ISSN 2410-7751 (Print)
ISSN 2410-776X (Onli
Biotechnologia Acta, V. 14, No. 6 , 2022
P. 26-35, Bibliography 64, Engl.
UDC: 579.222
https://doi.org/10.15407/biotech15.06.026
Full text: (PDF, in English)
BIOSURFACTANTS: STRUCTURE, FUNCTIONS AND PRODUCTIONS
Yanvarov Y.B., Havryliak V.V.
Lviv Polytechnic National University, Ukraine
Surfactants are widely used in many areas of our life. However, synthetic surfactants have a serious negative impact on the environment. They do not decompose well and can accumulate in ecosystems. Microbial biosurfactants can be an alternative to synthetic surfactants. They are characterized by a diverse structure, stable at critical temperatures, pH and can be obtained from various renewable raw materials.
Goal: analysis and generalization of the available information on the main characteristics and features of the synthesis of surface-active substances of microbial origin.
Results. The article describes the structure of the most important groups of biosurfactants of microbial origin, such as rhamnolipids, trehalolipids, and sophorolipids. The main producers of biosurfactants, as well as the areas of their application were characterized. Information about the main ways of their biosynthesis is discussed. Special attention in the review is paid to factors that are essential for the cultivation of microorganisms - the main producers of biosurfactants.
Key words: biosurfactants, rhamnolipids, trehalolipids, sophorolipids, biosynthesis, cultivation.
References
-
1. Rebello S., Asok A. K., Mundayoor S., Jisha M. S. Surfactants: Toxicity, Remediation and Green Surfactants. Environ Chem Lett. 2014, 12(2), 275–287. https://doi.org/10.1007/s10311-014-0466-2.
2. Geys R., Soetaert W., Van Bogaert I. Biotechnological Opportunities in Biosurfactant Production. Current Opinion in Biotechnology. 2014, 30, 66–72. https://doi.org/10.1016/j.copbio.2014.06.002.
3. Gudiña E. J., Fernandes E. C., Rodrigues A. I., Teixeira J. A., Rodrigues L. R. Biosurfactant Production by Bacillus Subtilis Using Corn Steep Liquor as Culture Medium. Front. Microbiol. 2015, 6, 59. https://doi.org/10.3389/fmicb.2015.00059.
4. Nurfarahin A. H., Mohamed M. S., Phang L. Y. Culture Medium Development for Microbial-Derived Surfactants Production—An Overview. Molecules. 2018, 23(5), 1049. https://doi.org/10.3390/molecules23051049.
5. Santos D. K. F., Rufino R. D., Luna J. M., Santos V. A., Sarubbo L. A. Biosurfactants: Multifunctional Biomolecules of the 21st Century. International Journal of Molecular Sciences. 2016, 17(3), 401. https://doi.org/10.3390/ijms17030401.
6. Abdel-Mawgoud A. M., Lépine F., Déziel E. Rhamnolipids: Diversity of Structures, Microbial Origins and Roles. Appl Microbiol Biotechnol. 2010, 86(5), 1323–1336. https://doi.org/10.1007/s00253-010-2498-2.
7. Adetunji A. I., Olaniran A. O. Treatment of Lipid-Rich Wastewater Using a Mixture of Free or Immobilized Bioemulsifier and Hydrolytic Enzymes from Indigenous Bacterial Isolates. Desalination and Water Treatment. 2018, 132, 274–280. https://doi.org/10.5004/dwt.2018.23161.
8. Araújo H. W. C., Andrade R. F. S., Montero-Rodríguez D., Rubio-Ribeaux D., Alves da Silva C. A., Campos-Takaki G. M. Sustainable Biosurfactant Produced by Serratia Marcescens UCP 1549 and Its Suitability for Agricultural and Marine Bioremediation Applications. Microbial Cell Factories. 2019, 18(1), 1–13. https://doi.org/10.1186/s12934-018-1046-0.
9. Mujumdar S., Joshi P., Karve N. Production, Characterization, and Applications of Bioemulsifiers (BE) and Biosurfactants (BS) Produced by Acinetobacter Spp.: A Review. Journal of Basic Microbiology. 2019, 59, 277–287. https://doi.org/10.1002/jobm.201800364.
10. Adetunji A. I., Olaniran A. O. Production and Potential Biotechnological Applications of Microbial Surfactants: An Overview. Saudi Journal of Biological Sciences. 2021, 28(1), 669–679. https://doi.org/10.1016/j.sjbs.2020.10.058.
