ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 6 , 2021
P. 23-36, Bibliography 87, Engl.
UDC: 577.112.7: 612.115
https://doi.org/10.15407/biotech14.06.023
Sinorhizobium meliloti AS A PERSPECTIVE OBJECT FOR MODERN BIOTECHNOLOGY
Pirhanov G.G., Zhernossekov D.D.
Vitebsk State University named after P.M. Masherov, Belarus
Sinorhizobium meliloti is a Gram-negative soil nitrogen-fixing bacterium that increases the yield of legumes. There is information in the literature about the complete genome sequence of this bacterium, in addition, the polysaccharide composition of the biofilm, which is actively involved in nitrogen fixation, has been studied. The well-known nucleotide sequence, as well as the genetic and biochemical features of S. meliloti make this organism an ideal model for biotechnological research. The purpose of this work was to analyze the current data provided in the literature on the symbiotic interaction of Sinorhizobium meliloti with the host plant, and to characterize the main directions of the use of this bacterium in agriculture, bioremediation and medicine.
Key words: Sinorhizobium meliloti, symbiosis, biotechnology.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Canfield D. E., Glazerand A. N., Falkowski P. G. The Evolution and Future of Earth’s Nitrogen Cycle. Science. 2010, 330 (6001), 192–196. https://doi.org/10.1126/science.1186120
2. Zheng M., Zhou Z., Luo Y., Zhao P., Mo J. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: A meta-analysis. Global Change Biol. 2019, 25 (9), 3018–3030. https://doi.org/10.1111/gcb.14705
3. Hansen B., Thorling L., Schullehner J., Termansen M., Dalgaard T. Groundwater nitrate response to sustainable nitrogen management. Sci. Rep. 2017, 7 (8566), 1–12. https://doi.org/10.1038/s41598-017-07147-2
4. Geddes B. A., Kearsley J., Huang J., Zamani M., Muhammed Z., Sather L., Panchal A. K, di Cenzo G. S., Finan T. M. Minimal gene set from Sinorhizobium (Ensifer) meliloti pSymA required for efficient symbiosis with Medicago. PNAS (Proceeding National Academy of Science). 2021, 118 (2), 1–10. https://doi.org/10.1073/pnas.2018015118
5. Chen H., Higgins J., Oresnik I. J., Hynes M. F., Natera S., Djordjevic M. A., Weinman J. J., Rolfe B. G. Proteome analysis demonstrates complex replicon and luteolin interactions in pSymA cured derivatives of Sinorhizobium meliloti strain 2011. Electrophoresis. 2001, 21 (17), 3833–3842. https://doi.org/10.1002/1522-2683(200011)21:17<3833::AID-ELPS3833>3.0.CO;2-I
6. Finan T. M., Weidner S., Wong K., Buhrmester J., Chain P., Vorh?lter F. J., Hernandez-Lucas I., Becker A., Cowie A., Gouzy J., Golding B., P?hler A. The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. PNAS. 2001, 98 (17), 9889–9894. https://doi.org/10.1073/pnas.161294698
7. Primo E., Bogino P., Cossovich S., Foresto E., Nievas F., Giordano W. Exopolysaccharide II Is Relevant for the Survival of Sinorhizobium meliloti under Water Deficiency and Salinity Stress. Molecules. 2020, 25 (21), 4876. https://doi.org/10.3390/molecules25214876
8. Szewczuk-Karpisz K., Tomczyk A., Komaniecka I., Choma A., Adamczuk A., Sofi?ska-Chmiel W. Impact of Sinorhizobium meliloti Exopolysaccharide on Adsorption and Aggregation in the Copper(II) Ions/Supporting Electrolyte/Kaolinite System. Materials (Basel). 2021, 14 (8), 1950. Published 2021 Apr 13. https://doi.org/10.3390/ma14081950
9. Pirog T. P., Ivakhniuk M. O., Voronenko A. A. Exopolysaccharides synthesis on industrial waste. Biotechnol. acta. 2016, 9 (2), 7–18. https://doi.org/10.15407/biotech9.02.007
10. Liu C.-W., Murray J. D. The role of flavonoids in nodulation host-range specificity: An update. Plants (Basel). 2016, 5 (3), 1–13. https://doi.org/10.3390/plants5030033
11. Compton K. K., Hildreth S. B., Helm R. F., Scharf B. E. An updated perspective on Sinorhizobium meliloti chemotaxis to alphalpha flavonoids. Front. Microbiol. 2020. https://doi.org/10.3389/fmicb.2020.581482
