ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 15, No. 1, 2022
P. 5-22. Bibliography, 113 Engl.
UDC: 579.222
https://doi.org/10.15407/biotech15.01.005
ACETONE-BUTYL FERMENTATION PECULIARITIES OF THE BUTANOL STRAINS -PRODUCER
O. O. Tigunova 1, V. V. Bratishko 2, A. V. Balabak 3, S. G. Priyomov 1, S. M. Shulga 1
1 SE "Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine", Kyiv
2 National University of Life and Environmental Science of Ukraine, Kyiv
3 Uman National University of Horticulture, Uman, Ukraine
The aim of this review was to generalize and analyze the features of acetone-butyl fermentation as a type of butyric acid fermentation in the process of obtaining butanol as an alternative biofuel.
Methods. The methods of analysis and generalization of analytical information and literature sources were used in the review. The results were obtained using the following methods such as microbiological (morphological properties of strains), chromatographic (determination of solvent concentration), spectrophotometric (determination of bacterial concentration), and molecular genetic (phylogenetic analysis of strains).
Results. The process of acetone-butyl fermentation was analyzed, the main producer strains were considered, the features of the relationship between alcohol formation and sporulation were described, the possibility of butanol obtaining from synthesis gas was shown, and the features of the industrial production of butanol were considered.
Conclusions. The features of the mechanism of acetone-butyl fermentation (the relationships between alcohol formation and sporulation, the duration of the acid-forming and alcohol-forming stages during batch fermentation depending on the change in the concentration of H2, CO, partial pressure, organic acids and mineral additives) and obtaining an enrichment culture during the production of butanol as an alternative fuel were shown. The possibility of using synthesis gas as a substrate for reducing atmospheric emissions during the fermentation process was shown. The direction of increasing the productivity of butanol-producing strains to create a competitive industrial biofuel technology was proposed.
Key words: producer strains, biofuel, biobutanol, acetone-butyl fermentation.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Sharma R., Garg P., Kumar P., Bhatia Sh. K., Kulshrestha S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation. 2020, 6 (106), 1–20. https://doi.org/10.3390/fermentation6040106
2. Thatoi Hr., Das Mohapatra P. K., Mohapatra S., Mondal K. C. Microbial Fermentation and Enzyme Technology. NW: CRC Press. 2020, 362 p. https://doi.org/10.1201/9780429061257
3. Tigunova O., Shulga S., Blume Ya. Biobutanol as an alternative type of fuel. Cyt. Gen. 2013, 47 (6), 366–382. https://doi.org/10.3103/S0095452713060042
4. Bao T., Jiang W., Ahmad Q.-A., Yang S. T. 13-Consolidated bioprocessing for ethanol and butanol production from lignocellulosic biomass: Recent advances in strain and process engineering. A-Z Biorefinery. 2022, P. 473–506. https://doi.org/10.1016/B978-0-12-819248-1.00009-9
5. Liberato V., Benevenuti C., Coelho F., Botelho A., Amaral P., Pereira N. Jr., Ferreira T. Clostridium sp. as Bio-Catalyst for Fuels and Chemicals Production in a Biorefinery Context. Catalysts. 2019, 9 (11), 1–37. https://doi.org/10.3390/catal9110962
6. Lawson C. E., Nuijten G. H. L., de Graaf R. M., Jacobson T. B., Pabst M., Stevenson D. M., Jetten M. S. M., Noguera D. R., McMahon K. D., Amador-Noguez D., Lucker S. Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13C and 2H metabolic network mapping. ISME J. 2021, V. 15, P. 673–687. https://doi.org/10.1038/s41396-020-00805-w
7. Shaw D. R., Ali M., Katuri K. P., Gralnick J. A., Reimann J., Mesman R., van Niftrik L., Jetten M. S. M., Saikaly P. E. Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria. Nat. Commun. 2020, 11 (2058), 1–12. https://doi.org/10.1038/s41467-020-16016-y
8. Buckel W. Energy Conservation in Fermentations of Anaerobic Bacteria. Frontiers in Microbiology. 2021, 12 (703525), 1–16. https://doi.org/10.3389/fmicb.2021.703525
9. Meramo-Hurtado S. I., Gonz?lez-Delgado ?. D., Rehmann L., Qui?ones-Bola?os E., Mehrvar M. Comparison of Biobutanol Production Pathways via Acetone–Butanol–Ethanol Fermentation Using a Sustainability Exergy-Based Metric. ACS Omega. 2020, 5 (30), 18710–18730. https://doi.org/10.1021/acsomega.0c01656
