ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 6 , 2022
P. 5-25, Bibliography 115, Engl.
UDC: 577.1.
https://doi.org/10.15407/biotech15.06.005
Full text: (PDF, in English)
MULTIFUNCTIONAL NANOSYSTEMS BASED ON TWO FLUORESCENT DYES, DOXORUBICIN AND CURCUMIN
Palladina Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
The aim of the work was to review the literature data regarding the prospects for the creation and use of multifunctional fluorescent two-dye nanosystems, which enable investigating the distribution of fluorescent components with significant acceleration of the study and introduction of nanomedicines into practice. Special attention is paid to the use of two substances with hydrophobic and hydrophilic properties in one nanoparticle (NP), capable of penetrating a living cell. The method of fluorescence confocal microscopy enables observation of the nanoscale dynamics of distribution and stability of drugs over time. The concomitant use of doxorubicin (DOX) and curcumin (CUR) in single nanoparticle causes synergism in the action of medical drugs, and their own fluorescence makes it possible to use them as multifunctional fluorescent nanosystems.
Results. Data from the literature indicate that the use of two or more fluorescent dyes provide an advantage over other, more expensive methods when studying the penetration and distribution of NPs in living samples. The use of nanocarriers is an effective way to significantly increase the bioavailability of those drugs, which are poorly soluble in water. A promising direction of nanomedicine is the creation of complex bio-compatible multifunctional nanomaterials based on several active drugs, with the simultaneous use of their enhancers and the strategy of active targeting. Such recent structures enable targeted and controlled penetration of medicinal compounds into the sites of localization of pathological processes, reducing the toxicity of drugs to normal cells.
Conclusions. The use of the fluorescence microscopy method, as exemplified by the two dyes, DOX and CUR, enables to trace the stages of interaction of loaded DOX and CUR nanoparticles with cultured cells, and their release from NPs to determine their amount and localization in organelles cells.
Key words: Multifunctional nanosystems, doxorubicin, curcumin, synergism, two fluorescent dyes..
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2022
References
1. Xu X., Ho W., Zhang X., Bertrand N., Farokhzad O. Cancer Nanomedicine: From Targeted Delivery to Combination Therapy. Trends Mol Med. 2015, 21 (4), 223–232. https://doi.org/10.1016/j.molmed.2015.01.001.
2. Sanna V., Pala N., Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomedicine. 2014, 9, 467–483. https://doi.org/10.2147/IJN.S36654
3. Rahban M., Habibi-Rezaei M., Mazaheri M., Saso L., Moosavi-Movahedi A. A. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants (Basel). 2020, 9 (12), 1228. https://doi.org/10.3390/antiox9121228
4. Bengmark S. J. Curcumin, An Atoxic Antioxidant and Natural NF_B, Cyclooxygenase- 2, Lipooxygenase, and Inducible Nitric Oxide Synthase Inhibitor: A Shield Against Acute and Chronic Diseases. Parenter Enteral Nutr. 2006, 30 (1), 3045–51. https://doi.org/10.1177/014860710603000145
5. Gupta S., Pathak Y., Gupta M. K., Vyas S. P. Nanoscale drug delivery strategies for therapy of ovarian cancer: conventional vs targeted. Artif Cells Nanomed Biotechnol. 2019, 47 (1), 4066–4088. https://doi.org/10.1080/21691401.2019.1677680
6. Shanmugam R., Subramaniam R., Kathirason S. G., Ali D., Balusamy S.R., Gurusamy A., Arunachalam K., Sellami H. Curcumin – Chitosan Nano composite Formulation Containing Pongamia pinnata-Mediated Silver Nanoparticles, Wound Pathogen Control, and Anti-Inflammatory Potential. Biomed Res Int. 2021, 3091587. https://doi.org/10.1155/2021/3091587
7. Prasanthan P., Kishore N. Self-assemblies of pluronic micelles in partitioning of anticancer drugs and effectiveness of this system towards target protein. RSC Adv. 2021, 11, 22057–22069. https://doi.org/10.1039/D1RA03770F