12. Katherine E., Kobayashi H., Walker C. G. Molecular Determinants of a Symbiotic Chronic Infection. Annu. Rev. Genet. 2008, V. 42, P. 413–441. https://doi.org/10.1146/annurev.genet.42.110807.091427
13. Oldroyd G. E., Downie J. A. Calcium, kinases and nodulation signalling in legumes. Nature Rev. Mol. Cell Biol. 2004, V. 5, P. 566–576. https://doi.org/10.1038/nrm1424
14. D’Haeze W., Holsters M. Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology. 2002, V. 12, P. 79–105. https://doi.org/10.1093/glycob/12.6.79r
15. Cangioli L., Checcucci A., Mengoni A., Fagorzi C. Legume tasters: symbiotic rhizobia host preference and smart inoculant formulations. Biological Communications. 2021, 66 (1), 47–54. https://doi.org/10.21638/spbu03.2021.106
16. Wais R. J., Keating D. H., Long S. R. Structure-function analysis of nod factor-induced root hair calcium spiking in Rhizobium-legume symbiosis. Plant Physiol. 2002, V. 129, P. 211–224. https://doi.org/10.1104/pp.010690
17. Baaziz H., Compton K. K., Hildreth B. Sh., Helm R. F., Scharf B. E. McpT, a Broad-Range Carboxylate Chemoreceptor in Sinorhizobium meliloti. J. Bacteriol. 2021, 203 (17). https://doi.org/10.1128/JB.00216-21
18. Qiu L., Lin J. S., Xu J., Sato S., Parniske M., Wang T. L., Downie J. A., Xie F. SCARN a novel class of SCAR protein that is required for root-hair infection during legume nodulation. PLoS Genet. 2015, V. 11, P. 1–27. https://doi.org/10.1371/journal.pgen.1005623
19. Gage D. J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 2004, V. 68, P. 280–300. https://doi.org/10.1128/MMBR.68.2.280-300.2004
20. Limpens E., Franken C., Smit P., Willemse J., Bisseling T., Geurts R. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science. 2003, 302, 630–633. https://doi.org/10.1126/science.1090074
21. Arthikala M.-K., Montiel J., S?nchez-L?pez R., Nava N., C?rdenas L., Quinto C. Respiratory Burst Oxidase Homolog Gene A is crucial for rhizobium infection and nodule maturation and function in common bean. Front. Plant Sci. 2017, V. 8, P. 1–15. https://doi.org/10.3389/fpls.2017.02003
22. Kawaharada Y., Kelly S., Nielsen M. W., Hjuler C., Gysel K., Muszynski A. Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature. 2015, V. 523, P. 308–312
23. Mithofer A. Suppression of plant defence in rhizobia–legume symbiosis. Trends Plant Sci. 2002, V. 7, P. 440–444. https://doi.org/10.1016/s1360-1385(02)02336-1
24. Zhang X. S., Cheng H. P. Identification of Sinorhizobium meliloti early symbiotic genes by use of a positive functional screen. Appl. Environ. Microbiol. 2006, V. 72, P. 2738–2748. https://doi.org/10.1128/AEM.72.4.2738-2748.2006
25. Liu H., Zhang C., Yang J., Yu N., Wang E. Hormone modulation of legume-rhizobial symbiosis. J. Integr. Plant Biol. 2018, V. 60, P. 632–648. https://doi.org/10.1111/jipb.12653
26. Held M., Hou H., Miri M., Huynh C., Ross L., Hossain M. S., Sato S., Tabata S., Perry J., Wang T. L., Szczyglowski K. Lotus japonicus cytokinin receptors work partially redundantly to mediate nodule formation. Plant Cell. 2014, V. 26, P. 678–694. https://doi.org/10.1105/tpc.113.119362
27. Reid D. E., Heckmann A. B., Nov?k O., Kelly S., Stougaard J. Cytokinin oxidase/dehydrogenase3 maintains cytokinin homeostasis during root and nodule development in Lotus japonicus. Plant Physiol. 2016, V. 170, P. 1060–1074. https://doi.org/10.1104/pp.15.00650
28. Gonzalez-Rizzo S., Crespi M., Frugier F. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell. 2006, V. 18, P. 2680–2693. https://doi.org/10.1105/tpc.106.043778
29. Di Cenzo G. C., Zamani M., Checcucci A., Fondi M., Griffitts J. S., Finan T. M., Mengoni A. Multidisciplinary approaches for studying rhizobium–legumesymbioses. Canad. J. Microbiol. 2019, 65 (1), 1–33. https://doi.org/10.1139/cjm-2018-0377