10. Poehlein A., Solano J. D. M., Flitsch S. K., Kabben P., Winzer K., Reid S. J., Jones D. T., Green E., Minton N. P., Daniel R., Durre P. Microbial solvent formation revisited by comparative genome analysis. Biotechnol. Biofuels. 2017, 10 (58), 1–15. https://doi.org/10.1186/s13068-017-0742-z
11. Moon H. G., Jang Y.-S., Cho Ch., Lee J., Binkley R., Lee S. Y. One hundred years of clostridial butanol fermentation. FEMS Microbiol. Lett. 2016, 363 (3), 1–15. https://doi.org/10.1093/femsle/fnw001
12. Xu Z., Jiang L. 3.20 – Butyric Acid. Comprehensive Biotechnology (Second Edition). 2011, V. 3, P. 207–215. https://doi.org/10.1016/B978-0-08-088504-9.00181-1
13. Nawab S., Wang N., Ma X., Huo Y.-X. Genetic engineering of non-native hosts for 1-butanol production and its challenges: a review. Microbial. Cell Factories. 2020, 19 (79), 1–16 https://doi.org/10.1186/s12934-020-01337-w
14. Xin F., Yan W., Zhou J., Wu H., Dong W., Ma J., Zhang W., Jiang M. Exploitation of novel wild type solventogenic strains for butanol production. Biotechnol. Biofuels. 2018, 11 (252), 1–8. https://doi.org/10.1186/s13068-018-1252-3
15. Sapireddy V., Katuri K. P., Muhammad A., Saikaly P. E. Competition of two highly specialized and efficient acetoclastic electroactive bacteria for acetate in biofilm anode of microbial electrolysis cell. Npj. Biofilms Microbiomes. 2021, 7 (47). https://doi.org/10.1038/s41522-021-00218-3
16. Therien J. B., Artz J. H., Poudel S., Hamilton T. L., Liu Zh., Noone S. M., Adams M. W. W., King P. W., Bryant D. A., Boyd E. S., Peters J. W. The Physiological Functions and Structural Determinants of Catalytic Bias in the [FeFe]-Hydrogenases CpI and CpII of Clostridium pasteurianum Strain W5. Front. Microbiol. 2017, V. 8, P. 1–11. https://doi.org/10.3389/fmicb.2017.01305
17. Cai S., Kumar R., Singh B. R. Clostridial Neurotoxins: Structure, Function and Implications to Other Bacterial Toxins. Microorganisms. 2021, 9 (11), 2206, 1–30. https://doi.org/10.3390/microorganisms9112206
18. Cao L., Gao Y., Wang X.-Zh., Shu G.-Y., Hu Y.-N., Xie Z.-P., Cui W., Guo X.-P., Zhou X. A Series of Efficient Umbrella Modeling Strategies to Track Irradiation-Mutation Strains Improving Butyric Acid Production From the Pre-development Earlier Stage Point of View. Front. Bioeng. and Biotechnol. 2021, V. 9. https://doi.org/10.3389/fbioe.2021.609345
19. Du Y., Zou W., Zhang K., Ye G., Yang J. Advances and Applications of Clostridium Co-culture Systems in Biotechnology. Front. Microbiol. 2020, V. 11. https://doi.org/10.3389/fmicb.2020.560223
20. Gonzalez-Garcia R. A., McCubbin T., Navone L., Stowers C., Nielsen L. K., Marcellin E. Microbial Propionic Acid Production. Fermentation. 2017, 3 (2), 1–21. https://doi.org/10.3390/fermentation3020021
21. Wan N., Sathish A., You L., Tang Y. J., Wen Z. Deciphering Clostridium metabolism and its responses to bioreactor mass transfer during syngas fermentation. Sci. Rep. 2020, V. 7, P. 10090. https://doi.org/10.1038/s41598-017-10312-2
22. Hasan R., Aktar N., Kabir S. M. T., Honi U., Halim A., Islam R., Sarker M. D. H., Haque M. S., Alam M. M., Islam M. S. Pectinolytic Bacterial Consortia Reduce Jute Retting Period and Improve Fibre Quality. Sci. Rep. 2020, V. 10, P. 5174. https://doi.org/10.1038/s41598-020-61898-z
23. Tigunova O. O., Kamenskyh D. S., Tkachenko T. V., Yevdokymenko V. A., Kashkovskiy V. I., Rakhmetov D. B., Blume Ya. B. Shulga S. M. Biobutanol Production from Plant Biomass. The Open Agriculture J. 2020, V. 14, P. 187–197. https://doi.org/10.2174/1874331502014010187
24. Benito-Vaquerizo S., Diender M., Olm I. P., dos Santos V. A. P. M., Schaap P. J., Sousa D. Z., Suarez-Diez M. Modeling a co-culture of Clostridium autoethanogenum and Clostridium kluyveri to increase syngas conversion to medium-chain fatty-acids. Computational and Structural Biotechnology J. 2020, V. 18, P. 3255–3266. https://doi.org/10.1016/j.csbj.2020.10.003
25. Brunt J., van Vliet A. H. M., Carter A. T., Stringer S. C., Amar C., Grant K. A., Godbole G., Peck M. W. Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins. 2020, 12 (9), 586. https://doi.org/10.3390/toxins12090586
26. Thomas S. An engraved surface induces weak adherence and high proliferation of nonadherent cells and microorganisms during culture. BioTechniques. 2020, 69 (2), 113–125. https://doi.org/10.2144/btn-2020-0022
27. Tirumalai R. S. Microbiological procedures for absence of specified microorganisms – nutritional and dietary supplements. MSA05. 2022, 29 (1), 283–287.
