ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 6 , 2022
P. 36-54, Bibliography 154, Engl.
UDC: 004.9:612.822(045)
https://doi.org/10.15407/biotech15.06.036
Full text (PDF, in English)
STRUCTURAL AND FUNCTIONAL INTERDEPENDENCES OF BIOLOGICAL ORGANISMS IN EXTREME CONDITIONS
P.V. BELOSHITSKY 1, O.M.KLYUCHKO 2, Yu.M. ONOPCHUK 3
1 Tychyny Uman State Pedagogical University, Ukraine
2 National Aviation University, Kyiv, Ukraine
3 Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv,
Investigations of the adaptation of living organisms/human body to various extreme factors are extremely important.
Aim. To characterize and analyze the results of research of structural and functional interdependencies of organisms in extreme conditions.
Methods. Comparative analysis of the registered biochemical, physiological characteristics of the body, mathematical modelling of underlying mechanisms on their basis, information and computer technologies.
Results. Deviations of organisms’ functions during adaptation processes caused changes in some structures of organism. Significant role of quantitative and qualitative changes of the erythrocyte formation system in the reliability of organisms functioning in extreme conditions in highlands was confirmed. The changes in red and white blood cells reflected largely the relationships between the organisms’ reactivity and resistance. The dependences on degree of rarefaction of the air, mode of climbing, effects of athlete’s training, etc. were revealed. Adaptive hemolysis of erythrocytes, when the biologically active substances were released from blood cells and acted as messengers, were shown to be the triggers capable to change cell metabolism; they played significant roles in reliability of organisms functioning. The set of program models was developed. Results were applied successfully for training of athletes for high-altitude climbing.
Conclusions. Results of the studies on the structural and functional interdependencies of organisms in extreme conditions were reviewed and analyzed. Results of mathematical modeling coincided with the results obtained in experiments and observations. In the process of adaptation to hypoxia human organism behaved likes an ultrastable system. Obtained results can be applied in practice.
Key words: structural and functional interdependencies of organisms, theoretical analysis, comparative analysis, mathematical model, adaptation, hypoxic state.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1.Yuqin Qian, Jesse B. Brown, Tong Zhang, Zhi-Chao Huang-Fu, Yi Rao. In Situ Detection of Chemical Compositions at Nanodroplet Surfaces and In-Nanodroplet Phases. The Journal of Physical Chemistry A. 2022, 126 (23), 3758–3764. https://doi.org/10.1021/acs.jpca.2c03346
2. Samuel Okyem, Olatunde Awotunde, Tosin Ogunlusi, McKenzie B. Riley, Jeremy D. Driskell. High-Affinity Points of Interaction on Antibody Allow Synthesis of Stable and Highly Functional Antibody–Gold Nanoparticle Conjugates. Bioconjugate Chemistry. 2021, 32 (8), 1753–1762. https://doi.org/10.1021/acs.bioconjchem.1c00261
3. Cristina De La Encarnacion Bermudez, Elahe Haddadi, Enrico Rampazzo, Luca Petrizza, Luca Prodi, Damiano Genovese. Core–Shell Pluronic-Organosilica Nanoparticles with Controlled Polarity and Oxygen Permeability. Langmuir. 2021, 37 (16), 4802–4809. https://doi.org/10.1021/acslangmuir.0c03531
4. Arghajit Pyne, Sourav Nandi, Meghna Ghosh, Trina Roy, Santanu Dhara, Nilmoni Sarkar. Denaturant-Mediated Modulation of the Formation and Drug Encapsulation Responses of Gold Nanoparticles. Langmuir. 2020, 36 (26), 7634–7647. https://doi.org/10.1021/acs.langmuir.0c01293
5. Logan M. Wilder, Whitney A. Fies, Charlie Rabin, Lauren J. Webb, Richard M. Crooks. Conjugation of an -Helical Peptide to the Surface of
Gold Nanoparticles. Langmuir. 2019, 35 (9), 3363-3371. https://doi.org/10.1021/acs.langmuir.9b00075
6. Basil Raju Karimadom, Haya Kornweitz. Mechanism of Producing Metallic Nanoparticles, with an Emphasis on Silver and Gold Nanoparticles, Using Bottom-Up Methods. Molecules. 2021, 26 (10), 2968. https://doi.org/10.3390/molecules26102968
7. Ioulia K. Mati, William Edwards, Domenico Marson, Edward J. Howe, Scott Stinson, Paola Posocco, Euan R. Kay. Probing Multiscale Factors Affecting the Reactivity of Nanoparticle-Bound Molecules. ACS Nano. 2021, 15 (5), 8295–8305. https://doi.org/10.1021/acsnano.0c09190
8. Manoranjan Arakha, Suman Jha. Nanoparticle. 2018, 1–36. https://doi.org/10.1007/978-3-319-73326-5_1
9. Ilaria Fratoddi. Hydrophobic and Hydrophilic Au and Ag Nanoparticles. Breakthroughs and Perspectives. Nanomaterials. 2018, 8 (1), 11. https://doi.org/10.3390/nano8010011
10. Vasumathi Velachi, Debdip Bhandary, Jayant K. Singh, M. Natália D. S. Cordeiro. Striped gold nanoparticles: New insights from molecular dynamics simulations. The Journal of Chemical Physics. 2016, 144 (24), 244710. https://doi.org/10.1063/1.4954980