30. Catalano C. M., Czymmek K. J., Gann J. G., Sherrier D. J. Medicago truncatula syntaxin SYP132 defines the symbiosome membrane and infection droplet membrane in root nodules. Planta. 2006, V. 225, P. 541–550. https://doi.org/10.1007/s00425-006-0369-y
31. Ferguson G. P., Datta A., Baumgartner J., Roop R. M., Carlson R. W., Walker G. C. Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc. Natl. Acad. Sci. USA. 2004, V. 101, P. 5012–5017. https://doi.org/10.1073/pnas.0307137101
32. Mergaert P., Uchiumi T., Alunni B., Evanno G., Cheron A., Catrice O., Mausset A. E., Barloy-Hubler F., Galibert F., Kondorosi A., Kondorosi E. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium– legume symbiosis. Proc. Natl. Acad. Sci. USA. 2006, V. 103, P. 5230–5235. https://doi.org/10.1073/pnas.0600912103
33. Yuan Z. C., Zaheer R., Finan T. M. Regulation and properties of PstSCAB, a high-affinity, high-velocity phosphate transport system of Sinorhizobium meliloti. J. Bacteriol. 2006, V. 188, P. 1089–1102. https://doi.org/10.1128/JB.188.3.1089-1102.2006
34. Ferguson G. P., Datta A., Baumgartner J., Roop R. M, Carlson R. W., Walker G. C. Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc. Nat. Acad. Sci. USA. 2004, 101 (14), 5012–5017. https://doi.org/10.1073/pnas.0307137101. PMID: 15044696; PMCID: PMC387365
35. Kaku H., Nishizawa Y., Ishii-Minami N., Akimoto-Tomiyama C., Dohmae N., Takio K., Minami E., Shibuya N. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. USA. 2006, V. 103, P. 11086–11091. https://doi.org/10.1073/pnas.0508882103
36. Abramovitch R. B., Anderson J. C., Martin G. B. Bacterial elicitation and evasion of plant innate immunity. Nature Rev. Mol. Cell Biol. 2006, V. 7, P. 601–611. https://doi.org/10.1038/nrm1984
37. Zipfel C., Oldroyd G. E. Plant sign alling in symbiosis and immunity. Nature. 2017, V. 543, P. 328–336. https://doi.org/10.1038/nature22009
38. Cao Y., Halane M. K., Gassmann W., Stacey G. The role of plant innate immunity in the legume-rhizobium symbiosis. Annu. Rev. Plant Biol. 2017, V. 68, P. 535–561. https://doi.org/10.1146/annurev-arplant-042916-041030
39. Benedict A. B., Ghosh P., Scott S. M., Griffitts J. S. A conserved rhizobial peptidase that interacts with host-derived symbiotic peptides. Sci. Rep. 2021, 11 (1), 1–11. https://doi.org/10.1038/s41598-021-91394-x. PMID: 34083727
40. Horv?th B., Domonkos ?., Kereszt A., Sz?cs A., ?brah?m E., Ayaydin F., B?ka K., Chen Y., Chen R., Murray J. D., Udvardi M. K., Kondorosi ?., Kal? P. Loss of the nodule-specifc cysteine rich peptide, ncr169, abolishes symbiotic nitrogen fxation in the medicago truncatula dnf7 mutant. Proc. Natl. Acad. Sci. USA. 2015, V. 112, P. 15232–15237. https://doi.org/10.1073/pnas.1500777112
41. Yang S., Wang Q., Fedorova E., Liu J., Qin Q., Zheng Q., Price P. A., Pan H., Wang D., Griffitts J. S., Bisseling T., Zhu H. Microsymbiont discrimination mediated by a host-secreted peptide in Medicago truncatula. Proc. Natl. Acad. Sci. USA. 2017, V. 114, P. 6848–6853. https://doi.org/10.1073/pnas.1700460114
42. Basile L. A., Lepek V. C. Legume–rhizobium dance: an agricultural tool that could be improved? Microbial. Biotechnol. 2021, 14 (5), 1897–1917. https://doi.org/10.1111/1751-7915.13906
43. Tellstr?m V., Usadel B., Thimm O., Stitt M., K?ster H., Niehaus K. The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiol. 2007, V. 143, P. 825–837. https://doi.org/10.1104/pp.106.090985
44. Wells D. H., Goularte N. F., Barnett M. J., Cegelski L., Long S. R. Identification of a Novel Pyruvyltransferase Using 13 C solid-state nuclear magnetic resonance to analyze rhizobial exopolysaccharides. J. Bacteriol. 2021, 203 (24). https://doi.org/10.1128/jb.00403-21
