ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 6 , 2021
P. 37-43, Bibliography 32, Engl.
UDC: 577.112.7: 612.115
https://doi.org/10.15407/biotech14.06.037
LIMITED PROTEOLYSIS OF FIBRINOGEN BY PROTEASE OF Gloydius halys halys SNAKE VENOM
Palladin Institute of Biochemistry of of the National Academy of Sciences of Ukraine, Kyiv
Aim. One of the approaches for studying structure and functions of proteins is their limited proteolysis. Proteolytic fragments of macromolecules can preserve the biological activity and can be used for the study of their structural and functional peculiarities. Thus, the characterization of new proteolytic enzymes and determination of the specificity of their action can be of interest for exploration. In the present work, we focused on the action of protease from the venom of Gloydius halys halys on fibrinogen, the crucial protein of blood coagulation system.
Methods. Products of fibrinogen hydrolysis by protease from the venom of G. halys halys were studied by SDS-PAGE electrophoresis and western-blot analysis using monoclonal antibodies ІІ-5 Сand 1-5A targeted to 20–78 and 549–610 fragments of fibrinogen Aα-chain. Molecular weights of hydrolytic products were determined using MALDI-TOF analysis on Voyager DE PRO (USA). Sequence of hydrolytic products were predicted by «Peptide Mass Calculator» soft ware.
Results. SDS-PAGE showed that protease from the venom of Gloydius halys halys initially cleaved Аα-chain of fibrinogen molecule. Western-blot analysis confirmed that this protease specifically cleaves off fragment of C-terminal parts of Аα-chain with apparent molecular weight of 22 kDa. Cleaved fragment was identified by MALDI-TOF analysis as the 21.1 kDa polypeptide. "Peptide Mass Calculator" predicted that such a fragment corresponded to Аα414-610 residue of fibrinogen molecule. Thus, we showed that studied protease cleaved peptide bond AαK413-L414 with the formation of stable partly hydrolyzed fibrinogen desAα414-610.
Conclusions. The use of protease from the venom of Gloydius halys halys would allow obtaining the unique partly hydrolyzed fibrinogen des Aα414–610 that is suitable for the study of structure and functions of fibrinogen αС-regions.
Key words: fibrinogen, limited proteolysis, protease, fibrin polymerization, hemostasis.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Stohnii Y. M., Ryzhykova M. V., Rebriev A. V., Kuchma M. D., Marunych R. Y., Chernyshenko V. O., Shablii V. A., Lypova N. M., Slominskyi O. Yu., Garmanchuk L. V., Platonova T. M., Komisarenko S. V. Aggregation of platelets, proliferation of endothelial cell sandmotility of cancer cell sare mediated by the B?1(15)-42 residue of fibrin (ogen). Ukr. Biochem. J. 2020, 92 (2), 72?84. https://doi.org/10.15407/ubj92.02.072
2. Ko?odziejczyk J., Ponczek M. B. Therole of fibrinogen, fibrin and fibrin (ogen) degradation products (FDPs) intumor progression. Contemp. Oncol. (Pozn). 2013, 17 (2), 113–119. https://doi.org/10.5114/wo.2013.34611
3. Frangieh J., Rima M., Fajloun Z., Henrion D., Sabatier J.-M., Legros C., Mattei C. Snake Venom Components: Tools and Cures to Target Cardiovascular Diseases. Molecules. 2021, 26 (8), 2223. https://doi.org/10.3390/molecules26082223