11. Tushar Kanti Das, Narayan Ch. Das. Advances on catalytic reduction of 4-nitrophenol by nanostructured materials as benchmark reaction. International Nano Letters. 2022, 12 (3), 223–242. https://doi.org/10.1007/s40089-021-00362-w
12. Farid Kameche, Wajdi Heni, Siham Telitel, Loïc Vidal, Sylvie Marguet, Ludovic Douillard, Céline Fiorini-Debuisschert, Renaud Bachelot, Olivier Soppera. Probing Plasmon-Induced Chemical Mechanisms by Free-Radical Nanophotopolymerization. The Journal of Physical Chemistry C. 2021, 125 https://doi.org/10.1021/acs.jpcc.1c01693
(16), 8719–8731. https://doi.org/10.1021/cs.jpcc.1c01693
13. Logan M. Wilder, Paul R. Handali, Lauren J. Webb, Richard M. Crooks. Interactions between Oligoethylene Glycol-Capped AuNPs and Attached Peptides Control Peptide Structure. Bioconjugate Chemistry. 2020, 31(10), 2383–2391. https://doi.org/10.1021/acs.bioconjchem.0c00447
14. Rita La Spina, Valentina Spampinato, Douglas Gilliland, Isaac Ojea-Jimenez, Giacomo Ceccone. Influence of different cleaning processes on the surface chemistry of gold nanoparticles. Biointerphases. 2017, 12 (3), 031003. https://doi.org/10.1116/1.4994286
15. Tolstov A. L. Preparation, Structure, and Properties of Hybrid Polymer Composites Containing Silver Clusters and Nanoparticles. Theoretical and Experimental Chemistry. 2015, 51 (2), 74–95. https://doi.org/10.1007/s11237-015-9401-2
16. Marie-Isabelle Baraton. Surface Chemical Analysis of Nanoparticles for Industrial Applications. 2015, 499–536. https://doi.org/10.1002/9783527679195.ch24
17. Shan Xue, Pritam Guha, Qunhui Yuan, Wei Gan. In Situ Spectroscopic Probes for Structures and Processes at the Surface of Noble Metallic Nanoparticles. Particle & Particle Systems Characterization. 2021, 38 (5), 2000316. https://doi.org/10.1002/ppsc.202000316
18. Cinzia Giannini, Vaclav Holy, Liberato De Caro, Lorenzo Mino, Carlo Lamberti. Watching nanomaterials with X-ray eyes: Probing different length scales by combining scattering with spectroscopy. Progress in Materials Science. 2020, 112, 100667. https://doi.org/10.1016/jpmatsci.2020.100667
19. Sheril Ann Mathew, P. Praveena, S. Dhanavel, R. Manikandan, S. Senthilkumar, A. Stephen. Luminescent chitosan/carbon dots as an effective nano-drug carrier for neurodegenerative diseases. RSC Advances. 2020, 10 (41), 24386–24396. https://doi.org/10.1039/D0RA04599C
20. Kiran Mathew, V. S. Chaitanya Kolluru, Srinidhi Mula, Stephan N. Steinmann, Richard G. Hennig. Implicit self-consistent electrolyte model in plane-wave densityfunctional theory. The Journal of Chemical Physics. 2019, 151 (23), 234101. https://doi.org/10.1063/1.5132354
21. Kyubae Lee, Hanbyeol Shin, Kailash Chandra Gupta, Dong Yun Lee, Soo-Young Park, Inn-Kyu Kang. In vitro Dual Detection of GNPs Conjugated Rabbit IgG Using Anti-IgG Anchored Calcein Green Fluorescent LC Microdroplets. IEEE Sensors Journal. 2018, 1–1. https://doi.org/10.1109/JSEN.2018.2865017
22. Bahram Hemmateenejad, Afsaneh Safavi, Fatemeh Honarasa. Determination of nanoparticles concentration by multivariate curve resolution. Chemometrics and Intelligent Laboratory Systems. 2015, 141 , 88–93. https://doi.org/10.1016/j.chemolab.2014.12.004
23. Andreas Hennig, Paul M. Dietrich, Felix Hemmann, Thomas Thiele, Heike Borcherding, Angelika Hoffmann, Uwe Schedler, Christian Jäger, Ute Resch-
Genger, Wolfgang E. S. Unger. En route to traceable reference standards for surface group quantifications by XPS, NMR and fluorescence spectroscopy. The Analyst. 2015, 140 (6), 1804–1808. https://doi.org/10.1039/C4AN02248C
24. Yi-Xiang J. Wang, Xiao-Ming Zhu, Qi Liang, Christopher H. K. Cheng, Wei Wang, Ken Cham-Fai Leung. In Vivo Chemoembolization and Magnetic Resonance Imaging of Liver Tumors by Using Iron Oxide Nanoshell/Doxorubicin/Poly(vinyl alcohol) Hybrid Composites. Angewandte Chemie. 2014,
126 (19), 4912–4915. https://doi.org/10.1002/ange.201402144
25. Yi-Xiang J. Wang, Xiao-Ming Zhu, Qi Liang, Christopher H. K. Cheng, Wei Wang, Ken Cham-Fai Leung. In Vivo Chemoembolization and Magnetic Resonance Imaging of Liver Tumors by Using Iron Oxide Nanoshell/Doxorubicin/Poly(vinyl alcohol) Hybrid Composites. Angewandte Chemie International Edition. 2014, 53 (19), 4812–4815. https://doi.org/10.1002/anie.201402144
26. Manoranjan Arakha, Bairagi C. Mallick, Suman Jha. Magnetic Nanoparticle Interface with an Antimicrobial Propensity. 2019, 287–300. https://doi.org/10.1007/978-3-030-16439-3_15
27. Jessamyn A. Fairfield. Nanostructured Materials for Neural Electrical Interfaces. Advanced Functional Materials. 2018, 28 (12), 1701145. https://doi.org/10.1002/adfm.201701145
28. William Edwards, Nicolas Marro, Grace Turner, Euan R. Kay. Continuum tuning of nanoparticle interfacial properties by dynamic covalent exchange. Chemical Science. 2018, 9 (1), 125–133. https://doi.org/10.1039/C7SC03666C
29. Aristeidis Papagiannopoulos, Stergios Pispas. Mixed Protein/Polymer Nanostructures at Interfaces. 2016, 1–35. https://doi.org/10.1002/9781119242604.ch1