28. Gupta K. H., Nowicki C., Giurini E. F., Marzo A. L., Zloza A. Bacterial-Based Cancer Therapy (BBCT): Recent Advances, Current Challenges, and Future Prospects for Cancer Immunotherapy. Vaccines. 2021, 9 (12), 1497. https://doi.org/10.3390/vaccines9121497
29. Wery N., Cambon-Bonavita M.-A., Lesongeur F., Barbier G. Diversity of anaerobic heterotrophic thermophiles isolated from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. FEMS Microbiol. Ecol. 2002, 41 (2), 105–114. https://doi.org/10.1111/j.1574-6941.2002.tb00971.x
30. Malleck T., Fekraoui F., Bornard I., Henry C., Haudebourg E., Planchon S., Broussolle V. Insights into the Structure and Protein Composition of Moorella thermoacetica Spores Formed at Different Temperatures. Int. J. Mol. Sci. 2022, V. 23, P. 550. https://doi.org/10.3390/ijms23010550
31. Diallo M., Kengen S. W. M., L?pez-Contreras A. M. Sporulation in solventogenic and acetogenic clostridia. Appl. Microbiol. Biotechnol. 2021, V. 105, P. 3533–3557. https://doi.org/10.1007/s00253-021-11289-9
32. Tigunova O., Beyko N., Andrijash G., Shulga M. Metabolic engineering of solventogenic Clostridia. Biotechnol. acta. 2019, 12 (5), 29–41. https://doi.org/10.15407/biotech12.05.029
33. Janssen H., Wang Y., Blaschek H. P. CLOSTRIDIUM | Clostridium acetobutylicum. Encyclopedia of Food Microbiology (Second Edition). Academic Press. 2014, P. 449–457. https://doi.org/10.1016/B978-0-12-384730-0.00070-7
34. Li S., Huang L., Ke Ch., Pang Z., Liu L. Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. Biotechnol. Biofuels. 2020, 13 (39), 1–25. https://doi.org/10.1186/s13068-020-01674-3
35. Portinha I. M., Douillard F. P., Korkeala H., Lindstr?m M. Sporulation Strategies and Potential Role of the Exosporium in Survival and Persistence of Clostridium botulinum. Int. J. Mol. Sci. 2022, 23 (754), 1–17. https://doi.org/10.3390/ijms23020754
36. Aguirre A. M., Yalcinkaya N., Wu Q., Swennes A., Tessier M. E., Roberts P., Miyajima F., Savidge T., Sorg J. A. Bile acid-independent protection against Clostridioides difficile infection. PLOS Pathogens. 2021, V. 19, P. 1–23. https://doi.org/10.1371/journal.ppat.1010015
37. Foster C., Charubin K., Papoutsakis E.T., Maranas C.D. Modeling growth kinetics, interspecies cell fusion, and metabolism of a Clostridium acetobutylicum/Clostridium ljungdahlii syntrophic ciculture. mSystems. 2021, 6 (1), 6:e01325-20. https://doi.org/10.1128/mSystems.01325-20
38. Patakova P., Branska B., Sedlar K., Vasylkivska M., Jureckova K., Kolek J., Koscova P., Provaznik I. Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level. Sci. Rep. 2019, V. 9, P. 1371. https://doi.org/10.1038/s41598-018-37679-0
39. Diallo M., Kint N., Monot M., Collas F., Martin-Verstraete I., van der Oost J., Kengen S. W. M., L?pez-Contreras A. M. Transcriptomic and Phenotypic Analysis of a spoIIE Mutant in Clostridium beijerinckii. Front. Microbiol. 2020, V. 11. https://doi.org/10.3389/fmicb.2020.556064
40. Muchov? K., Chromikov? Z., Bar?k I. Linking the peptidoglycan synthesis protein complex with asymmetric cell division during Bacillus subtilis sporulation. Int. J. Mol. Sci. 2020, V. 21, P. 4513. https://doi.org/10.3390/ijms21124513
41. Augustyn W., Chru?sciel A., Hreczuch W., Kalka J., Tarka P., Kierat W. Inactivation of Spores and Vegetative Forms of Clostridioides difficile by Chemical Biocides: Mechanisms of Biocidal Activity, Methods of Evaluation, and Environmental Aspects. Int. J. Environ. Res. Public Health. 2022, 19 (750), 1–17. https://doi.org/10.3390/ijerph19020750
42. Yee M. O., Deutzmann J., Spormann A., Rotaru A.-E. Cultivating electroactive microbes — from field to bench. Nanotechnology. 2020, 31 (174003), 1–17. https://doi.org/10.1088/1361-6528/ab6ab5