8. Ouhtit A., Gaur R. L., Abdraboh M., Ireland S. K., Rao P. N., Raj S. G., Al-Riyami H., Shanmuganathan S., Gupta I., Murthy S. N.,Hollenbach A., Raj M. H. Simultaneous inhibition of cell-cycle, proliferation, survival, metastatic pathways and induction of apoptosis in breast cancer cells by a phytochemical super-cocktail: genes that underpin its mode of action. Journal of Cancer. 2013, 4 (9), 703–715. https://doi.org/10.7150/jca.7235
9. Kawasaki B. T., Hurt E. M., Mistree T., Farrar W. L. Targeting cancer stem cells with phytochemicals. Mol Interv. 2008, 8 (4), 174–184. https://doi.org/10.1124/mi.8.4.9
10. Sun L., Deng X., Yang X., Li Z., Wang Z., Li L., Wu Q., Peng F., Liu L., Gong C. Co-delivery of doxorubicin and curcumin by polymeric micelles for improving antitumor efficacy on breast carcinoma. RSC Adv. 2014, 4, 46737–46750. https://doi.org/10.1039/C4RA07453J
11. VanDyke D., Kyriacopulos P., Yassini1 B., Wright A., Burkhart E., Jacek S., Pratt M., Peterson C.R., Rai P. Nanoparticle Based Combination Treatments for Targeting Multiple Hallmarks of Cancer. Int J Nano Stud Technol. 2016, Suppl 4, 1–18. http://dx.doi.org/10.19070/2167-8685-SI04001
12. Bansal S. S., Goel M., Aqil F., Vadhanam M. V., Gupta R. C. Advanced Drug Delivery Systems of Curcumin for Cancer Chemoprevention. Cancer Prev Res. 2011, 4 (8), 1158–71. https://doi.org/10.1158/1940-6207.CAPR-10-0006
13. Sarisozen C., Pan J., Dutta I., Torchilin V.P. Polymers in the co-delivery of siRNA and anticancer drugs to treat multidrug-resistant tumors. Journal of Pharmaceutical Investigation volume. 2017, 47, 37–49. https://doi.org/10.1007/s40005-016-0296-2
14. Sen G.S., Mohanty S., Hossain D.M.S., Bhattacharyya S., Banerjee S., Chakraborty J., Saha S., Ray P., Bhattacharjee P., Mandal D., Bhattacharya A., Chattopadhyay S., Das T., Sa G. Curcumin enhances the efficacy of chemotherapy by tailoring p65NF B-p300 cross-talk in favor of p53-p300 in breast cancer. J Biol Chem. 2011, 286 (49), 42232–42247. https://doi.org/10.1074/jbc.M111.262295
15. Hashemi M., Ebrahimian M. Recent advances in nanoformulations for co-delivery of curcumin and chemotherapeutic drugs. Nanomed J. 2017, 4 (1), 1–7. https://nmj.mums.ac.ir/article_8046.html
16. Pramanik D., Campbell N. R., Das S., Gupta S., Chenna V., Bisht S., Sysa-Shah P., Bedja D., Karikari C., Steenbergen C., Gabrielson K. L., Maitra Am., Maitra An. A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy. Oncotarget 2012, 3 (6), 640–650. https://doi.org/10.18632/oncotarget.543
17. Desai P., Thumma N. J., Wagh P. R., Zhan S., Ann D., Wang J., Prabhu S. Cancer Chemoprevention Using Nanotechnology-Based Approaches. Front Pharmacol. 2020, 11, 323. https://doi.org/10.3389/fphar.2020.00323
18. Ju Choi J. Y., Thapa R. K., Yong C. S., Kim J. O. Nanoparticle-based combination drug delivery systems for synergistic cancer treatment. Journal of Pharmaceutical Investigation. 2016, 46, 325–339. https://doi.org/10.1007/s40005-016-0252-1
19. Hamzehzadeh L., Atkin S.L., Majeed M., Butler A.E., Sahebkar A. The versatile role of curcumin in cancer prevention and treatment: A focus on PI3K/AKT pathway. J Cell Physiol. 2018, 233 (10), 6530–6537. https://doi.org/10.1002/jcp.26620
20. Park S. S., Lee D. M., Lim J. H., Lee D., Park S. J., Kim H. M., Sohn S., Yoon G., Eom Y.W., Jeong S.Y., Choi E.K., Choi K.S. Pyrrolidine dithiocarbamate reverses Bcl-xL-mediated apoptotic resistance to doxorubicin by inducing paraptosis. Carcinogenesis. 2018, 39 (3), 458–470. https://doi.org/10.1093/carcin/bgy003
21. Gu Y., Li J., Li Y., Song L., Li D., Peng L., Wan Y., Hua S. Nanomicelles loaded with doxorubicin and curcumin for alleviating multidrug resistance in lung cancer. International Journal of Nanomedicine. Int J Nanomedicine. 2016, 2016 (11), 5757–5770. https://doi.org/10.2147/IJN.S118568
22. Medeiros A. C., Medeiros A. S. C., Azevedo Ítalo M., Celani L. M., Souza T. B. Response of n-nitrosodiethylamine- induced hepatocellular carcinoma to treatment with curcumin vs doxorubicin. J Surg Cl Res. 2019, 10 (1), 25–38. https://doi.org/10.20398/jscr.v10i1.17406