30. Zeynep Ekmekci, Krishnendu Saha, Daniel F. Moyano, Gulen Yesilbag Tonga, Hao Wang, Rubul Mout, Vincent M. Rotello. Probing the protein–nanoparticle interface: the role of aromatic substitution pattern on affinity. Supramolecular Chemistry. 2015, 27 (1–2), 123–126. https://doi.org/10.1080/10610278.2014.914627
31. Longhua Tang, Ying Wang, Jinghong Li. The graphene/nucleic acid nanobiointerface. Chemical Society Reviews. 2015, 44 (19), 6954–-6980. https://doi.org/10.1039/C4CS00519H
32. Demchenko A. P. Passive Support Materials for Fluorescence Sensors. 2020, 439–482. https://doi.org/10.1007/978-3-030-60155-3_11
33. Poonam Sashidhar, Mukul Kumar Dubey, Mandira Kochar. Sensing Soil Microbes and Interactions: How Can Nanomaterials Help?. 2019, 213–236. https://doi.org/10.1007/978-3-030-16534-5_11
34. Rashmita Das, A. J. Pattanayak, Sarat K. Swain. Polymer nanocomposites for sensor devices. 2018, 205–218. https://doi.org/10.1016/B978-0-08-102262-7.00007-6
35. Akash Gupta, Moumita Ray, Vincent M. Rotello. Multivalent Protein Recognition Using Synthetic Receptors. 2017, 229–261. https://doi.org/10.1002/9781119143505.ch10
36. Fratoddi I., A. Bearzotti, I. Venditti, C. Cametti, M.V. Russo. Role of nanostructured polymers on the improvement of electrical response-based relative humidity sensors. Sensors and Actuators B: Chemical. 2016, 225, 96–108. https://doi.org/10.1016/j.snb.2015.11.001
37. Demchenko A. P. Supramolecular Structures and Interfaces Designed for Sensing. 2015, 417–458. https://doi.org/10.1007/978-3-319-20780-3_9
38. Ning Li, Xiaodi Su, Yi Lu. Nanomaterialbased biosensors using dual transducing elements for solution phase detection. The Analyst. 2015, 140 (9), 2916–2943. https://doi.org/10.1039/C4AN02376E
39. Ning Li, Xiaodi Su, Yi Lu. Nanomaterialbased biosensors using dual transducing elements for solution phase detection. The Analyst. 2015, 140 (9), 2916–2943. https://doi.org/10.1039/C4AN02376E
40. Sumit Roy, Venkata Sai Sreyas Adury, Anish Rao, Soumendu Roy, Arnab Mukherjee, Pramod P. Pillai. Electrostatically Directed Long‐Range Self‐Assembly of Nucleotides with Cationic Nanoparticles To Form Multifunctional Bioplasmonic Networks. Angewandte Chemie. 2022, 134 (28). https://doi.org/10.1002/ange.202203924
41. Shouning Yang, Qiaoling Zhang, Huayan Yang, Haimei Shi, Aichun Dong, Li Wang, Shaoning Yu. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. International Journal of Biological Macromolecules. 2022, 206, 175–187. https://doi.org/10.1016/j.ijbiomac.2022.02.104
42. Sumit Roy, Venkata Sai Sreyas Adury, Anish Rao, Soumendu Roy, Arnab Mukherjee, Pramod P. Pillai. Electrostatically Directed Long-Range Self-Assembly of Nucleotides with Cationic Nanoparticles To Form Multifunctional Bioplasmonic Networks. Angewandte Chemie International Edition.
2022, 61 (28). https://doi.org/10.1002/anie.202203924
43. Shruti G. Bhatkalkar, Dinesh Kumar, Ahmad Ali, Shilpee Sachar. Influence of surfactants on biomolecular conjugation of magnetic nanoparticles. Journal of Biomolecular Structure and Dynamics. 2021, 1725, 1–13. https://doi.org/10.1080/07391102.2021.1977701
44. Daniel F. Moyano, Moumita Ray, Vincent M. Rotello. Nanoparticle–protein interactions: Water is the key. MRS Bulletin. 2014, 39 (12), 1069–1073. https://doi.org/10.1557/mrs.2014.255
45. Nikunjkumar R. Visaveliya, Johann Michael Köhler. Hierarchical Assemblies of Polymer Particles through Tailored Interfaces and Controllable Interfacial Interactions. Advanced Functional Materials. 2021, 31 (9), 2007407. https://doi.org/10.1002/adfm.202007407
46. Marta Pasquini, Guido Raos. Tunable interaction potentials and morphology of polymer–nanoparticle blends. The Journal of Chemical Physics. 2020, 152 (17), 174902. https://doi.org/10.1063/5.0004437
47. Huayan Yang, Meng Wang, Yanmin Zhang, Xiaoyang Liu, Shaoning Yu, Yuming Guo, Shouning Yang, Lin Yang. Detailed insight into the formation of protein corona: Conformational change, stability and aggregation. International Journal of Biological Macromolecules. 2019, 135, 1114–1122. https://doi.org/10.1016/j.ijbiomac.2019.06.014
48. Andrea Bortot, Serena Zanzoni, Mariapina D’Onofrio, Michael Assfalg. Specific Interaction Sites Determine Differential Adsorption of Protein Structural Isomers on Nanoparticle Surfaces. Chemistry — A European Journal. 2018, 24 (22), 5911–5919. https://doi.org/10.1002/chem.201705994
49. Jordi Piella, Neus G. Bastús, and Víctor Puntes. Size-Dependent Protein–Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona. Bioconjugate Chemistry. 2017, 28 (1), 88–97. https://doi.org/10.1021/acs.bioconjchem.6b00575
50. Markitan O. V., Vlasova N. N. Adsorp tion of Deoxyribonucleic Acid on Nanocrys talline Titanium and Cerium Dioxide Surfaces. Colloid Journal. 2021, 83 (4), 461–467. https://doi.org/10.1134/S1061933X21040050
51. Oren Cooper, Ehsan Eftekhari, James Carter, Brody Mallard, Jasreet Kaur, Milton J. Kiefel, Thomas Haselhorst, Qin Li, Joe Tiralongo. Fluorescent Carbon Dots Functionalized with Self-Assembled Glycan Monolayers for Probing Interactions across the Glyco-Interactome. ACS Applied Nano Materials. 2020, 3 (8), 7804–7817. https://doi.org/10.1021/acsanm.0c01277