11. Gautam K. K., Tyagi V. K. Microbial Surfactants: A Review. J. Oleo Sci. 2006, 55(4), 155–166. https://doi.org/10.5650/jos.55.155.
12. Polish N. V., Marintsova N. H. Biogenic surfactants as perspective environmentally safe agents for use in agroindustry and medicine. Publishing House “Baltija Publishing” 2021, 265–282. (In Ukrainian)
13. Celligoi M. A. P. C., Silveira V. A. I., Hipólito A., Caretta T. O., Baldo C. Sophorolipids: A Review on Production and Perspectives of Application in Agriculture. Spanish Journal of Agricultural Research. 2020, 18(3), e03R01. https://doi.org/10.5424/sjar/2020183-15225.
14. Câmara J. M. D. A., Sousa M. A. S. B., Barros Neto E. L., Oliveira M. C. A. Application of Rhamnolipid Biosurfactant Produced by Pseudomonas Aeruginosa in Microbial-Enhanced Oil Recovery (MEOR). J Petrol Explor Prod Technol. 2019, 9(3), 2333–2341. https://doi.org/10.1007/s13202-019-0633-x.
15. Helmy Q., Gustiani S., Mustikawati A. T. Application of Rhamnolipid Biosurfactant for Bio-Detergent Formulation. International Seminar on Chemical Engineering Soehadi Reksowardojo. Kupang, Indonesia, 2020. https://doi.org/10.1088/1757-899X/823/1/012014.
16. Bouassida M., Fourati N., Ghazala I., Ellouze-Chaabouni S., Ghribi D. Potential Application of Bacillus Subtilis SPB1 Biosurfactants in Laundry Detergent Formulations: Compatibility Study with Detergent Ingredients and Washing Performance. Engineering in Life Sciences. 2018, 18(1), 70–77. https://doi.org/10.1002/elsc.201700152.
17. Gaur V. K., Bajaj A., Regar R. K., Kamthan M., Jha R. R., Srivastava J. K., Manickam N. Rhamnolipid from a Lysinibacillus Sphaericus Strain IITR51 and Its Potential Application for Dissolution of Hydrophobic Pesticides. Bioresource Technology. 2019, 272, 19–25. https://doi.org/10.1016/j.biortech.2018.09.144.
18. Englezos V., Giacosa S., Rantsiou K., Rolle L., Cocolin L. Starmerella Bacillaris in Winemaking: Opportunities and Risks. Current Opinion in Food Science. 2017, 17, 30–35. https://doi.org/10.1016/j.cofs.2017.08.007.
19. Janek T., Krasowska A., Czyżnikowska Ż., Łukaszewicz M. Trehalose Lipid Biosurfactant Reduces Adhesion of Microbial Pathogens to Polystyrene and Silicone Surfaces: An Experimental and Computational Approach. Frontiers in Microbiology. 2018, 9, 2441. https://doi.org/10.3389/fmicb.2018.02441.
20. Roy A. A Review on the Biosurfactants: Properties, Types and Its Applications. J Fundam Renewable Energy Appl. 2018, 8(1), 248. https://doi.org/10.4172/2090-4541.1000248.
21. Silva R. D. C. F. S., Almeida D. G., Rufino R. D., Luna J. M., Santos V. A., Sarubbo L. A. Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills. International Journal of Molecular Sciences. 2014, 15(7), 12523–12542. https://doi.org/10.3390/ijms150712523.
22. Retamal-Morales G., Heine T., Tischler J. S., Erler B., Gröning J. A. D., Kaschabek S. R., Schlömann M., Levicán G., Tischler D. Draft Genome Sequence of Rhodococcus Erythropolis B7g, a Biosurfactant Producing Actinobacterium. Journal of Biotechnology. 2018, 280, 38–41. https://doi.org/10.1016/j.jbiotec.2018.06.001.
23. Sekhon Randhawa K. K., Rahman P. K. S. M. Rhamnolipid Biosurfactants—Past, Present, and Future Scenario of Global Market. Front Microbiol. 2014, 5, 454. https://doi.org/10.3389/fmicb.2014.00454.
24. Thakur P., Saini N. K., Thakur V. K., Gupta V. K., Saini R. V., Saini A. K. Rhamnolipid the Glycolipid Biosurfactant: Emerging Trends and Promising Strategies in the Field of Biotechnology and Biomedicine. Microbial Cell Factories. 2021, 20(1), 1. https://doi.org/10.1186/s12934-020-01497-9.