4. Kai Huang, Wei Zhao, Yongxiang Gao, Wenqing Wei, Maikun Teng, Liwen Niu. Structure of saxthrombin, a thrombin-likeenzyme from Gloydius saxatilis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2011, 67 (8), 862–865. https://doi.org/10.1107/S1744309111022548
a href="/5.%20Cortelazzo%20A.,%20Guerranti%20R.,%20L.,%20Hope-Onyekwere%20N.,%20Muzzi%20C.,%20Leoncini%20R.,%20Pagani%20R.%20Effects%20of%20snake%20venom%20proteases%20on%20human%20fibrinogen%20chains.%20Blood%20Transfus.%202010,%208%20(3),%20120–125.%20https://doi.org/10.2450/2010.019S" " ">". Cortelazzo A., Guerranti R., L., Hope-Onyekwere N., Muzzi C., Leoncini R., Pagani R. Effects of snake venom proteases on human fibrinogen chains. Blood Transfus. 2010, 8 (3), 120–125. https://doi.org/10.2450/2010.019S
6. Kini R. M. Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem. J. 2006, 397 (Pt. 3), 377–387. https://doi.org/10.1042/BJ20060302
7. Lu Q., Clemetson J. M., Clemetson K. J. Snake venoms and hemostasis. J. Thromb. Haemost. 2005, V. 3, P. 1791–1799. https://doi.org/10.1016/s0041-0101(98)00126-3
8. Hornytskaia O. V., Platonova T. N., Volkov H. L. Enzymi zmeynikh yadov. Ukr. byokhym. zh. 2003, 75 (3), 22?32. https://doi.org/10.1111/j.1537-2995.2007.01171.x
9. Xiu-Xia Liang, Ying-Na Zhou, Jia-Shu Chen, Peng-Xin Qiu, Hui-Zhen Chen, Huan-Huan Sun, Yu-Ping Wu, Guang-Mei Yan. Enzymological Characterization of FII (a), a Fibrinolytic Enzyme From Agkistrodon Acutus Venom. Acta Pharmacol. Sin. 2005, 26 (12), 1474?1478.. https://doi.org/10.1111/j.1745-7254.2005.00204.x
10. Mel?ndez-Mart?nez D., Plenge-Tellechea L. F., Gatica-Colima A., Cruz-P?rez M. S., Aguilar-Y??ez J. M., Licona-Cassani C. Functional Mining of the Crotalus Spp. Venom Protease Repertoire Reveals Potential for Chronic Wound Therapeutics. Molecules. 2020, 25 (15), 3401. https://doi.org/10.3390/molecules25153401
11. Choo Hock Tan, Kae Yi Tan, Tzu Shan Ng, Evan S. H. Quah, Ahmad Khaldun Ismail, Sumana Khomvilai, Visith Sitprija, Nget Hong Tan. Venomics of Trimeresurus (Popeia) nebularis, the Cameron Highlands Pit Viper from Malaysia: Insights into Venom Proteome, Toxicity and Neutralization of Antivenom. Toxins (Basel). 2019, 11 (2), 95. https://doi.org/10.3390/toxins11020095
12. Huang J., Fan H., Yin X., Huang F. Isolation of a Novel Metalloproteinase from Agkistrodon Venom and Its Antithrombotic Activity Analysis. Int. J. Mol. Sci. 2019, 20 (17), 4088. https://doi.org/10.3390/ijms20174088
13. Senji Laxme R. R., Attarde S., Khochare S., Suranse V., Martin G., Casewell N. R., Whitaker R., Sunagar K. Biogeographical venom variation in the Indian spectacled cobra (Najanaja) underscores the pressing need for pan-India efficacious snakebite therapy. PLoS Negl. Trop. Dis. 2021, 15 (2), e0009150. https://doi.org/10.1371/journal.pntd.0009150
14. Yong-Hong Jia, Yang Jin, Qiu-Min L?, Dong-Sheng Li, Wan-Yu Wang, Yu-Liang Xiong. Jerdonase a novel serine protease with kinin-releasing and fibrinogenolytic activity from Trimeresurusjerdonii venom. Sheng wuhuaxueyu sheng wuwu li xuebao Acta Biochimica et Biophysica Sinica.2003, V. 35, P 689?694.