52. Atanu Chakraborty, Chumki Dalal, Nikhil R. Jana. Colloidal Nanobioconjugate with Complementary Surface Chemistry for Cellular and Subcellular Targeting. Langmuir 2018, 34 (45), 13461–13471. https://doi.org/10.1021/acs.langmuir.8b00376
53. Krishnendu Saha, Mehran Rahimi, Mahdieh Yazdani, Sung Tae Kim, Daniel F. Moyano, Singyuk Hou, Ridhha Das, Rubul Mout, Farhad Rezaee, Morteza Mahmoudi, and Vincent M. Rotello. Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and
Protein Corona. ACS Nano. 2016, 10 (4), 4421–4430. https://doi.org/10.1021/acsnano.6b00053
54. Lucía Morillas-Becerril, Sebastian Franco-Ulloa, Ilaria Fortunati, Roberto Marotta, Xiaohuan Sun, Giordano Zanoni, Marco De Vivo, Fabrizio Mancin. Specific and nondisruptive interaction of guanidiumfunctionalized gold nanoparticles with neutral phospholipid bilayers. Communications Chemistry. 2021, 4 (1). https://doi.org/10.1038/s42004-021-00526-x
55. Wolak W., Kolomeisky A. B., Dudek M. R., Marć M., Najder-Kozdrowska L. Enhancing silica surface deprotonation by using magnetic nanoparticles as heating agents. Journal of Physics D: Applied Physics. 2019, 52 (46), 465001. https://doi.org/10.1088/1361-6463/ab39ff
56. Marcin Makowski, Ítala C. Silva, Constança Pais do Amaral, Sónia Gonçalves, Nuno C. Santos. Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery. Pharmaceutics. 2019, 11 (11), 588. https://doi.org/10.3390/pharmaceutics11110588
57. Eleftherios Halevas, Barbara Mavroidi, Claudia H. Swanson, Graham C. Smith, Alexandra Moschona, Spyros Hadjispyrou, Athanasios Salifoglou, Anastasia A. Pantazaki, Maria Pelecanou, George Litsardakis. Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential. Journal of Inorganic Biochemistry. 2019. 199, 110778. https://doi.org/10.1016/j.jinorgbio.2019.110778
58. Fabrizio Mancin, Leonard J. Prins, Federico Rastrelli, Paolo Scrimin. Monolayer-Protected Gold Nanoparticles for Molecular Sensing and Catalysis. 2019, 413–447. https://doi.org/10.1002/9783527814923.ch11
59. Sebastian Salassi, Ester Canepa, Riccardo Ferrando, Giulia Rossi. Anionic nanoparticlelipid membrane interactions: the protonation of anionic ligands at the membrane surface reduces membrane disruption. RSC Advances. 2019, 9 (25), 13992–13997. https://doi.org/10.1039/C9RA02462J
60. Vlasova N. N., Markitan O. V. Adsorption Complexes of Purine Nucleotides on a Titanium Dioxide Surface. Colloid Journal. 2019, 81 (1), 14–20. https://doi.org/10.1134/S1061933X19010149
61. Sulalit Bandyopadhyay, Birgitte H. McDonagh, Gurvinder Singh, Karthik Raghunathan, Axel Sandvig, Ioanna Sandvig, Jens-Petter Andreassen, Wilhelm
R. Glomm. Growing gold nanostructures for shape-selective cellular uptake. Nanoscale Research Letters. 2018, 13 (1) https://doi.org/10.1186/s11671-018-2662-7
62. Le N. D. B., S. Hou, G. Y. Tonga, H. A. Jerri, S. G. Elci, T. Mizuhara, V. Normand, D. Benczédi, R. W. Vachet, V. M. Rotello. Nanoparticle Probes for Quantifying Supramolecular Determinants of Biosurface Affinity. Particle & Particle Systems Characterization. 2017, 34 (10), 1700100. https://doi.org/10.1002/ppsc.201700100
63. Daiki Kobayashi, Yuya Ouchi, Masahiro Sadakane, Kei Unoura, Hideki Nabika. Structural Dependence of the Effects of Polyoxometalates on Liposome Collapse Activity. Chemistry Letters. 2017, 46 (4), 533–535. https://doi.org/10.1246/cl.161172
64. Xiaoning Li, Yi-Cheun Yeh, Karuna Giri, Rubul Mout, Ryan F. Landis, Y. S. Prakash, Vincent M. Rotello. Control of nanoparticle penetration into biofilms through surface design. Chemical Communications. 2015, 51 (2), 282–285. https://doi.org/10.1039/C4CC07737G
65. Bella B. Manshian, Daniel F. Moyano,Nikky Corthout, Sebastian Munck, Uwe Himmelreich, Vincent M. Rotello, Stefaan J. Soenen. High-content imaging and gene expression analysis to study cell–nanomaterial interactions: The effect of surface hydrophobicity. Biomaterials.2014, 35 (37), 9941–9950. https://doi.org/10.1016/j.biomaterials.2014.08.031
66. Reid C. Van Lehn, Alfredo Alexander-Katz. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations. Soft Matter. 2015, 11 (16), 3165–3175. https://doi.org/10.1039/C5SM00287G
67. Reid C. Van Lehn, Maria Ricci, Paulo H.J. Silva, Patrizia Andreozzi, Javier Reguera, Kislon Voïtchovsky, Francesco Stellacci, Alfredo Alexander-Katz. Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes. Nature Communications. 2014, 5 (1). https://doi.org/10.1038/ncomms5482
68. Gaurang Patel, Chayan Patra, S. P. Srinivas, Mamta Kumawat, P. N. Navya, Hemant Kumar Daima. Methods to evaluate the toxicity of engineered nanomaterials for biomedical applications: a review. Environmental Chemistry Letters. 2021, 19 (6), 4253–4274. https://doi.org/10.1007/s10311-021-01280-1
69. Jana Mikesova, Daria Miliaieva, Pavla Stenclova, Marek Kindermann, Tereza Vuckova, Marcela Madlikova, Milan Fabry, Vaclav Veverka, Jiri Schimer, Pavel Krejci, Stepan Stehlik, Petr Cigler. Nanodiamonds as traps for fibroblast growth factors: Parameters influencing the interaction.