23. Rizeq B., Gupta I., Ilesanmi J., AlSafran M., Rahman M.M., Ouhtit A. The Power of Phytochemicals Combination in Cancer Chemoprevention. Journal of Cancer. 2020, 11 (15), 4521–4533. https://www.jcancer.org/v11p4521.htm
24. Sesarman A., Tefas L., Sylvester B., Licarete E., Rauca V., Luput L., Patras L., Porav S., Banciu M., Porfire A. Co-delivery of curcumin and doxorubicin in PEGylated liposomes favored the antineoplastic C26 murine colon carcinoma microenvironment. Drug Deliv Transl Res. 2019, 9 (1), 260–272. https://doi.org/10.1007/s13346-018-00598-8
25. Garg S., Garg A., Sahu N. K., Yadav A. K. Synthesis and Characterization of Nanodiamond- Doxorubicin (Dox) Conjugate for Effective Delivery against MCF-7 Cell Lines. Journal of Drug Delivery and Therapeutics. 2019, 9 (4-s), 589–594. https://doi.org/10.22270/jddt.v9i4-s.3400
26. Rashid S., Ali N., Nafees S., Ahmad S.T., Arjumand W., Hasan S.K., Sultana S. Alleviation of doxorubicin induced nephrotoxicity and hepatotoxicity by chrysin in wistar rats. Toxicol Mech Methods. 2013, 23 (5), 337–45. https://doi.org/10.3109/15376516.2012.759306
27. Ashrafizadeh M., Zarrabi A., Hashemi F., Zabolian A., Saleki H., Bagherian M., Azami N., Bejandi A. K., Hushmandi K., Ang H.L., Makvandi P., Khan H., Kumar A. P. Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms: Enhancing Antitumor Activity. Pharmaceutics. 2020, 12 (11), 1084. https://doi.org/10.3390/pharmaceutics12111084
28. Qin L., Wu L., Jiang S., Yang D., He H., Zhang F., Zhang P. Multifunctional micelle delivery system for overcoming multidrug resistance of doxorubicin. J. Drug. Target. 2018, 26 (4), 289–295. https://doi.org/10.1080/1061186X.2017.1379525
29. Karukstis K. K., Thompson E. H. Z., Whiles J. A., Rosenfeld R. J. Deciphering the fluorescence signature of daunomycin and doxorubicin. Biophysical Chemistry. 1998, 73 (3), 249–263. https://doi.org/10.1016/S0301-4622(98)00150-1
30. Arunraj T. R., Rejinold N. S., Kumar N. A., Jayakumar R. Doxorubicin-chitinpoly( caprolactone) composite nanogel for drug delivery. Int J Biol Macromol. 2013, 62, 35–43. https://doi.org/10.1016/j.ijbiomac.2013.08.013
31. Lu J. , Zhao W., Huang Y., Liu H., Marquez R., Gibbs R.B., Li J., Venkataramanan R., Xu L., Li S., Li S. Targeted delivery of Doxorubicin by folic acid-decorated dual functional nanocarrier. Mol. Pharm. 2014, 11 (11), 4164–4178. https://doi.org/10.1021/mp500389v
32. Yu C., Zhou M., Zhang X., Wei W., Chen X., Zhang X. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resisnceand cancer diagnosis. Nanoscale. 2015, 7 (13), 5683–5690. https://doi.org/10.1039/C5NR00290G
33. Zhao N., Woodle M. C., Mixson A. J. Advances in delivery systems for doxorubicin. J. Nanomed. Nanotechnol. 2018, 9 (5), 519. https://doi.org/10.4172/2157-7439.1000519
34. Lahtinen R., Kuikka J., Nousiainen T., Uusitupa M., Lansimies E. Cardiotoxicity of epirubicin and doxorubicin : A double-blind randomized study. Eur J Haematol. 1991, 46 (5), 301–305. https://doi.org/10.1111/j.1600-0609.1991.tb01543.x
35. Yu W., Qin X., Zhang Y., Qiu P., Wang L., Zha W. Curcumin suppresses doxorubicin-induced cardiomyocyte pyroptosis via a PI3K/Akt/ mTOR-dependent manner. Ren J. Cardiovasc Diagn Ther. 2020, 10 (4), 752–769. https://doi.org/10.21037/cdt-19-707
36. Guo F., Yu N., Jiao Y., Hong W., Zhou K., Ji X., Yuan H., Wang H., Li A., Wang G., Yang G. Star polyester-based folate acid-targeting nanoparticles for doxorubicin and curcumin codelivery to combat multidrug-resistant breast cancer. Drug Deliv. 2021, 28 (1), 1709–1721. https://doi.org/10.1080/10717544.2021.1960926
37. Prados J., Melguizo C., Ortiz R., Vélez C., Alvarez P. J., Arias J. L., Ruíz M. A., Gallardo V., Aranega A. Doxorubicin-loaded nanoparticles: new advances in breast cancer therapy. Anti-cancer Agents Med Chem. 2012, 12 (9), 1058–70. https://doi.org/10.2174/187152012803529646