15. De-Simone S. G., Correa-Netto C., Antunes O. A. C., Alencastro R. B. De, Silva Jr. F. P. Biochemical and molecular modeling analysis of the ability of two p-aminobenzamidine-based sorbents to selectively purify serine proteases (fibrinogenases) from snake venoms. J. Chromatogr. В Analyt. Technol. Biomed. Life Sci. 2005, 822 (1?2), 1?9. https://doi.org/10.1016/j.jchromb.2005.04.018
16. Suk-Ho Choi, Seung-Bae Lee. Isolation from Gloydius blomhoffii siniticus Venom of a Fibrin(ogen)olytic Enzyme Consisting of Two Heterogenous Polypeptides. J. Pharmacopuncture. 2013, 16 (2), 46–54. https://doi.org/10.3831/KPI.2013.16.010
17. He J., Chen S., Gu J. Identification and characterization of Harobin, anovel fibrino(geno)lytic serine protease from a sea snake (Lapemis hardwickii). FEBS Lett. 2007, 581 (16), 2965?2973. https://doi.org/10.1016/j.febslet.2007.05.047
18. Tarek Mohamed Abd El-Aziz, Antonio Garcia Soares, James D. Stockand. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins (Basel). 2019, 11 (10), 564. https://doi.org/10.3390/toxins11100564
19. Lu Q., Clemetson J. M., Clemetson K. J. Snake venoms and hemostasis. J. Thromb. Haemost. 2005, V. 3, P. 1791–1799. https://doi.org/10.1111/j.1538-7836.2005.01358.x
20. Ghorbanpur M., Zare A., Mirakabadi F., Zokaee H., Zolfagarrian H. Rabiei. Purification and partial characterization of a coagulant serine protease from the venom of the Iranian snake Agkistrodon halys. J. Venom. Anim. Toxinsincl. Trop. 2009, 15 (3). https://doi.org/10.1590/S1678-91992009000300005
21. Gornitskaia O. V., Rovinskaya I. N., Platonova T. N. Purification and characterization of the fibrinolytic enzyme from Agkistrodon halys halys venom. Ukr. Biokhim. Zh. (1999). 2002, 74 (3), 42?49. (Russian). PMID: 12916236
22. Varetskaia V. Preparation of a fibrin monomer and studies on some of its properties. Ukr. Biokhim. Zh. 1965, 37 (2), 194?206. https://doi.org/10.15360/1813-9779-2012-1-52
23. Urvant L. P., Makogonenko Е. М., Pozniak Т. А., Pydiura N. А., Kolesnikova I. N., Tsap P. Y., Bereznitzkiy G. К., Lugovskoy E. V., Komisarenko S. V. Binding of mAb II-5c to A?20–78 fragment of fibrinogen inhibits a neoantigenic determinant exposure within B?126–135 site of a molecule. Reports of NAS. 2014, V. 5, P. 149?156. https://doi.org/10.15407/dopovidi2014.05.149
24. Lugovska N. E., Kolesnikova I. M., Stohnii Ye. M., Chernyshenko V. O., Rebriev A. V., Kostiuchenko O. P., Gogolinska G. K., Dziubliuk N. A., Varbanets L. D., Platonova T. M., Komisarenko S. V. Novel monoclonal antibody to fibrin(ogen) ?C-region for detection of the earliest forms of soluble fibrin. Ukr. Biochem. J. 2020, 92 (3), 58?70. https://doi.org/10.15407/ubj92.03.058
25. Laemli R. V. Cleavage of structural poteins during of bacteriophage T4. Nature. 1970, V. 227, P. 680?685. https://doi.org/10.1038/227680a0
26. Chapman J. R. Mass Spectrometry of Proteins and Peptides. Methods in Molecular Biology. 2000, V. 146, P. 554. https://doi.org/10.1385/1592590454
27. Lugovskoi E. V., Makogonenko E. M., Komisarenko S. V. Molecular mechanisms of formation and degradation of fibrin. Kyiv: Naukova dumka. 2013, 230p.
28. Tsurupa G., Mahid A., Veklich Y., Weisel J. W., Medved L. Structure, Stability, and Interaction of Fibrin ?C-Domain Polymers. Biochemistry. 2011, V. 50, P. 8028?8037. https://doi.org/10.1021/bi2008189
29. John W. Weisel, Rustem I. Litvinov. Fibrin Formation, Structure and Properties. Subcell Biochem. 2017, V. 82, P. 405–456. https://doi.org/10.1007/978-3-319-49674-0_13
30. Wencel-Drake J. D., Boudignon-Proudhon C., Dieter M. G., Criss A. B, Leslie V. Parise. Internalization of bound fibrinogen modulates platelet aggregation. Blood. 1996, 87 (2), 602?612. https://doi.org/10.1182/blood.V87.2.602.bloodjournal872602
31. Yakovlev S., Mikhailenko I., Tsurupa G., Belkin A. M., Medved L. Polymerization of fibrin ?C-domains promotes endothelial cell migration and proliferation. Thromb. Haemost. 2014, 112 (6), 1244?1251. https://doi.org/10.1160/TH14-01-0079
32. Tsurupa G., Hantgan R. R., Burton R. A., Pechik I., Tjandra N., Medved L. Structure, Stability, and Interaction of the Fibrin(ogen) ?C-Domains. Biochemistry. 2009, 48 (51), 12191–12201. https://doi.org/10.1021/bi901640e