Carbon. 2022, 195, 372–386. https://doi.org/10.1016/j.carbon.2022.04.017
70. Hussein Sabit, Mohamed Abdel-Hakeem, Tahsin Shoala, Shaimaa Abdel-Ghany, Mokhtar Mamdouh Abdel-Latif, Jawaher Almulhim, Mohamed Mansy. Nanocarriers: A Reliable Tool for the Delivery of Anticancer Drugs. Pharmaceutics. 2022, 14 (8), 1566. https://doi.org/10.3390/pharmaceutics14081566
71. Panchali Barman, Shweta Sharma, Avneet Saini. Improving the functionality of a nanomaterial by biological probes. 2022, 379–418. https://doi.org/10.1016/B978-0-323-89839-3.00008-7
72. Vlasova N. N., Markitan O. V. Adsorption of Amino Acids on a Titania Surface. Russian Journal of Physical Chemistry A. 2021, 95 (1), 207–212. https://doi.org/10.1134/S0036024421010325
73. Shantanu Bandopadhyay, Satish Manchanda, Akhilesh Chandra, Javed Ali, Pran Kishore Deb. Overview of different carrier systems for advanced drug delivery. 2020, 179–233. https://doi.org/10.1016/B978-0-12-814487-9.00005-3
74. Victoria Oluwaseun Fasiku, Shesan John Owonubi, Nyemaga Masanje Malima, Daniel Hassan, Neerish Revaprasadu. Metal Oxide Nanoparticles: A Welcome Development for Targeting Bacteria. 2020, 261–286. https://doi.org/10.1016/B978-0-12-820054-4.00015-X
75. Shreyasi Asthana, Zaved Hazarika, Parth Sarathi Nayak, Jyoti Roy, Anupam Nath Jha, Bibekanand Mallick, Suman Jha. Insulin adsorption onto zinc oxide nanoparticle mediates conformational rearrangement into amyloid-prone structure with enhanced cytotoxic propensity. Biochimica et Biophysica Acta (BBA) — General Subjects. 2019, 1863 (1), 153–166. https://doi.org/10.1016/j.bbagen.2018.10.004
76. Dong Yang, Jianzhong Ma, Chaohua Xue, Lixia Wang, Xue Wang. One-pot synthesis of poly (acrylic acid)-stabilized Fe3O4 nanocrystal clusters for the simultaneously qualitative and quantitative detection of biomarkers in lateral flow immunoassay. Journal of Pharmaceutical and Biomedical Analysis. 2018, 159, 119–126. https://doi.org/10.1016/j.jpba.2018.06.053
77. Daohui Zhao, Jian Zhou. Electrostaticsmediated α-chymotrypsin inhibition by functionalized single-walled carbon nanotubes. Physical Chemistry Chemical Physics. 2017, 19 (2), 986–995. https://doi.org/10.1039/C6CP04962A
78. Eduard Zenkevich, Christian von. Selected Applications of QDs and QD-Based Nanoassemblies. 2016, 245–294. https://doi.org/10.1201/9781315364544-6
79. Liubov Mitcova, Thierry Buffeteau, Gwénaëlle Le Bourdon, Odile Babot, Luc Vellutini, Karine Heuzé. Positive Dendritic Effect on Maleimide Surface Modification of Core-Shell (γ -Fe2O3 /Polymer) Nanoparticles for Bio-Immobilization. ChemistrySelect. 2016, 1 (14), 4350–4356. https://doi.org/10.1002/slct.201600764
80. Young-Kwan Kim, Ryan F. Landis, Shuaidong Huo, Chang Soo Kim, Richard W. Vachet, Vincent M. Rotello. Facile synthesis of cationic gold nanoparticles with controlled size and surface plasmon resonance. RSC Advances. 2016, 6 (94), 92007–92010. https://doi.org/10.1039/C6RA20419H
81. Delina Joseph, Shilpee Sachar, Nand Kishore, Sudeshna Chandra. Mechanistic insights into the interactions of magnetic nanoparticles with bovine serum albumin in presence of surfactants. Colloids and Surfaces B: Biointerfaces. 2015, 135, 596–603. https://doi.org/10.1016/j.colsurfb.2015.08.022
82. Shuai Zhang, Kazuhiko Nakano, Shu-liang Zhang, Hui-min Yu. Synthesis of dispersive iron or iron–silver nanoparticles on engineered capsid pVIII of M13 virus with electronegative terminal peptides. Journal of Nanoparticle Research. 2015, 17 (10). https://doi.org/10.1007/s11051-015-3221-0
83. Bedabrata Saha, Jiban Saikia, Gopal Das. Correlating enzyme density, conformation and activity on nanoparticle surfaces in highly functional bio-nanocomposites. The Analyst. 2015, 140 (2), 532–542. https://doi.org/10.1039/C4AN01639D
84. Megan Twomey, Tereza Vokatá, Manian Rajesh Kumar, Joong Ho Moon. Differential interactions of conjugated polymer nanoparticles with glycosaminoglycans in synthetic urine. Chemical Communications. 2015, 51 (19), 4065–4068. https://doi.org/10.1039/C5CC00110B
85. Kiran Mathew, Ravishankar Sundararaman, Kendra Letchworth-Weaver, T. A. Arias, Richard G. Hennig. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. The Journal of Chemical Physics. 2014, 140 (8), 084106. https://doi.org/10.1063/1.4865107
86. Bhuvnesh Bharti. Aggregation of Silica Nanoparticles Directed by Adsorption of Lysozyme. 2014, 81–102. https://doi.org/10.1007/978-3-319-07737-6_6
87. Rabia Javed, Muhammad Zia, Sania Naz, Samson O. Aisida, Noor ul Ain, Qiang Ao. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology. 2020, 18 (1) https://doi.org/10.1186/s12951-020-00704-4
88. Francisca Araújo, José das Neves, João Pedro Martins, Pedro L. Granja, Hélder A. Santos, Bruno Sarmento. Functionalized materials for multistage platforms in the oral delivery of biopharmaceuticals. Progress in Materials Science. 2017, 89, 306–344. https://doi.org/10.1016/j.pmatsci.2017.05.001
89. Antonio Di Martino, Olga A. Guselnikova, Marina E. Trusova, Pavel S. Postnikov, Vladimir Sedlarik. Organic-inorganic hybrid nanoparticles controlled delivery system for anticancer drugs. International Journal of Pharmaceutics. 2017, 526 (1–2), 380–390. https://doi.org/10.1016/j.ijpharm.2017.04.061
90. Ana P. Ramos, Marcos A. E. Cruz, Camila B. Tovani, Pietro Ciancaglini. Biomedical applications of nanotechnology. Biophysical Reviews. 2017, 9 (2), 79–89. https://doi.org/10.1007/s12551-016-0246-2
91. Munusamy Chamundeeswari, John Jeslin, Madan Lal Verma. Nanocarriers for drug delivery applications. Environmental Chemistry Letters. 2019, 17 (2), 849–865. https://doi.org/10.1007/s10311-018-00841-1