38. Klippstein R., Bansal S. S., Al-Jamal K. T. Doxorubicin Enhances Curcumin’s Cytotoxicity in Human Prostate Cancer Cells In Vitro by Enhancing Its Cellular Uptake. Doxorubicin enhances curcumin’s cytotoxicity in human prostate cancer cells in vitro by enhancing its cellular uptake. International Journal of Pharmaceutics. 2016, 514 (1), 169–175. https://doi.org/10.1016/j.ijpharm.2016.08.003
39. Benzer F, Kandemir F. M., Kucukler S., Comaklı S., Caglayan C. Chemoprotective effects of curcumin on doxorubicin-induced nephrotoxicity in wistar rats: by modulating inflammatory cytokines, apoptosis, oxidative stress and oxidative DNA damage. Arch Physiol Biochem. 2018, 124 (5), 448–457. https://doi.org/10.1080/13813455.2017.1422766
40. Guo W., Song Y., Song W., Liu Y., Liu Z., Zhang D., Tang Z., Bai O. Co-delivery of Doxorubicin and Curcumin with Polypeptide Nanocarrier for Synergistic Lymphoma Therapy. Sci Rep. 2020, 10 (1), 7832. https://doi.org/10.1038/s41598-020-64828-1
41. Saleh H. A., Ramdan E., Elmazar M. M., Azzazy H. M. E., Abdelnaser A. Comparing the protective effects of resveratrol, curcumin and sulforaphane against LPS/IFN- -mediated inflammation in doxorubicin-treated macrophages. Scientific Reports. 2021, 11 (1), 545. https://doi.org/10.1038/s41598-020-80804-1
42. Mohajeri M., Sahebkar A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol. 2018, 122, 30–51. https://doi.org/10.1016/j.critrevonc.2017.12.005
43. Diao L., Shen A., Yang Y., Tao J., Hu Y. CD44- targeted hyaluronic acid–curcumin reverses chemotherapeutics resistance by inhibiting P-gp and anti-apoptotic pathways. RSC Adv. 2019, 9 (70), 40873–40882. https://doi.org/10.1039/C9RA08202F
44. Junkun L., Erfu C., Tony H., Xin L., Sudeep K.C., Mingliang Z., Yanqin W., XiangQian Q. Curcumin Downregulates Phosphate Carrier and Protects against Doxorubicin Induced Cardiomyocyte Apoptosis. Biomed Res Int. 2016. 2016, 1980763. https://doi.org/10.1155/2016/1980763
45. Park S. S., Lee D. M., Lim J. H., Lee D., Park S.J., Kim H. M., Sohn S., Yoon G., Eom Y. W., Jeong S. Y., Choi E. K., Choi K. S. Pyrrolidine dithiocarbamate reverses Bcl-xL-mediated apoptotic resistance to doxorubicin by inducing paraptosis. Carcinogenesis. 2018, 39 (3), 458–470. https://doi.org/10.1093/carcin/bgy003
46. Raj M. H., Abd Elmageed Z. Y., Zhou J., Gaur R. L., Nguyen L., Azam G.A., Braley P., Rao P. N., Fathi I. M., Ouhtit A. Synergistic action of dietary phyto-antioxidants on survival and proliferation of ovarian cancer cells. Gynecologic oncology. 2008, 110 (3), 432–8. https://doi.org/10.1016/j.ygyno.2008.05.001
47. Xu P., Zuo H., Zhou R., Wang F., Liu X., Ouyang J. Doxorubicin-loaded platelets conjugated with anti-CD22 mAbs: a novel targeted delivery system for lymphoma treatment with cardiopulmonary avoidance. Chen Oncotarget. 2017, 8 (35), 58322–58337. https://doi.org/10.18632/oncotarget.16871
48. Pramanik D., Campbell N. R., Das S., Gupta S., Chenna V., Bisht S., Sysa-Shah P., Bedja D., Karikari C., Steenbergen C., Gabrielson K. L., Maitra A., Maitra A. A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy. Oncotarget. 2012, 3 (6), 640–650. https://doi.org/10.18632/oncotarget.543
49. Rizk H. A., Masoud M. A., Maher O.W. Prophylactic effects of ellagic acid and rosmarinic acid on doxorubicin-induced neurotoxicity in rats. J BiochemMol Toxicol. 2017, e21977. https://doi.org/10.1002/jbt.21977
50. Żymańczyk-Duda E., Szmigiel-Merena B., Brzezińska-Rodak M., Klimek-Ochab M. Natural antioxidants–properties and possible applications. J Appl Biotechnol Bioeng. 2018, 5, (4), 251–258. https://doi.org/10.15406/jabb.2018.05.00146
51. Motevalli S. M., Eltahan A. S., Liu L., Magrini A., Rosato N., Guo W., Bottini M., Liang X.J. Coencapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. Biophys Rep. 2019, 5 (1), 19–30. https://doi.org/10.1007/s41048-018-0079-6
52. Zhao X., Chen Q., Li Y., Tang H., Liu W., Yang X. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Eur. J. Pharm. Biopharm. 2015, 93, 27–36. https://doi.org/10.1016/j.ejpb.2015.03.003
53. Lall, R. K.; Syed, D. N.; Adhami, V. M.; Khan, M. I.; Mukhtar, H. Dietary polyphenols in prevention and treatment of prostate cancer Int. J. Mol. Sci. 2015, 16, 3350–3376. https://doi.org/10.3390/ijms16023350
