A. Electronic automated work places for biological investigations Biotechnol. acta. 2019, 12 (2), 5?26. https://doi.org/10.15407/biotech12.02.005
121. Radziejowska M., Moiseyenko Y., Radziejowski P., Zych M. Oxygen Supply System Management in an Overweight Adult after 12 Months in Antarctica-Study Case. Int. J. Environ. Res. Public Health. 2021, 18 (8), 4077. https://doi.org/10.3390/ijerph18084077
122. Onopchuk Yu. N. Homeostasis of functional respiratory system as a result of intersystem and system-medium informational interaction. Bioecomedicine. Uniform information space. Ed. by V. I. Gritsenko. Kyiv. 2001, P. 59–84. (In Russian).
123. Onopchuk Yu. N. Homeostasis of the functional circulatory system as a result of intersystem and system-medium informational interaction. Bioecomedicine. Uniform information space. Ed. by V. I. Gritsenko. Kyiv. 2001, P. 85–104. (In Russian).
124. Polynkevich K. B., Onopchuk Yu. N. Conflict situations at regulating of the main function of organism respiratory system and mathematical models of their resolution. Cybernetics. 1986, V. 3, P. 100?104. Kyiv: Nauk. dumka. (In Russian). https://doi.org/10.1007/BF01069979
125. Onopchuck Y. N., Mysyura A. G. Methods of mathematical modeling and management in theoretical investigations and solutions of applied tasks of sportive medicine and physiology. Sportivna medicina. 2008, No. 1. (In Russian).