92. Vincent M Rotello. Organic chemistry meets polymers, nanoscience, therapeutics and diagnostics. Beilstein Journal of Organic Chemistry. 2016, 12, 1638–1646. https://doi.org/10.3762/bjoc.12.161
93. Roberto Cao-Milán, Luis M Liz-Marzán. Gold nanoparticle conjugates: recent advances toward clinical applications. Expert Opinion on Drug Delivery. 2014, 11 (5), 741–752. https://doi.org/10.1517/17425247.2014.891582
94. Gulen Yesilbag Tonga, Daniel F. Moyano, Chang Soo Kim, Vincent M. Rotello. Inorganic nanoparticles for therapeutic delivery: Trials, tribulations and promise. Current Opinion in Colloid & Interface Science. 2014, 19 (2), 49–55. https://doi.org/10.1016/j.cocis.2014.03.004
95. Gulen Yesilbag Tonga, Krishnendu Saha, Vincent M. Rotello. 25th Anniversary Article: Interfacing Nanoparticles and Biology: New Strategies for Biomedicine. Advanced Materials. 2014, 26 (3), 359–370. https://doi.org/10.1002/adma.201303001
96. Golzar Amiri, Mohammadreza Gholami, Vahideh Assadollahi, Afsaneh Nemati, Fardin Fathi, Tamana Rostami, Mohammad Raman Moloudi, Masoud Alasvand. Effect of Cerium Oxide Nanoparticles on the Expression of Developmental and Apoptosis Genes of Testicular Tissue in 6-Day-Old NMRI Mice
Fetuses. Biological Trace Element Research. 2022, 200 (7), 3265–3274. https://doi.org/10.1007/s12011-021-02939-0
97. Soumita Dutta, Trinath Chowdhury, Ananta Kumar Ghosh. Green synthesis of poly-L-lysine-coated sericin nanoparticles and their molecular size-dependent antibacterial activity. Colloids and Surfaces B:Biointerfaces. 2020, 188, 110822. https://doi.org/10.1016/j.colsurfb.2020.110822
98. Bablu Lal Rajak, Rahul Kumar, Manashjit Gogoi, Sanjukta Patra. Antimicrobial Activity of Nanomaterials. 2020, 147–185. https://doi.org/10.1007/978-3-030-29207-2_5
99. Cyrille Hamon, Malou Henriksen-Lacey, Andrea La Porta, Melania Rosique, Judith Langer, Leonardo Scarabelli, Ana Belén Serrano Montes, Guillermo González-Rubio, Marian M. de Pancorbo, Luis M. Liz-Marzán, Lourdes Basabe-Desmonts. Tunable Nanoparticle and Cell Assembly Using Combined Self-Powered Microfluidics and Microcontact Printing. Advanced Functional Materials. 2016, 26 (44), 8053–8061. https://doi.org/10.1002/adfm.201602225
100. Yvonne Sakka, Lars Michael Skjolding, Aiga Mackevica, Juliane Filser, Anders Baun. Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna. Aquatic Toxicology. 2016, 177, 526–535. https://doi.org/10.1016/j.aquatox.2016.06.025
101. Daniel F. Moyano, Yuanchang Liu, Furkan Ayaz, Singyuk Hou, Premsak Puangploy, Bradley Duncan, Barbara A. Osborne, Vincent M. Rotello. Immunomodulatory Effects of Coated Gold Nanoparticles in LPS-Stimulated In Vitro and In Vivo Murine Model Systems. Chem. 2016, 1 (2), 320–327. https://doi.org/10.1016/j.chempr.2016.07.007
102. Tsukasa Mizuhara, Daniel F. Moyano, Vincent M. Rotello. Using the power of organic synthesis for engineering the interactions of nanoparticles with
biological systems. Nano Today. 2016, 11 (1), 31–40. https://doi.org/10.1016/j.nantod.2015.11.002
103. Necla Mine Eren, Ganesan Narsimhan, Osvaldo H. Campanella. Protein adsorption induced bridging flocculation: the dominant entropic pathway for nano-biocomplexation. Nanoscale. 2016, 8 (6), 3326–3336. https://doi.org/10.1039/C5NR06179B
104. Akash Gupta, Ryan F. Landis, Vincent M. Rotello. Nanoparticle-Based Antimicrobials: Surface Functionality is Critical. F1000Research. 2016, 5, 364. https://doi.org/10.12688/f1000research.7595.1
105. Manoranjan Arakha, Mohammed Saleem, Bairagi C. Mallick, Suman Jha. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Scientific Reports. 2015, 5 (1). https://doi.org/10.1038/srep09578
106. Ye Tao, Zhaohong Mi, Sudheer Kumar Vanga, Ce-Belle Chen, Andrew A. Bettiol, Frank Watt. Variation in the uptake of nanoparticles by monolayer cultured cells using high resolution MeV ion beam imaging. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2015, 348, 143–146. https://doi.org/10.1016/j.nimb.2015.01.065
107. Ilaria Fiorentino, Roberto Gualtieri, Vincenza Barbato, Valentina Mollo, Sabrina Braun, Alberto Angrisani, Mimmo Turano, Maria Furia, Paolo A. Netti, Daniela Guarnieri, Sabato Fusco, Riccardo Talevi. Energy independent uptake and release of polystyrene nanoparticles in primary
mammalian cell cultures. Experimental Cell Research. 2015. 330 (2), 240–247. https://doi.org/10.1016/j.yexcr.2014.09.017
108. Pranjali Pranjali, Mukesh Kumar Meher, Ritu Raj, Narayan Prasad, Krishna Mohan Poluri, Dinesh Kumar, Anupam Guleria. Physicochemical and Antibacterial Properties of PEGylated Zinc Oxide Nanoparticles Dispersed in Peritoneal Dialysis Fluid. ACS Omega. 2019, 4 (21), 19255–19264. https://doi.org/10.1021/acsomega.9b02615
109. Hunt A.P., Lehnert N. Heme-Nitrosyls: Electronic Structure Implications for Function in Biology. Accounts of Chemical Research. 2015, 48 (7), 2117–2125. https://doi.org/10.1021/acs.accounts.5b00167
110. Xianzhi Zhang, Rui Huang, Sanjana Gopalakrishnan, Roberto Cao-Milán, Vincent M. Rotello. Bioorthogonal Nanozymes: Progress towards Therapeutic Applications. Trends in Chemistry. 2019, 1 (1), 90–98. https://doi.org/10.1016/j.trechm.2019.02.006
111. Huayan Yang, Meng Wang, Yanmin Zhang, Feng Li, Shaoning Yu, Lin Zhu, Yuming Guo, Lin Yang, Shouning Yang. Conformationaltransited
protein corona regulated cellmembrane penetration and induced cytotoxicity of ultrasmall Au nanoparticles. RSC Advances. 2019, 9 (8), 4435–4444.