54. Wei Q. Y., He K. M., Chen J. L., Xu Y. M., Lau A. T. Y. Phytofabrication of Nanoparticles as Novel Drugs for Anticancer Applications. Molecules. 2019, 24 (23), 2446. https://doi.org/10.3390/molecules24234246
55. Moghtaderi H., Sepehri H., Delphi L., Attari F. Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231. BioImpacts. 2018, 8 (3), 185–194. https://doi.org/10.15171/bi.2018.21
56. Campbell R. B., Ying B., Kuesters G. M., Hemphill R. J. Fighting cancer: from the bench to bedside using second generation cationic liposomal therapeutics. Pharm Sci. 2009, 98 (2), 411–29. https://doi.org/10.1002/jps.21458
57. Kumar D., Basu S., Parija L., Rout D., Manna S., Dandapat J., Debata P. R. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells. Biomedicine & Pharmacotherapy. 2016, 81, 31–37. https://doi.org/10.1016/j.biopha.2016.03.037
58. Tavakoli F., Jahanban-Esfahlan R., Seidi K., Jabbari M., Behzadi R., Pilehvar-Soltanahmadi Y., Zarghami N. Effects of nano-encapsulated curcuminchrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. Artif Cells Nanomed Biotechnol. 2018, 46 (sup2), 75–86. https://doi.org/10.1080/21691401.2018.1452021
59. Arya G., Das M., Sahoo S.K. Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer. Biomed Pharmacother. 2018, 102, 555–566. https://doi.org/10.1016/j.biopha.2018.03.101
60. Kaniuk M. I. Prospects of Curcumin use in Nanobiotechnology. Biotechnologia Acta. 2016, 9 (3), С 23–36. http://dx.doi.org/10.15407/biotech9.03.023
61. Kaniuk M. I. Curcumin-based multifunctional nanosystems. Biotechnologia Acta. 2021, 14 (50) 21–37. https://doi.org/10.15407/biotech14.05.021s
62. Chang P. Y., Peng S. F., Lee C. Y., Lu C. C., Tsai S. C., Shieh T. M., Wu T. S., Tu M. G., Chen M. Y., Yang J. S. Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. Int J Oncol. 2013, 43 (4), 1141–50. https://doi.org/10.3892/ijo.2013.2050
63. Gandapu U., Chaitanya R. K., Kishore G., Reddy R. C., Kondapi A. K. Curcumin-Loaded Apotransferrin Nanoparticles Provide Efficient Cellular Uptake and Effectively Inhibit HIV-1 Replication In Vitro. PLoS ONE. 2011, 6 (8), e23388. https://doi.org/10.1371/journal.pone.0023388
64. Doggui S., Sahni J. K., Arseneault M., Dao L., Ramassamy C. Neuronal Uptake and Neuroprotective Effect of Curcumin-Loaded PLGA Nanoparticles on the Human SK-N-SH Cell Line. J Alzheimers Dis. 2012, 30 (2), 377–92. https://doi.org/10.3233/JAD-2012-112141
65. Zhao X., Chen Q., Liu W., Li Y., Tang H., Liu X., Yang X. Codelivery of doxorubicin and curcumin with lipid nanoparticles results in improved efficacy of chemotherapy in liver cancer. Int J Nanomedicine. 2014, 10 (1), 257–270. https://doi.org/10.2147/IJN.S73322
66. Shaikh S., Shaikh J., Naba Y. S., Doke K., Ahmed K., Yusufi M. Curcumin: reclaiming the lost ground against cancer resistance. Cancer Drug Resist. 2021, 4 (2), 298–320. https://doi.org/10.20517/cdr.2020.92
67. Möller K., Macaulay B., Bein T. Curcumin Encapsulated in Crosslinked Cyclodextrin Nanoparticles Enables Immediate Inhibition of Cell Growth and Efficient Killing of Cancer Cells. Nanomaterials (Basel). 2021, 11 (2), 489. https://doi.org/10.3390/nano11020489
68. Yallapu M. M., Othman S. F., Curtis E. T., Bauer N. A., Chauhan N., Kumar D., Jaggi M., Chauhan S. C.Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int J Nanomedicine. 2012, 7, 1761–79. https://doi.org/10.2147/IJN.S29290
69. Lee S. E., Park H. R., Jeon S., Han D., Park Y. S. Curcumin Attenuates Acrolein-induced COX- 2 Expression and Prostaglandin Production in Human Umbilical Vein Endothelial Cells. J Lipid Atheroscler. 2020, 9 (1), 184–194. https://doi.org/10.12997/jla.2020.9.1.184
70. Wu J., Ibtisham F., Niu Y. F, Wang Z., Li G. H., Zhao Y., Nawab A., Xiao M., An L. Curcumin inhibits heat-induced oxidative stress by activating the MAPK-Nrf2/ ARE signaling pathway in chicken fibroblasts cells. J Therm Biol. 2019, 79, 112–119. https://doi.org/10.1016/j.jtherbio.2018.12.004