43. Khursigara C. M., Koval S. F., Moyles D. M., Harris R. J. Inroads through the bacterial cell envelope: seeing is believing. Canadian J. Microbiol. 2018, 64 (9), 601–617. https://doi.org/10.1139/cjm-2018-0091
44. Vasylkivska M., Branska B., Sedlar K., Jureckova K., Provaznik I., Patakova P. Phenotypic and Genomic Analysis of Clostridium beijerinckii NRRL B-598 Mutants With Increased Butanol Tolerance. Frontiers in Bioengineering and Biotechnology. 2020, V. 8, P. 598392. https://doi.org/10.3389/fbioe.2020.598392
45. Yoo M., Nguyen N.-P.-T., Soucaille P. Trends in systems biology for the analysis and engineering of Clostridium acetobutylicum metabolism. Trends Microbiol. 2020, 28 (2), 118–140. https://doi.org/10.1016/j.tim.2019.09.003
46. Kotte A.-K., Severn O., Bean Z., Schwarz K., Minton N. P., Winzer K. RRNPP-type quorum sensing affects solvent formation and sporulation in Clostridium acetobutylicum. Microbiol. 2020,166 (6), 579–592. https://doi.org/10.1099/mic.0.000916
47. Cho W. I., Chung M. S. Bacillus spores: a review of their properties and inactivation processing technologies. Food Sci. Biotechnol. 2020, V. 29, P. 1447–1461. https://doi.org/10.1007/s10068-020-00809-4
48. Paredes I., Quintero J., Guerrero K., Gallardo R., Mau S., Conejeros R., Gentina J. C., Aroca G. Kinetics of ABE fermentation considering the different phenotypes present in a batch culture of Clostridium beijerinckii NCIMB-8052. Electronic J. Biotechnol. 2022, V. 56, P. 12–21. https://doi.org/10.1016/j.ejbt.2021.12.002
49. He Y., Lens P. N. L., Veiga M. C., Kennes C. Selective butanol production from carbon monoxide by an enriched anaerobic culture. Sci. Total Environ. 2022, 806 (150579). https://doi.org/10.1016/j.scitotenv.2021.150579
50. Mao B., Liu W., Chen X., Yuan L., Yao J. Enhanced biobutanol production from fern root using Clostridium acetobutylicum CGMCC1.0134 with yeast extract addition. BioRes. 2019, 14 (2), 4575-4589. https://doi.org/10.15376/biores.14.2.4575-4589
51. Munch G., Mittler J., Rehmann L. Increased Selectivity for Butanol in Clostridium Pasteurianum Fermentations via Butyric Acid Addition or Dual Feedstock Strategy. Fermentation. 2020, 6 (67), 1–14. https://doi.org/10.3390/fermentation6030067
52. Zhang H., Yang P., Wang Z., Li M., Zhang J., Liu D., Chen Y., Ying H. Clostridium acetobutylicum Biofilm: Advances in Understanding the Basis. Front. Bioeng. Biotechnol. 2021, V. 9, P. 658568. https://doi.org/10.3389/fbioe.2021.658568
53. Cheng C., Bao T., Yang S.-T. Engineering Clostridium for improved solvent production: recent progress and perspective. Appl. Microbiol. Biotechnol. 2019, 103 (14). https://doi.org/10.1007/s00253-019-09916-7
54. Hocq R., Bouilloux-Lafont M., Ferreira N. L., Wasels F. ? 54 (? L) plays a central role in carbon metabolism in the industrially relevant Clostridium beijerinckii. Sci. Rep. 2019, 9 (1), 7228. https://doi.org/10.1038/s41598-019-43822-2
55. Nimbalkar P. R., Khedkar M. A., Kulkarni R. K., Chavan P. V., Bankar S. B. Strategic intensification in butanol production by exogenous amino acid supplementation: fermentation kinetics and thermodynamic studies. Biores. Technol. 2019, V. 288, P. 121521. https://doi.org/10.1016/j.biortech.2019.121521
56. Li J. S., Barber C. C., Herman N. A., Cai W., Zafrir E., Du Y., Zhu X., Skyrud W., Zhang W. Investigation of secondary metabolism in the industrial butanol hyper-producer Clostridium saccharoperbutylacetonicum N1-4. J. Industrial Microbiol. Biotechnol. 2020, 47 (3), 319–328. ttps://doi.org/10.1007/s10295-020-02266-8