25. Zhao F., Wang Q., Zhang Y., Lei L. Anaerobic Biosynthesis of Rhamnolipids by Pseudomonas Aeruginosa: Performance, Mechanism and Its Application Potential for Enhanced Oil Recovery. Microbial Cell Factories. 2021, 20(1), 103. https://doi.org/10.1186/s12934-021-01593-4.
26. Chong H., Li Q. Microbial Production of Rhamnolipids: Opportunities, Challenges and Strategies. Microbial Cell Factories. 2017, 16(1), 137. https://doi.org/10.1186/s12934-017-0753-2.
27. Wittgens A., Kovacic F., Müller M. M., Gerlitzki M., Santiago-Schübel B., Hofmann D., Tiso T., Blank L. M., Henkel M., Hausmann R., Syldatk C., Wilhelm S., Rosenau F. Novel Insights into Biosynthesis and Uptake of Rhamnolipids and Their Precursors. Appl Microbiol Biotechnol. 2017, 101(7), 2865–2878. https://doi.org/10.1007/s00253-016-8041-3.
28. Soberón-Chávez G., González-Valdez A., Soto-Aceves M. P., Cocotl-Yañez M. Rhamnolipids Produced by Pseudomonas: From Molecular Genetics to the Market. Microb Biotechnol. 2021, 14(1), 136–146. https://doi.org/10.1111/1751-7915.13700.
29. Parry A. J., Parry N. J., Peilow A. C., Stevenson P. S. Combinations of Rhamnolipids and Enzymes for Improved Cleaning. European Patent Office. EP2596087A1, May 29, 2013.
39. Magalhães L., Nitschke M. Antimicrobial Activity of Rhamnolipids against Listeria Monocytogenes and Their Synergistic Interaction with Nisin. Food Control. 2013, 29(1), 138–142. https://doi.org/10.1016/j.foodcont.2012.06.009.
31. Piljac T., Piljac G. Use of Rhamnolipids as Cosmetics. European Patent Office. EP1056462B1, July 25, 2007.
32. Sachdev D. P., Cameotra S. S. Biosurfactants in Agriculture. Appl Microbiol Biotechnol. 2013, 97(3), 1005–1016. https://doi.org/10.1007/s00253-012-4641-8.
33. Isoda H., Shinmoto H., Matsumura M., Nakahara T. Succinoyl Trehalose Lipid Induced Differentiation of Human Monocytoid Leukemic Cell Line U937 into Monocyte-Macrophages. Cytotechnology. 1995, 19(1), 79–88. https://doi.org/10.1007/BF00749758.
34. Ortiz A., Teruel J. A., Espuny M. J., Marqués A., Manresa A., Aranda F. J. Interactions of a Rhodococcus Sp. Biosurfactant Trehalose Lipid with Phosphatidylethanolamine Membranes. Biochim Biophys Acta. 2008, 1778(12), 2806–2813. https://doi.org/10.1016/j.bbamem.2008.07.016.
35. Ortiz A., Teruel J. A., Manresa Á., Espuny M. J., Marqués A., Aranda F. J. Effects of a Bacterial Trehalose Lipid on Phosphatidylglycerol Membranes. Biochim Biophys Acta. 2011, 1808(8), 2067–2072. https://doi.org/10.1016/j.bbamem.2011.05.003.
36. Zaragoza A., Aranda F. J., Espuny M. J., Teruel J. A., Marqués A., Manresa A., Ortiz A. Mechanism of Membrane Permeabilization by a Bacterial Trehalose Lipid Biosurfactant Produced by Rhodococcus Sp. Langmuir. 2009, 25(14), 7892–7898. https://doi.org/10.1021/la900480q.
37. Zaragoza A., Aranda F. J., Espuny M. J., Teruel J. A., Marqués A., Manresa A., Ortiz A. Hemolytic Activity of a Bacterial Trehalose Lipid Biosurfactant Produced by Rhodococcus Sp.: Evidence for a Colloid-Osmotic Mechanism. Langmuir. 2010, 26(11), 8567–8572. https://doi.org/10.1021/la904637k.
38. Zaragoza A., Teruel J. A., Aranda F. J., Marqués A., Espuny M. J., Manresa Á., Ortiz A. Interaction of a Rhodococcus Sp. Trehalose Lipid Biosurfactant with Model Proteins: Thermodynamic and Structural Changes. Langmuir. 2012, 28(2), 1381–1390. https://doi.org/10.1021/la203879t.