71. Shahcheraghi S. H., Salemi F., Peirovi N., Ayatollahi J., Alam W., Khan H., Saso L. Nrf2 Regulation by Curcumin: Molecular Aspects for Therapeutic Prospects.. Molecules. 2021, 27 (1), 167. https://doi.org/10.3390/molecules27010167
72. Muthian G., Mackey V., Prasad K., Charlton C. Curcumin and an antioxidant formulation protect C57BL/6J mice from MPTP-induced Parkinson’s disease like changes: potential neuroprotection for neurodegeneration. Journal of Parkinsonism and Restless Legs Syndrome. 2018, 8, 49–59. https://doi.org/10.2147/JPRLS.S151452
73. Mangalathillam S., Rejinold N. S., Nair A., Lakshmanan V. K., Nair S. V., Jayakumar R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale. 2012, 4 (1), 239–50. https://doi.org/10.1039/C1NR11271F
74. Kanyuk M. I. Ultrafine fluorescent diamonds in nanotechnology. Biotechnologia Acta. 2014, 7 (4), 9–24. (InUkrainian). https://doi.org/10.15407/biotech7.04.009
75. Kanyuk М. І. Use of nanodiamonds in biomedicine. Biotechnologia Acta. 2015, 8 (2), 9–25. https://doi.org/10.15407/biotech8.02.009
76. Le T.M.P., Pham V. P., Dang T. M. L., La T. H., Le T. H., Le Q. H. Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy Adv. Nat. Sci.: Nanosci. Nanotechnol. 2013, 4 (2), 025001. http://dx.doi.org/10.1088/2043-6262/4/2/025001
77. Elzoghby A. O., Samy W. M., Elgindy N. A. J. Albumin-based nanoparticles as potential controlled release drug delivery systems. Control Release. 2012, 157 (2), 168–82. https://doi.org/10.1016/j.jconrel.2011.07.031
78. Lee E. S., Youn Y. S. J. Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. Pharm. Investig. 2016, 46, 305–315. https://doi.org/10.1007/s40005-016-0250-3
79. Khan A. H., Jiang X., Surwase S., Gultekinoglu M., Bayram C., Sathisaran I., Bhatia D., Ahmed J., Wu B., Ulubayram K., Edirisinghe M., Dalvi S. V. Effectiveness of Oil-layered Albumin Microbubbles Produced using Microfluidic T-junctions in Series for In-vitro Inhibition of Tumor Cells. Langmuir. 2020, 36 (39), 11429–11441. https://doi.org/10.1021/acs.langmuir.0c01557
80. Yang C. L., Chen J. P., Wei K. C., Chen J. Y., Huang C. W., Liao Z. X. Release of Doxorubicin by a Folate-Grafted, Chitosan-Coated Magnetic Nanoparticle. Nanomaterials (Basel). 2017, 7 (4), 85. https://doi.org/10.3390/nano7040085
81. Zhang Y., Yang C., Wang W., Liu .J, Liu Q., Huang F., Chu L., Gao H., Li C., Kong D., Liu Q., Liu J. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep. 2016, 6, 21225. https://doi.org/10.1038/srep21225
82. Pavot V., Berthet M., Rességuier J., Legaz S., Handké N., Gilbert S.C., Paul S., Verrier B. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine (Lond.). 2014, 9 (17), 2703–18. https://doi.org/10.2217/nnm.14.156
83. Jia F, Li Y, Deng X, Wang X, Cui X, Lu J, Pan Z, Wu Y. Self-assembled fluorescent hybrid nanoparticles-mediated collaborative lncRNA CCAT1 silencing and curcumin delivery for synchronous colorectal cancer theranostics. J Nanobiotechnol. 2021, 19 (1), 238. https://doi.org/10.1186/s12951-021-00981-7
84. Sheng Z., Hu D., Zheng M., Zhao P., Liu H., Gao D., Gong P., Gao G., Zhang P., Ma Y., Cai L. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano. 2014, 8 (12), 12310–22. https://doi.org/10.1021/nn5062386
85. Dmytrenko O., Kulish M., Pavlenko O., Lesiuk A., Momot A., Busko T., Kaniuk M., Nikolaienko T., Bulavin L. Volume Editors: Bulavin L., Lebovka N. Mechanisms of Heteroassociation of Ceftriaxone and Doxorubicin Drugs with Bovine Serum Albumin (Conference Paper). Publisher: Springer Science and Business Media Deutschland GmbH. Springer Proceedings in Physics. 2022, 266 (8), 219–245. 9th International Conference on Physics of Liquid Matter: Modern Problems, PLMMP 2020; Kyiv; Ukraine; 22–26 May 2020; Code 266469. https://doi.org/10.1007/978-3-030-80924-9_8
86. Goncharenko N. A., Dmytrenko O. P., Pavlenko O. L., Kulish M. P., Pundyk I. P., Lesyuk A. I., Busko T. O., Lopatynsky A. M., Chegel V. I., Lytvyn V. K., Kaniuk M. I. Complexation Peculiarities in “Doxorubicin–Bovine Serum Albumin–Gold Nanoparticles” Heterosystem. The Fluorescence Study. Ukr. J. Phys. 2020, 65,(6), 468–475. https://doi.org/10.15407/ujpe65.6.468