57. Karstens K., Trippel S., G?tz P. Process Engineering of the Acetone-Ethanol-Butanol (ABE) Fermentation in a Linear and Feedback Loop Cascade of Continuous Stirred Tank Reactors: Experiments, Modeling and Optimization. Fuels. 2021, 2 (2) ,108–129. https://doi.org/10.3390/fuels2020007
58. Ganguly J., Tempelaars M., Abee T., van Kranenburg R. Characterization of sporulation dynamics of Pseudoclostridium thermosuccinogenes using flow cytometry. Anaerobe. 2020, P. 102208. https://doi.org/10.1016/j.anaerobe.2020.102208
59. Cambridge J. M., Blinkova A. L., Rocha E. I. S., Hernandrez A. B., Moreno M., Gines-Candelaria E., Goetz B. M., Hunicke-Smith S., Satterwhite E., Tucker H., Walker J. L. Genomics of Clostridium taeniosporum, an organism which forms endospores with ribbon-like appendages. PloS One. 2018, 13 (1), 1–15. https://doi.org/10.1371/journal.pone.0189673
60. Daengbussadee C., Laopaiboon L., Kaewmaneewat A., Sirisantimethakom L., Laopaiboon P. Novel Methods Using an Arthrobacter sp. to Create Anaerobic Conditions for Biobutanol Production from Sweet Sorghum Juice by Clostridium beijerinckii. Processes. 2021, 9 (1),178. https://doi.org/10.3390/pr9010178
61. Karava M., Bracharz F., Kabisch J. Quantification and isolation of Bacillus subtilis spores using cell sorting and automated gating. PloS One. 2019, V. 14, P. 1–15, https://doi.org/10.1371/journal.pone.0219892
62. Arora R., Sharma N. K., Kumar S., Sani R. K. Chapter 9 – Lignocellulosic Ethanol: Feedstocks and Bioprocessing. Bioethanol Production from Food Crops. Academic Press. 2019, `P. 165–185. https://doi.org/10.1016/B978-0-12-813766-6.00009-6
63. Goyal L., Khanna S. Recent Advances in Microbial Production of Butanol as a Biofuel. Int. J. Appl. Sci. Biotechnol. 2019, 7 (2), 130–152. https://doi.org/10.3126/ijasbt.v7i2.24630
64. Berthomieu R., P?rez-Bernal M. F., Santa-Catalina G., Desmond-Le Qu?m?ner E., Bernet N., Trably E. Mechanisms underlying Clostridium pasteurianum's metabolic shift when grown with Geobacter sulfurreducens. Appl. Microbiol. Biotechnol. 2022, 106 (2), 865–876. https://doi.org/10.1007/s00253-021-11736-7
65. Riley E. P., Schwarz C., Derman A. I., Lopez-Garrido J. Milestones in Bacillus subtilis sporulation research. Microbial. Cell. 2021, 8 (1), 1–16. https://doi.org/10.15698/mic2021.01.739
66. Xu Y., Ren J., Wang W., Zeng A.-P. Improvement of glycine biosynthesis from one?carbon compounds and ammonia catalyzed by the glycine cleavage system in vitro. Eng. In Life Sci. 2021, 22 (2).https://doi.org/10.1002/elsc.202100047
67. Uyeda K. Short- and long-term adaptation to altered levels of glucose: fifty years of scientific adventure. Annual Rev. Biochem. 2021, V. 90, P. 31–55. https://doi.org/10.1146/annurev-biochem-070820-125228
68. Shao Y., Ramaswamy H. S., Bussey J., Harris R., Austin J. W. High pressure destruction kinetics of Clostridium botulinum (Group I, strain PA9508B) spores in milk at elevated temperatures. LWT. 2022, V. 154, P. 12671. https://doi.org/10.1016/j.lwt.2021.112671
69. Morvan C., Folgosa F., Kint N., Teixeira M., Martin-Verstraete I. Responses of Clostridia to oxygen: from detoxification to adaptive strategies. Env. Microbial. 2021, 23 (8), 4112–4125 https://doi.org/10.1111/1462-2920.15665
70. Vees C. A., Neuendorf C. S., Pfl?gl S. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. J. Ind. Microbiol. Biotechnol. 2020, V. 47, P. 753–787. https://doi.org/10.1007/s10295-020-02296-2
71. Zetty-Arenas A. M., Tovar L. P., Alves R. F., Mariano A. Pi., van Gulik W., Filho R. M., Freitas S. Co-fermentation of sugarcane bagasse hydrolysate and molasses by Clostridium saccharoperbutylacetonicum: Effect on sugar consumption and butanol production. Industrial Crops and Products. 2021, V. 167, P. 113512. https://doi.org/10.1016/j.indcrop.2021.113512