39. Mussa A. A Review of Biosurfactants (Glycolipids): The Characteristics, Composition and Application. International Journal of Psychosocial Rehabilitation. 2020, 24, 3795. https://doi.org/10.37200/IJPR/V24I5/PR202088
40. Christova N., Stoineva I. Biosurfactants: Research Trends and Applications, chapter 8 Trehalose Biosurfactants. Mulligan, CRC Press. 2014,197–216, English.
41. Takayama K., Wang C., Besra G. S. Pathway to Synthesis and Processing of Mycolic Acids in Mycobacterium Tuberculosis. Clin Microbiol Rev. 2005, 18(1), 81–101. https://doi.org/10.1128/CMR.18.1.81-101.2005.
42. White D. A., Hird L. C., Ali S. T. Production and Characterization of a Trehalolipid Biosurfactant Produced by the Novel Marine Bacterium Rhodococcus Sp., Strain PML026. Journal of Applied Microbiology. 2013, 115(3), 744–755. https://doi.org/10.1111/jam.12287.
43. Solaiman D. K. Y., Ashby R. D., Uknalis J. Characterization of Growth Inhibition of Oral Bacteria by Sophorolipid Using a Microplate-Format Assay. Journal of Microbiological Methods. 2017, 136, 21–29. https://doi.org/10.1016/j.mimet.2017.02.012.
44. Jiménez-Peñalver P., Gea T., Sánchez A., Font X. Production of Sophorolipids from Winterization Oil Cake by Solid-State Fermentation: Optimization, Monitoring and Effect of Mixing. Biochemical Engineering Journal. 2016, 115, 93–100. https://doi.org/10.1016/j.bej.2016.08.006.
45. Zhang Q. Q., Li W., Li H. K., Chen X. H., Jiang M., Dong M. S. Low-Field Nuclear Magnetic Resonance for Online Determination of Water Content during Sausage Fermentation. Journal of Food Engineering. 2017, 212, 291–297. https://doi.org/10.1016/j.jfoodeng.2017.05.021.
46. Zhang X., Ashby R. D., Solaiman D. K. Y., Liu Y., Fan X. Antimicrobial Activity and Inactivation Mechanism of Lactonic and Free Acid Sophorolipids against Escherichia Coli O157:H7. Biocatalysis and Agricultural Biotechnology. 2017, 11, 176–182. https://doi.org/10.1016/j.bcab.2017.07.002.
47. Claus S., Van Bogaert I. N. A. Sophorolipid Production by Yeasts: A Critical Review of the Literature and Suggestions for Future Research. Appl Microbiol Biotechnol. 2017, 101(21), 7811–7821. https://doi.org/10.1007/s00253-017-8519-7.
48. Oliveira M., Camilios-Neto D., Baldo C., Magri A., Celligoi M. A. Biosynthesis And Production Of Sophorolipids. International Journal of Scientific & Technology Research. 2014, 3(11), 133–146.
49. Cortés-Sánchez A. de J., Hernández-Sánchez H., Jaramillo-Flores M. E. Biological Activity of Glycolipids Produced by Microorganisms: New Trends and Possible Therapeutic Alternatives. Microbiol Res. 2013, 168(1), 22–32. https://doi.org/10.1016/j.micres.2012.07.002.
50. Ciesielska K., Van Bogaert I. N., Chevineau S., Li B., Groeneboer S., Soetaert W., Van de Peer Y., Devreese B. Exoproteome Analysis of Starmerella Bombicola Results in the Discovery of an Esterase Required for Lactonization of Sophorolipids. J Proteomics. 2014, 98, 159–174. https://doi.org/10.1016/j.jprot.2013.12.026.
51. Ciesielska K., Li B., Groeneboer S., Van Bogaert I., Lin Y.-C., Soetaert W., Van de Peer Y., Devreese B. SILAC-Based Proteome Analysis of Starmerella Bombicola Sophorolipid Production. J. Proteome Res. 2013, 12(10), 4376–4392. https://doi.org/10.1021/pr400392a.
52. Díaz De Rienzo M. A., Banat I. M., Dolman B., Winterburn J., Martin P. J. Sophorolipid Biosurfactants: Possible Uses as Antibacterial and Antibiofilm Agent. New Biotechnology. 2015, 32(6), 720–726. https://doi.org/10.1016/j.nbt.2015.02.009.