https://doi.org/10.1039/C8RA10049G
112. Lukas Balek, Marcela Buchtova, Michaela Kunova Bosakova, Miroslav Varecha, Silvie Foldynova-Trantirkova, Iva Gudernova, Iva Vesela, Jan Havlik, Jitka Neburkova, Stuart Turner, Mateusz Adam Krzyscik, Malgorzata Zakrzewska, Lars Klimaschewski, Peter Claus, Lukas Trantirek, Petr Cigler, Pavel Krejci. Nanodiamonds as “artificial proteins”: Regulation of a cell signalling system using low nanomolar solutions of inorganic nanocrystals. Biomaterials. 2018, 176 106–121. https://doi.org/10.1016/j.biomaterials.2018.05.030
113. Giorgia Brancolini, Maria Celeste Maschio, Cristina Cantarutti, Alessandra Corazza, Federico Fogolari, Vittorio Bellotti, Stefano Corni, Gennaro Esposito. Citrate stabilized gold nanoparticles interfere with amyloid fibril formation: D76N and N6 2-microglobulin variants. Nanoscale. 2018, 10 (10), 4793–4806. https://doi.org/10.1039/C7NR06808E
114. Rafael del Caño, Lucia Mateus, Guadalupe Sánchez-Obrero, José Manuel Sevilla, Rafael Madueño, Manuel Blázquez, Teresa Pineda. Hemoglobin bioconjugates with surfaceprotected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties. Journal of
Colloid and Interface Science. 2017, 505, 1165–1171. https://doi.org/10.1016/j.jcis.2017.07.011
115. Shiyu Gan, Lijie Zhong, Dongxue Han, Li Niu, Qijin Chi. Probing Bio-Nano Interactions between Blood Proteins and Monolayer-Stabilized Graphene Sheets. Small. 2015, 11 (43), 5814–5825. https://doi.org/10.1002/smll.201501819
116. Li X., Coffield J.A. Structural and Functional Interactions between Transient Receptor Potential Vanilloid Subfamily1 and Botulinum Neurotoxin SerotypeA. PLoS ONE. 2016, 11(1) e0143024. https://doi.org/10.1371/journal.pone.0143024
117. Zisimopoulos S., Seidel M., Lai F., Zissimopoulos S. Structural and functional interactions within ryanodine receptor. Biochemical Society Transactions. 2015, 43 (3), 377–383. https://doi.org/10.1042/BST20140292
118. Samoshkin A., Convertino M., Viet C., Wieskopf J.S., Kambur O., Marcovitz J., Patel P., Stone L.S., Kalso E., Mogil J.S., Schmidt B.L., Maixner W., Dokholyan N.V., Diatchenko L. Structural and functional interactions between six-transmembrane μ-opioid receptors and 2-adrenoreceptors modulate opioid signaling. Sci Rep. 2016, 5, 18198. https://doi.org/10.1038/srep18198
119. Rui Tang, Daniel F. Moyano, Chandra moulees waran Subramani, Bo Yan, Eunhee Jeoung, Gülen Yesilbag Tonga, Bradley Duncan, Yi-Cheun Yeh, Ziwen Jiang, Chaekyu Kim, Vincent M. Rotello. Rapid Coating of Surfaces with Functionalized Nanoparticles for Regulation of Cell Behavior. Advanced Materials. 2014, 26 (20), 3310–3314. https://doi.org/10.1002/adma.201306030//
120. Jiachao Yu, Yuanjian Zhang, Songqin Liu. Enzymatic reactivity of glucose oxidase confined in nanochannels. Biosensors and Bioelectronics. 2014, 55, 307–312. https://doi.org/10.1016/j.bios.2013.12.042
121. Beloshitsky P., Klyuchko O., Onopchuk Yu. Results of medical and biological research of Ukrainian scientists at Elbrus. Bulletin of NAU. 2007, 2, 10–16 (In Ukrainian)
122. Beloshitsky P.V., Klyuchko O. M., Onopchuk Yu. M. Results of research of adaptation problems by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2008, 1, 102–108 (In Ukrainian)
123. Klyuchko O. M., Onopchuk Yu. M. Some trends in mathematical modeling for biotechnology. Biotechnologia Acta. 2018, 11(1), 39–57. https://doi.org/10.15407/biotech11.01.039
124. Beloshitsky P., Onopchuk Yu., Klyuchko O., Onopchuk G. Mathematic model for hypoxic states development for healthy people and ones with ischemic heart disease. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China), 2004. 5, 251.
125. Onopchuk Yu. M., Beloshitsky P. V., Onopchuk G. Yu. Mathematical modeling in the study of structural and functional changes in the organism during hypoxia // In book:Automated analysis of hypoxic conditions in healthy and sick people. Nalchik-Moscow: BY. 2005, 176.
126. Onopchuk Yu. M., Aralova N. I., Beloshitsky P. V., Klyuchko O. M. Mathematic models and integral estimation of organism systems reliability in extreme conditions. Electronics and Control Systems. 2015, 46(4), 109–115. https://doi.org/10.18372/1990-5548.46.9978
127. Klyuchko O.M. On the mathematical methods in biology and medicine. Biotechnologia Acta. 2017, 10(3), 31–40. https://doi.org/10.15407/biotech10.03.031
128. Klyuchko O. M. Information computer technologies for using in biotechnology: electronic medical information systems. Biotechnologia Acta. 2018, 11(3), 5–26. https://doi.org/10.15407/biotech11.03.005
129. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. O. Method of biosensor test system application. Patent UA 129923 U, G01N33/00, G01N33/50. November 26, 2018, Bull. 22. (In Ukrainian).
130. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. Method of application of biotechnical monitoring system with expert subsystem and biosensor. Patent UA 131863 U; G01N33/00, C12Q 1/02, C12N 15/00. February 11 2019, Bull. 3. (In Ukrainian).
131. Klyuchko O.M., Klyuchko Z.F. Electronic databases of Arthropods: methods and applications. Biotechnologia Acta. 2018, 11 (4), 28-49. https://doi.org/10.15407/biotech11.04.028
132. Klyuchko Z. F. Survey of moths (Lepidoptera: Noctuidae) of steppe reserves of Ukraine. Proceedings of Kharkov Entomological Society. 2002, 9(1–2), 114–122. (In Russian).
133. Klyuchko Z. F., Kononenko V. S., Mikkola K. Systematic list of moths (Lepidoptera, Noctuidae) of the Daurian Reserve. Insects of Dauria and adjacent territories. Collection of scientific papers. 1992, 1, 31–46.