72. Grosse-Honebrink A., Little G. T., Bean Z., Heldt D., Cornock R. H. M., Winzer K., Minton N. P., Green E., Zhang Y. Development of Clostridium saccharoperbutylacetonicum as a Whole Cell Biocatalyst for Production of Chirally Pure (R)-1,3-Butanediol. Front. Bioeng. Biotechnol. 2021, V. 9, P. 659895. https://doi.org/10.3389/fbioe.2021.659895
73. Jin Q., An Z., Damle A., Poe N., Wu J., Wang H., Wang Z., Huang H. High Acetone-Butanol-Ethanol Production from Food Waste by Recombinant Clostridium saccharoperbutylacetonicum in Batch and Continuous Immobilized-Cell Fermentation. ACS Sustainable Chemistry & Engineering. 2020, 8 (26), 9822–9832. https://doi.org/10.1021/acssuschemeng.0c02529
74. An Z., Jin Q., Zhang X., Huang H., Wang Z.-W. Anaerobic granulation of single culture Clostridium beijerinckii. Food and Bioproducts Processing. 2021, V. 78 https://doi.org/10.1016/j.fbp.2021.09.012
75. Xin X., Cheng C., Du G., Chen L., Xue C. Metabolic Engineering of Histidine Kinases in Clostridium beijerinckii for Enhanced Butanol Production. Front. Bioeng. Biotechnol. 2020, V. 8, P. 214. ttps://doi.org/10.3389/fbioe.2020.00214
76. Mahalingam L., Abdulla R., Sani S. A., Sabullah M. K., Faik A. A. M., Misson M. Lignocellulosic Biomass – A Sustainable Feedstock for Acetone-Butanol-Ethanol Fermentation. Periodica Polytechnica Chemical Engineering. 2022, 66 (2), 279–296. https://doi.org/10.3311/PPch.18574
77. Huang J., Du Y., Bao T., Lin M., Wang J., Yang S.-T. Production of n-butanol from cassava bagasse hydrolysate by engineered Clostridium tyrobutyricum overexpressing adhE2: kinetics and cost analysis. Bioresour Technol. 2019, V. 292, P. 121969. https://doi.org/10.1016/j.biortech.2019.121969
78. Lyatuu F. E., Buckel W. Kinetic Studies of a Coenzyme B12 Dependent Reaction Catalyzed by Glutamate Mutase from Clostridium cochlearium. Advances in Enzyme Research. 2021, 9 (4). ttps://doi.org/10.4236/aer.2021.94007
79. Li Y., Tang W., Chen Y., Liu J., Chia-fon F. L. Potential of acetone–butanol–ethanol (ABE) as a biofuel. Fuel. 2019, V. 242, P. 673–686. https://doi.org/10.1016/j.fuel.2019.01.063
80. Xin F., Yan W., Zhou J., Wu H., Dong W., Ma J., Zhang W., Jiang M. Exploitation of novel wild type solventogenic strains for butanol production. Biotechnol. Biofuels. 2018, V. 11, P. 252. https://doi.org/10.1186/s13068-018-1252-3
81. Han Y. F., Xie B. T., Wu G. X., Guo Y. Q., Li D. M., Huang, Z. Y. Combination of Trace Metal to Improve Solventogenesis of Clostridium carboxidivorans P7 in Syngas Fermentation. Front. Microbiol. 2020, V. 11, P. 1–12. https://doi.org/10.3389/fmicb.2020.577266
82. Bruant G., Levesque M.-J., Peter C., Guiot S. R., Masson L. Genomic Analysis of Carbon Monoxide Utilization and Butanol Production by Clostridium carboxidivorans Strain P7T. PloS ONE. 2010, 5 (9), e13033. https://doi.org/10.1371/journal.pone.0013033
83. Cheng C., Li W., Lin M., Yang S.-T. Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose. Biores. Technol. 2019, V. 284, P. 415–423. https://doi.org/10.1016/j.biortech.2019.03.145
84. Benevenuti C., Botelho A., Ribeiro R., Branco M., Pereira A., Vieira A. C., Ferreira T., Amaral P. Experimental Design to Improve Cell Growth and Ethanol Production in Syngas Fermentation by Clostridium carboxidivorans. Catalysts. 2020, V. 10, P. 59. https://doi.org/10.3390/catal10010059
85. Fern?ndez-Naveira ?., Veiga M. C., Kennes C. Effect of salinity on C1-gas fermentation by Clostridium carboxidivorans producing acids and alcohols. AMB Expr. 2019, V. 9, P. 110. https://doi.org/10.1186/s13568-019-0837-y