45. Hawkins J. P., Geddes B. A., Oresnik I. J. Succinoglycan production contributes to acidic pH tolerance in Sinorhizobium meliloti Rm1021. Mol. Plant-Microbe Interact. 2017, V. 30, P. 1009–1019
46. Bahlawane C., Baumgarth B., Serrania J., R?berg S., Becker A. Fine-tuning of galactoglucan biosynthesis in Sinorhizobium meliloti by differential WggR (ExpG)-, PhoB, and MucR-dependent regulation of two promoters. J. Bacteriol. 2008, V. 190, P. 3456–3466. https://doi.org/10.1128/JB.00062-08
47. Bahlawane C., McIntosh M., Krol E., Becker A. Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. Mol. Plant Microbe Interact. 2008, V. 21, P. 1498–1509. https://doi.org/10.1094/MPMI-21-11-1498
48. Jofre E., Becker A. Production of succinoglycan polymer in Sinorhizobium meliloti is affected by SMb21506 and requires the N-terminal domain of ExoP. Mol. Plant Microbe Interact. 2009, V. 22, P. 1656–1668. https://doi.org/10.1094/MPMI-22-12-1656
49. Sorroche F. G., Spesia M. B., Zorreguieta ?., Giordano W. A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl. Environ. Microbiol. 2012. AEM-07826. https://doi.org/10.1128/AEM.07826-11
50. Bogino P., Oliva M., Sorroche F., Giordano W. The role of bacterial biofilms and surface components in plant-bacterial associations. Int. J. Mol. Sci. 2013, 14 (8), 15838–15859. https://doi.org/10.3390/ijms140815838
51. Kelly S. J., Muszy?ski A., Kawaharada Y., Hubber A. M., Sullivan J. T., Sandal N., Carlson R. W., Stougaard J., Ronson C. W. Conditional requirement for exopolysaccharide in the Mesorhizobium–Lotus symbiosis. Mol. Plant Microbe Interactions. 2013, 26 (3), 9–329. https://doi.org/10.1094/MPMI-09-12-0227-R
52. Ivashina T. V., Ksenzenko V. N. Exopolysaccharide biosynthesis in Rhizobium leguminosarum: from genes to functions. In: Karunaratne D. N., editor. The Complex world of polysaccharides. In Tech, Rijeka, Croatia. 2012, P. 99–126. http://dx.doi.org/10.5772/51202
53. Kawaharada Y., Nielsen M. W., Kelly S., James E. K., Andersen K. R., Rasmussen S. R., F?chtbauer W., Madsen L. H., Heckmann A. B., Radutoiu S., Stougaard J. Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nature Commun. 2017, V. 8, P. 14534. https://doi.org/10.1038/ncomms14534
54. Jones K. M. Increased production of the exopolysaccharide succinoglycan enhances Sinorhizobium meliloti 1021 symbiosis with the host plant Medicago truncatula. J. Bacteriol. 2012, V. 194, P. 4322–4331. https://doi.org/10.1128/JB.00751-12
55. Pirhanov A., Goodwin R., Bridges Ch. Optogenetics in Sinorhizobium meliloti Enables Spatial Control of Exopolysaccharide Production and Biofilm Structure. ACS Synth. Biol. 2021, 10 (2), 345–356. https://doi.org/10.1021/acssynbio.0c00498: 345-346
56. Ghosh P. K., Maiti T. K. Structure of extracellular polysaccharides (EPS) produced by rhizobia and their functions in legume–bacteria symbiosis: – A Review. Achievements in the Life Sciences. 2016, 10 (2), 136–143. https://doi.org/10.1016/j.als.2016.11.003
57. Vershinina Z. R., Lavina A. M., Chubukova O. V. Exopolysaccharides of Rhizobium leguminosarum – an overview. Biomics. 2020. 12 (1). 27–49. https://doi.org/10.31301/2221-6197.bmcs.2020-3
58. Soumare A., Diedhiou A. G., Thuita M., Hafidi M., Ouhdouch Y., Gopalakrishnan S., Kouisni L. Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants. 2020, 9 (1011), 1–22. https://doi.org/10.3390/plants9081011
59. Ouma E. W., Asango A. M., Maingi J., Njeru E. M. Elucidating the potential of native rhizobial isolates to improve biological nitrogen fixation and growth of common bean and soybean in smallholder farming systems of Kenya. Int. J. Agron. 2016, P. 1–7. https://doi.org/10.1155/2016/4569241
60. Koskey G., Mburu S. W., Njeru E. M., Kimiti J. M., Omwoyo O., Maingi J. M. Potential of Native Rhizobia in Enhancing Nitrogen Fixation and Yields of Climbing Beans (Phaseolus vulgaris L.) in Contrasting Environments of Eastern Kenya. Front. Plant Sci. 2017, V. 8, P. 443. https://doi.org/10.3389/fpls.2017.00443