87. Goncharenko N. A., Dmytrenko O. P., Kulish M .P., Pavlenko O. L., Lesiuk A. I., Busko T. O., Pundyk I. P., Pinchuk-Rugal T. M., Chegel V. I., Lopatynskyi A. M., Kanyuk M. I., Denis L. V. Mechanisms of the interaction of bovine serum albumin with anticancer drug gemcitabine. J. Molecular crystals and liquid crystals. 2020, Issue 1: 7th International Conference on Nanotechnology and Nanomaterials (NANO-2019), Part-3, 701, 59‒71. https://doi.org/10.1080/15421406.2020.1732563
88. Wang Q. L., Zhuang X., Sriwastva M. K., Mu J., Teng Y., Deng Z., Zhang L., Sundaram K., Kumar A., Miller D., Yan J., Zhang H.G. Blood exosomes regulate the tissue distribution of grapefruitderived nanovector via CD36 and IGFR1 pathways. Theranostics. 2018, 8 (18), 4912–4924. https://doi.org/10.7150/thno.27608
89. Gong C., Tian J., Wang Z., Gao Y., Wu X., Ding X., Qiang L., Li G., Han Z., Yuan Y., Gao S. J. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. Nanobiotechnology . 2019, 17 (1), 93. https://doi.org/10.1186/s12951-019-0526-7
90. Patras L., Ionescu A. E., Munteanu C., Hajdu R., Kosa A., Porfire A., Licarete E., Rauca V. F., Sesarman A., Luput L., Bulzu P., Chiroi P., Tranca R.A., Meszaros M. S., Negrea G., Barbu-Tudoran L., Potara M., Szedlacsek S., Banciu M. Trojan horse treatment based on PEG-coated extracellular vesicles to deliver doxorubicin to melanoma in vitro and in vivo . Cancer Biol Ther. 2022, 23 (1), 1–16. https://doi.org/10.1080/15384047.2021.2003656
91. Zhuang X., Teng Y., Samykutty A., Mu J., Deng Z., Zhang L., Cao P., Rong Y., Yan J., Miller D., Zhang H.G. Grapefruit-derived Nanovectors Delivering Therapeutic miR17 Through an Intranasal Route Inhibit Brain Tumor Progression. Mol Ther. 2016, 24 (1), 96–105. https://doi.org/10.1038/mt.2015.188
92. Tang Z., Jun Y., Lv Y., Li Y., Zhang Z., Tao M., Chen X., He J., Zhang L., Wang Q.L. Aptamerconjugated and doxorubicin-loaded grapefruit-derived nanovectors for targeted therapy against HER2+ breast cancer. J Drug Target. 2020, 28(2), 186–194. https://doi.org/10.1080/1061186X.2019.1624970
93. Wang Q., Ren Y., Mu J., Egilmez N. K., Zhuang X., Deng Z., Zhang L., Yan J., Miller D., Zhang H. G. Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites. Cancer Res. 2015, 75 (12), 2520–9. https://doi.org/10.1158/0008-5472.CAN-14-3095
94. Rosch J.G., Brown A.L., DuRoss A.N., DuRoss E.L., Sahay G., Sun C. Nanoalginates via Inverse- Micelle Synthesis: Doxorubicin- Encapsulation and Breast Cancer Cytotoxicity. Nanoscale Research Letters. 2018, 13 (1), 350. https://doi.org/10.1186/s11671-018-2748-2
95. A Review. Hosseini A., Sahebkar A. Reversal of Doxorubicin-induced Cardiotoxicity by Using Phytotherapy: J Pharmacopuncture. 2017, 20 (4), 243–256. DOI:
96. Yadav Y.C., Pattnaik S., Swain K. Curcumin loaded mesoporous silica nanoparticles: assessment of bioavailability and cardioprotective effect. Drug Dev Ind Pharm . 2019, 45 (12), 1889–1895. https://doi.org/10.1080/03639045.2019.1672717
97. Zeng C., Zhong P., Zhao Y., Kanchana K., Zhang Y., Khan Z. A., Chakrabarti S., Wu L., Wang J., Liang G. Curcumin protects hearts from FFA induced injury by activating Nrf2 and inactivating NF B both in vitro and in vivo. J Mol Cell Cardiol. 2015, 79, 1–12. https://doi.org/10.1016/j.yjmcc.2014.10.002
98. Sompar N., Kukongviriyapan V., Kukongviriyapan U., Senggunprai L., Prawan A. Protective Effects of Tetrahydrocurcumin and Curcumin against Doxorubicin and Cadmium-Induced Cytotoxicity in Chang Liver Cells. Tropical Journal of Pharmaceutical Research. 2015, 14 (5), 769–776. http://dx.doi.org/10.4314/tjpr.v14i5.4
99. Li W., Wu M., Tang L., Pan Y., Liu Z., Zeng C., Wang J., Wei T., Liang G. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2 activating anti oxidative activity. Toxicol Appl Pharmacol. 2015, 282 (2), 175–183. https://doi.org/10.1016/j.taap.2014.12.001
100. Yu X., Xieripu A., Xu Q., Zulipikaer A., Song Y., Cai L., Chen J. GSH-responsive curcumin/ doxorubicin encapsulated Bactrian camel serum albumin nanocomposites with synergistic effect against lung cancer cells. J Biomed Res. 2020, 34 (1), 54–66. https://doi.org/10.7555/JBR.33.20190036