53. Ahuekwe E. F., Okoli B. E., Stanley H. O., Kinigoma B. Evaluation of Hydrocarbon Emulsification and Heavy Metal Detoxification Potentials of Sophorolipid Biosurfactants Produced from Waste Substrates Using Yeast and Mushroom. SPE African Health, Safety, Security, Environment, and Social Responsibility Conference and Exhibition. Accra, Ghana, 2016. https://doi.org/10.2118/183578-MS.
54. Minucelli T., Ribeiro-Viana R. M., Borsato D., Andrade G., Cely M. V. T., de Oliveira M. R., Baldo C., Celligoi M. A. P. C. Sophorolipids Production by Candida Bombicola ATCC 22214 and Its Potential Application in Soil Bioremediation. Waste Biomass Valor. 2017, 8(3), 743–753. https://doi.org/10.1007/s12649-016-9592-3.
55. Sun M., Ye M., Jiao W., Feng Y., Yu P., Liu M., Jiao J., He X., Liu K., Zhao Y., Wu J., Jiang X., Hu F. Changes in Tetracycline Partitioning and Bacteria/Phage-Comediated ARGs in Microplastic-Contaminated Greenhouse Soil Facilitated by Sophorolipid. Journal of Hazardous Materials. 2018, 345, 131–139. https://doi.org/10.1016/j.jhazmat.2017.11.036.
56. Tomar G. S., Srinikethan G. Studies on Production of Biosurfactant from Pseudomonas Aeruginosa (MTCC7815) & Its Application in Microbial Enhanced Oil Recovery. Research Journal of Chemical and Environmental Sciences. 2016, 4, 84–91.
57. Santa Anna L. M., Sebastian G. V., Menezes E. P., Alves T. L. M., Santos A. S., Pereira Jr. N., Freire D. M. G. Production of Biosurfactants from Pseudomonas Aeruginosa PA 1 Isolated in Oil Environments. Braz. J. Chem. Eng. 2002, 19(2), 159–166. https://doi.org/10.1590/S0104-66322002000200011.
58. Hippolyte M. T., Augustin M., Hervé T. M., Robert N., Devappa S. Application of Response Surface Methodology to Improve the Production of Antimicrobial Biosurfactants by Lactobacillus Paracasei Subsp. Tolerans N2 Using Sugar Cane Molasses as Substrate. Bioresources and Bioprocessing. 2018, 5(1), 48. https://doi.org/10.1186/s40643-018-0234-4.
59. Agarry S., Salam K., Olatunde A., Aremu M. Biosurfactant production by indigeneous pseudomonas and bacillus species isolated from auto-mechanic soil environment towards microbial enhanced oil recovery. European Journal of Engineering and Technology. 2015, 3(6), 27–39.
60. Guerra-Santos L., Käppeli O., Fiechter A. Pseudomonas Aeruginosa Biosurfactant Production in Continuous Culture with Glucose as Carbon Source. Applied and Environmental Microbiology. 1984, 48(2), 301–305. https://doi.org/10.1128/aem.48.2.301-305.1984.
61. Pokynbroda T., Karpenko E., Zin I. New Biosurfactants of Culture Pseudomonas Aureofaciens NB-1. Research Bulletin of the National Technical University of Ukraine Kyiv Politechnic Institute. 2017, 3, 71–76. https://doi.org/10.20535/1810-0546.2017.3.100513. (in Ukrainian)
62. Akbari E., Rasekh B., Maal K. B., Karbasiun F., Yazdian F., Emami-Karvani Z., Peighami R. A Novel Biosurfactant Producing Kocuria Rosea ABR6 as Potential Strain in Oil Sludge Recovery and Lubrication. AMB Express. 2021, 11(1), 131. https://doi.org/10.1186/s13568-021-01283-9.
63. Zheng C., Li Z., Su J., Zhang R., Liu C., Zhao M. Characterization and Emulsifying Property of a Novel Bioemulsifier by Aeribacillus Pallidus YM-1. Journal of Applied Microbiology. 2012, 113(1), 44–51. https://doi.org/10.1111/j.1365-2672.2012.05313.x.
64. Adetunji A. I., Olaniran A. O. Production and Characterization of Bioemulsifiers from Acinetobacter Strains Isolated from Lipid-Rich Wastewater. 3 Biotech. 2019, 9(4), 151. https://doi.org/10.1007/s13205-019-1683-y.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2022