86. Mukherjee M., Sarkar P., Goswami G., Das D. Regulation of butanol biosynthesis in Clostridium acetobutylicum ATCC 824 under the influence of zinc supplementation and magnesium starvation. Enzym. Microb. Technol. 2019, V. 129, P. 109352. https://doi.org/10.1016/j.enzmictec.2019.05.009
87. Sepehri S., Rostami K., Azin M. A Study on the Role of Clostridium Saccharoperbutylacetonicum N1-4 (ATCC 13564) in Producing Fermentative Hydrogen. Int. J. Chem. Reactor Engineering. 2018, 17 (3). https://doi.org/10.1515/ijcre-2018-0113
88. Poehlein A., Montoya Solano J. D., Bengelsdorf F. R., Schiel-Bengelsdorf B., Daniel R., D?rre P. Draft Genome Sequence of Purine-Degrading Clostridium cylindrosporum HC-1 (DSM 605). Genome Announc. 2015, 13, 3 (4), e00917-15. https://doi.org/10.1128/genomeA.00917-15
89. Yu D., O’Hair J., Poe N., Jin Q., Pinton S., He Y., Huang H. Conversion of Food Waste into 2,3-Butanediol via Thermophilic Fermentation: Effects of Carbohydrate Content and Nutrient Supplementation. Foods. 2022, 11 (2), 169. https://doi.org/10.3390/foods11020169
90. Pratto B., Chandgude V., de Sousa R., Cruz A. J. G., Bankar S. Biobutanol production from sugarcane straw: Defining optimal biomass loading for improved ABE fermentation. Industrial Crops and Products. 2020, V. 148, P. 112265.https://doi.org/10.1016/j.indcrop.2020.112265
91. Guo Z., Yu X., Du Y., Wang T. Comparative study on combustion and emissions of SI engine with gasoline port injection plus acetone-butanol-ethanol (ABE), isopropanol-butanol-ethanol (IBE) or butanol direct injection. Fuel. 2022, V. 316, P. 123363. https://doi.org/10.1016/j.fuel.2022.123363
92. Dharmaraja J., Shobana S., Arvindnarayan S., Vadivel M., Atabani A. E., Pugazhendhi A., Kumar G. Chapter 5 – Biobutanol from lignocellulosic biomass: bioprocess strategies, Lignocellulosic Biomass to Liquid Biofuels. Academic Press. 2020, P. 169–193.https://doi.org/10.1016/B978-0-12-815936-1.00005-8
93. Xue C., Cheng C. Butanol production by Clostridium. Adv. Bioenergy. 2019, 4 (35). https://doi.org/10.1016/bs.aibe.2018.12.001
94. Dou J., Chandgude V., Vuorinen T., Bankar S., Hietala S., L? H. Q. Enhancing Biobutanol Production from biomass willow by pre-removal of water extracts or bark. J. Cleaner Production. 2021, V. 325, P. 129432. https://doi.org/10.1016/j.jclepro.2021.129432
95. Chac?n S. J., Matias G., Ezeji T. Ch., Filho R. M., Mariano A. P. Three-stage repeated-batch immobilized cell fermentation to produce butanol from non-detoxified sugarcane bagasse hemicellulose hydrolysates. Biores. Technol. 2021, V. 321, P. 124504. https://doi.org/10.1016/j.biortech.2020.124504
96. Mohanty A., Mankoti M., Rout P. R., Meena S. S., Dewan S., Kalia B., Varjani S., Wong J. W. C., Banu J. R. Sustainable utilization of food waste for bioenergy production: A step towards circular bioeconomy. Int. J. Food Microbiol. 2022, V. 365, P. 109538. https://doi.org/10.1016/j.ijfoodmicro.2022.109538
97. Sajjanshetty R., Kulkarni N. S., Shankar K., Jayalakshmi S. K., Sreeramulu K. Enhanced production and in-situ removal of butanol during the fermentation of lignocellulosic hydrolysate of pineapple leaves. Industrial Crops and Products. 2021, V. 173, P. 114147. https://doi.org/10.1016/j.indcrop.2021.114147
98. Kihara T., Noguchi T., Tashiro Y., Sakai K., Sonomoto K. Highly efficient continuous acetone–butanol–ethanol production from mixed sugars without carbon catabolite repression. Biores. Technol. Rep. 2019, V. 7, P. 100185. https://doi.org/10.1016/j.biteb.2019.03.017
99. Wen Z., Ledesma-Amaro R., Lin J., Jiang Y., Yang S. Improved n-butanol production from Clostridium cellulovorans by integrated metabolic and evolutionary engineering. Appl. Environ. Microbiol. 2019, 85 (7), e02560-18. https://doi.org/10.1128/AEM.02560-18