134. Xiao Li, Meimei Bao, Yuyan Weng, Kai Yang, Weidong Zhang, Gaojian Chen. Glycopolymer-coated iron oxide nanoparticles: shape-controlled synthesis and cellular uptake. J. Mater. Chem. B 2014, 2 (34), 5569–5575. https://doi.org/10.1039/C4TB00852A
135. Kaimin Chen, Subinoy Rana, Daniel F. Moyano, Yisheng Xu, Xuhong Guo, Vincent M. Rotello. Optimizing the selective recognition of protein isoforms through tuning of nanoparticle hydrophobicity. Nanoscale. 2014, 6 (12), 6492. https://doi.org/10.1039/c4nr01085j
136. Jasmina C. Cheung-Lau, Dage Liu, Katherine W. Pulsipher, Weiren Liu, Ivan J. Dmochowski. Engineering a well-ordered, functional protein-gold nanoparticle assembly. Journal of Inorganic Biochemistry. 2014, 130, 59–68. https://doi.org/10.1016/j.jinorgbio.2013.10.003
137. Bhagwati Sharma, Sonam Mandani, Tridib K. Sarma. Biogenic Growth of Alloys and Core-Shell Nanostructures Using Urease as a Nanoreactor at Ambient Conditions. Scientific Reports. 2013, 3 (1) https://doi.org/10.1038/srep02601
138. Molecular Units. 2013, 1–108. https://doi.org/10.1002/9783527655267.ch1
139. Vismara E., Valerio A., Coletti A., Torri G., Bertini S., Eisele G., Gornati R., Bernardini G. Non-Covalent Synthesis of Metal Oxide Nanoparticle–Heparin Hybrid Systems: A New Approach to Bioactive Nanoparticles. International Journal of Molecular Sciences. 2013, 14 (7), 13463–13481.
https://doi.org/10.3390/ijms140713463
140. Demchenko A. P. Nanoparticles and nanocomposites for fluorescence sensing and imaging. Methods and Applications in Fluorescence. 2013, 1 (2), 022001. https://doi.org/10.1088/2050-6120/1/2/022001
141. Nakano T., Kikugawa Gota, Ohara Taku. Molecular Heat Transfer in Lipid Bilayers With Symmetric and Asymmetric Tail Chains. Journal of Heat
Transfer. 2013, 135 (6). https://doi.org/10.1115/1.4023572
142. Yunzhi Li, Zhen Yang, Na Hu, Rongfei Zhou, Xiangshu Chen. Insights into hydrogen bond dynamics at the interface of the charged monolayer-protected Au nanoparticle from molecular dynamics simulation. The Journal of Chemical Physics 2013, 138 (18), 184703. https://doi.org/10.1063/1.4803504
143. Doane T., Burda C. Nanoparticle mediated non-covalent drug delivery. Advanced Drug Delivery Reviews 2013, 65 (5), 607–621. https://doi.org/10.1016/j.addr.2012.05.012
144. Moyano D. F, Rotello V. M. Gold nanoparticles: testbeds for engineered protein–particle interactions. Nanomedicine. 2014, 9 (13), 1905–1907.
https://doi.org/10.2217/nnm.14.114
145. Nath J., Nath R. K., Chakraborty A., Husain S. A. Monolayer characteristics of chitosan assembled in Langmuir films mixed with arachidic acid. Surface Review and Letters. 2014, 21 (04), 1450049. https://doi.org/10.1142/S0218625X14500498
146. Baumann J., Köser J., Arndt D., Filser J. The coating makes the difference: Acute effects of iron oxide nanoparticles on Daphnia magna. Science of The Total Environment. 2014, 484, 176–184. https://doi.org/10.1016/j.scitotenv.2014.03.023
147. Jolanta Bukowska, Piotr Piotrowski. Surface-enhanced Raman Scattering (SERS) in Bioscience: A Review of Application. 2014, 29–59. https://doi.org/10.1007/978-94-007-7832-0_3
148. Shang Zeng, Yu-ming M. Huang, Chia-en A. Chang, Wenwan Zhong. Protein binding for detection of small changes on a nanoparticle surface. The Analyst. 2014, 139 (6), 1364–1371. https://doi.org/10.1039/C3AN02155F
149. Demchenko A. P. Supramolecular Structures and Interfaces Designed for Sensing. 2015, 417-458. https://doi.org/10.1007/978-3-319-20780-3_9
150. Bedabrata Saha, Jiban Saikia, Gopal Das. Correlating enzyme density, conformation and activity on nanoparticle surfaces in highly functional bio-nanocomposites. The Analyst. 2015, 140 (2), 532–542. https://doi.org/10.1039/C4AN01639D
151. Longhua Tang, Ying Wang, Jinghong Li. The graphene/nucleic acid nanobiointerface. Chemical Society Reviews. 2015, 44 (19), 6954–6980. https://doi.org/10.1039/C4CS00519H
152. Megan Twomey, Tereza Vokatá, Manian Rajesh Kumar, Joong Ho Moon. Differential interactions of conjugated polymer nanoparticles with glycosaminoglycans in synthetic urine. Chemical Communications. 2015, 51 (19), 4065–4068. https://doi.org/10.1039/C5CC00110B
153. Reid C. Van Lehn, Alfredo Alexander-Katz. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations. Soft Matter. 2015, 11 (16), 3165–3175. https://doi.org/10.1039/C5SM00287G
154. Bella B. Manshian, Daniel F. Moyano, Nikky Corthout, Sebastian Munck, Uwe Himmelreich, Vincent M. Rotello, Stefaan J. Soenen. High-content imaging and gene expression analysis to study cell–nanomaterial interactions: The effect of surface hydrophobicity. Biomaterials.
2014, 35 (37), 9941–9950. https://doi.org/10.1016/j.biomaterials.2014.08.031
155. Samoshkin A., Convertino M., Viet C., Wieskopf J.S., Kambur O., Marcovitz J., Patel P., Stone L.S., Kalso E., Mogil J.S., Schmidt B.L., Maixner W., Dokholyan N.V., Diatchenko L. Structural and functional interactions between six-transmembrane μ-opioid receptors and 2-adrenoreceptors modulate opioid signaling. Sci Rep. 2016, 5, 18198. https://doi.org/10.1038/srep18198