101. Liu J., Movahedi F., Sun B., Sun L., Zhang B., Wang J., Li L., Xu Z.P. Immunostimulatory photochemotherapeutic nanocapsule for enhanced colon cancer treatment. Nanophotonics. 2021, 10 (12), 3321–3337. https://doi.org/10.1515/nanoph-2021-0202
102. Rastegar R., Akbari Javar H., Khoobi M., Dehghan Kelishadi P., Hossein Yousefi G., Doosti M., Hossien Ghahremani M., Shariftabrizi A., Imanparast F., Gholibeglu E., Gholami M. Evaluation of a novel biocompatible magnetic nanomedicine based on betacyclodextrin, loaded doxorubicin-curcumin for overcoming chemoresistance in breast cancer. Artif Cells Nanomed Biotechnol. 2018, 46 (sup2), 207–216. https://doi.org/10.1080/21691401.2018.1453829
103. Wang J., Wang H., Yan L., Hu Z., Wu X., Li F. Dual targeted and pH-responsive gold nanorods with improved chemotherapy and photothermal ablation for synergistic cancer treatment. RSC Adv. 2019, 9 (10), 5270–5281. DOI: https://doi.org/10.1039/C8RA09422E
104. Kucuksayan E., Kucuksayan A. S. Real-Time Detection of Doxorubicin-Induced Apoptosis in Breast Cancer Cells Using the Back Reflection Spectroscopy. East J Med. 2021, 26 (1), 128–134. https://doi.org/10.1039/C8RA09422E
105. Duro-Castano A., Movellan J., Vicent M. J. Smart branched polymer drug conjugates as nanosized drug delivery systems. Biomater. Sci., 2015, 3 (10), 1321–1334. https://doi.org/10.1039/C5BM00166H
106. Ren W., Tian G., Jian S., Gu Z., Zhou L., Yan L., Jin S., Yin W, Zhao Y. TWEEN coated NaYF4:Yb,Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery. RSC Adv. 2012, 2 (18), 7037–7041. doi: 10.1039/c2ra20855e. https://doi.org/10.1039/C2RA20855E
107. Yu X., Yu W., Han X., Chen Z., Wang S., Zhai H. Sensitive analysis of doxorubicin and curcumin by micellar electromagnetic chromatography with a double wavelength excitation source. Anal. Bioanal. Chem. 2021, 413 (2), 469–478. DOI: http://dx.doi.org/10.1007/s00216-020-03017-5
108. Charron D. M., Zheng G. Nanomedicine development guided by FRET imaging. Nano Today. 2018, 18, 124–136. https://doi.org/10.1039/c2ra20855e
109. Zhao G., Sun Y., Dong X. Zwitterionic Polymer Micelles with Dual Conjugation of Doxorubicin and Curcumin: Synergistically Enhanced Efficacy against Multidrug- Resistant Tumor Cells. Langmuir. 2020, 36 (9), 2383–2395. https://doi.org/10.1021/acs.langmuir.9b03722
110. Murugesan K., Srinivasan P., Mahadeva R., Gupta C.M., Haq W. Tuftsin-Bearing Liposomes Co-Encapsulated with Doxorubicin and Curcumin Efficiently Inhibit EAC Tumor Growth in Mice. International Journal of Nanomedicine. 2020, 15, 10547–10559. DOI https://doi.org/10.2147/IJN.S276336
111. Sheena T. S., Balaji P., Venkatesan R., Akbarsha M. A., Jeganathan K. Functional Evaluation of Doxorubicin Decorated Polymeric Liposomal Curcumin: A Surface Tailored Therapeutic Platform for Combination Chemotherapy. New J. Chem. 2018, 42 (20), 16608–16619. https://doi.org/10.1039/C8NJ02406E
112. Kim B., Seo B., Park S., Lee C., Kim J. O., Oh K. T., Lee. E. S., Choi H. G., Youn Y. S. Albumin nanoparticles with synergistic antitumor efficacy against metastatic lung cancers. Colloids and Surfaces B: Biointerfaces. 2017, 158, 157–166. https://doi.org/10.1016/j.colsurfb.2017.06.039
113. Datta R., Heaster T. M., Sharick J. T., Gillette A. A., Skala M. C. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J Biomed Opt. 2020, 25 (7), 1–43. 071203 https://doi.org/10.1117/1.JBO.25.7.071203
114. Ha P. T., Le T. T. H., Hoang T. M. N., Nguyen T. T., Nguyen D. T., Ha T. M. T., Pham T. B. H., Tran T. M. N., Nguyen T. Q., Pham H. N., Tran D. L., Nguyen X. P., Duong T. Q. Fe3O4_o-Carboxymethyl Chitosan_ Curcumin-based Nanodrug System for Chemotherapy and Fluorescence Imaging in HT29 Cancer Cell Line. Chem. Lett. 2011, 40 (11), 1264–1266. https://doi.org/10.1246/cl.2011.1264
115. Azizi M., Ghourchian H., Yazdian F., Bagherifam S., Bekhradnia S., Nyström B. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci Rep. 2017, 7 (1), 5178. https://www.nature.com/articles/s41598-017-05461-3
...