100. Yang Y., Lang N., Zhang L., Wu H., Jiang W., Gu Y. A novel regulatory pathway consisting of a two-component system and an ABC-type transporter contributes to butanol tolerance in Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 2020, V. 104, P. 5011–5023. https://doi.org/10.1007/s00253-020-10555-6
101. Jang Y.-S., Seong H. J., Kwon S. W., Lee Y.-S., Im J. A., Lee H. L., Yoon Y. R., Lee S. Y. Clostridium acetobutylicum atpG-Knockdown Mutants Increase Extracellular pH in Batch Cultures. Front. Bioeng. Biotechnol. 2021, V. 9, P. 754250. https://doi.org/10.3389/fbioe.2021.754250
102. Baur S. T., Markussen S., Di Bartolomeo F., Poehlein A., Baker A., Jenkinson E. R., Daniel R., Wentzel A., D?rre P. Increased Butyrate Production in Clostridium saccharoperbutylacetonicum from Lignocellulose-Derived Sugars. Appl. Environ. Microbiol. 2022, V. 21, P. e0241921. https://doi.org/10.1128/aem.02419-21
103. Martins M. C., Fernandes S. F., Salgueiro B. A., Soares J. C., Rom?o C. V., Soares C. M., Lousa D., Folgosa F., Teixeira M. The Amino Acids Motif -32GSSYN36- in the Catalytic Domain of E. coli Flavorubredoxin NO Reductase Is Essential for Its Activity. Catalysts. 2021, 11 (8), 926. https://doi.org/10.3390/catal11080926
104. Liu J., Fan S., Bai K., Xiao Z. Combining acetone-butanol-ethanol production and methyl orange decolorization in wastewater by fermentation with solid food waste as substrate. Renewable Energy. 2021, V. 179, P. 2246–2255. https://doi.org/10.1016/j.renene.2021.08.055
105. Yu H., Chen Z., Wang N., Yu S., Yan Y., Huo Y.-X. Engineering transcription factor BmoR for screening butanol overproducers. Metab. Eng. 2019, V. 56, P. 28–38. https://doi.org/10.1016/j.ymben.2019.08.015
106. Cho C., Hong S., Moon H. G., Jang Y.-S., Kim D., Lee S. Y. Engineering clostridial aldehyde/alcohol dehydrogenase for selective butanol production. MBio. 2019, 10 (1), e02683-18. https://doi.org/10.1128/mBio.02683-18
107. Tian L., Cervenka N. D., Low A. M., Olson D. G., Lynd L. R. A mutation in the AdhE alcohol dehydrogenase of Clostridium thermocellum increases tolerance to several primary alcohols, including isobutanol, n-butanol and ethanol. Sci. Rep. 2019, 9 (1), 1736. https://doi.org/10.1038/s41598-018-37979-5
108. Xue C., Cheng C. Butanol production by Clostridium. Adv. Bioenergy. 2019, V. 4, P. 35. https://doi.org/10.1016/bs.aibe.2018.12.001
109. Sertkaya S., Azbar N., Abubackar H. N., Gundogdu T. K. Design of Low-Cost Ethanol Production Medium from Syngas: An Optimization of Trace Metals for Clostridium ljungdahlii. Energies. 2021, 14 (21), 6981.https://doi.org/10.3390/en14216981
110. Kamkeng A. D. N., Wang M., Hu J. J., Du W., Qian F. Transformation technologies for CO2 utilisation: Current status, challenges and future prospects. Chem. Eng. J. 2021, V. 409, P. 128138. https://doi.org/10.1016/j.cej.2020.128138
111. Costa P., Usai G., Re A., Manfredi M., Mannino G., Bertea C. M., Pessione E., Mazzoli R. Clostridium cellulovorans Proteomic Responses to Butanol Stress. Front. Microbiol. 2021, V. 12, P. 674639. https://doi.org/10.3389/fmicb.2021.674639
112. Kane A. L., Szabo R. E., Gralnick J. A. Engineering Cooperation in an Anaerobic Coculture. Appl. Environ. Microbiol. 2021, 11, 87 (11), e02852-20. https://doi.org/10.1128/AEM.02852-20
113. Fern?ndez-Blanco C., Veiga M. C., Kennes Ch. Efficient production of n-caproate from syngas by a co-culture of Clostridium aceticum and Clostridium kluyveri. J. Environ. Management. 2022, 302 (A), 113992. https://doi.org/10.1016/j.jenvman.2021.113992