61. Douglas A. E., Werren J. H. Holes in the hologenome: Why host–microbe symbioses are not holobionts. MBio. 2016, V. 7, P. 15. https://doi.org/10.1128/mBio.02099-15
62. Wang Q., Liu J., Zhu H. Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions. Front. Plant Sci. 2018, V. 9, P. 313. https://doi.org/10.3389/fpls.2018.00313
63. Herrmann L., Atieno M., Brau L., Lesueur D. Microbial Quality of Commercial Inoculants to Increase BNF and Nutrient Use Efficiency. Biological Nitrogen Fixatio. 2015, P. 1031–1040. https://doi.org/10.1002/9781119053095.ch101
64. Ibragimova M. V. Symbiosis between the root-nodule bacterium Sinorhizobium meliloti and alfalfa (Medicago sativa) under salinization conditions. Microbiology. 2006, 75 (1), 77–81. https://doi.org/10.1134/S0026261706010140
65. Harris F., Dobbs J., Atkins D., Ippolito J. A., Stewart J. E. Soil fertility interactions with Sinorhizobium-legume symbiosis in a simulated Martian regolith; effects on nitrogen content and plant health. PLoS ONE. 2021, 16 (9), 1–13. https://doi.org/10.1371/journal.pone.0257053
66. Kong Z., Mohamad O. A., Deng Z., Liu X., Glick B. R., Wei G. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Environ. Sci. Pollut. Res. 2015, V. 22, P. 12479–12489. https://doi.org/10.1007/s11356-015-4530-7
67. Ma Y., Oliveira R. S., Freitas H., Zhang C. Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci. 2016, V. 7, P. 918. https://doi.org/10.3389/fpls.2016.00918
68. Li Z., Ma Z., Hao X., Rensing C., Wei G. Genes conferring copper resistance in Sinorhizobium meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper-contaminated soil. Appl. Environ. Microbiol. 2014, V. 80, P. 1961–1971. https://doi.org/10.1128/AEM.03381-13
69. Hou W., Ma Z., Sun L., Han M., Lu J., Li Z., Mohamad O. A., Wei G. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu2+. J. Hazard. Mater. 2013, V. 261, P. 614–620. https://doi.org/10.1016/j.jhazmat.2013.06.043
70. Lu M., Li Z., Liang J., Wei Y., Rensing C., Wei G. Zinc resistance mechanisms of P1B-type ATPases in Sinorhizobium meliloti CCNWSX0020. Sci. Rep. 2016, V. 6, P. 1–12. https://doi.org/10.1038/srep29355
71. Xie P., Hao X., Herzberg M., Luo Y., Nies D. H., Wei G. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in northwest mine tailings, China. J. Environ. Sci. 2015, V. 27, P. 179–187. https://doi.org/10.1016/j.jes.2014.07.017
72. Lu M., Jiao S., Gao E., Song X., Li Z. Transcriptome response to heavy metals in Sinorhizobium meliloti CCNWSX0020 reveals new metal resistance determinants that also promote bioremediation by Medicago lupulina in metal-contaminated soil. Appl. Environ. Microbiol. 2017, V. 83, P. 1244–1317. https://doi.org/10.1128/AEM.01244-17
73. Szewczuk-Karpisz K., Wi?niewska M., Pac M. Sinorhizobium meliloti 1021 Exopolysaccharide as a Flocculant Improving Chromium(III) Oxide Removal from Aqueous Solutions. Water Air Soil Pollut. 2014, V. 225, P. 2052. https://doi.org/10.1007/s11270-014-2052-4
74. Nocelli N., Bogino P. C., Banchio E., Giordano W. Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia. Materials. 2016, 9 (6), 418. https://doi.org/10.3390/ma9060418
75. Gupta P., Diwan B. Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. 2017, V. 13, P. 58–71. https://doi.org/10.1016/j.btre.2016.12.006
76. Sharma J. K., Gautam R. K., Nanekar S. V., Weber R., Singh B. K., Singh S. K., Juwarkar A. A. Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils. Environ. Sci. Pollut. Res. Int. 2018, 25 (17), 16355–16375. https://doi.org/10.1007/s11356-017-8995-4. PMID: 28488147; PMCID: PMC6360087
77. Mavzyutov A. R., Garafutdinov R. R., Gabdrakhmanova A. R., Salakhov I. M., Tupiyev I. D. Effect of Sinorhizobium meliloti lipopolysaccharide on blood cell composition in experiment. Pathological Physiology and Experimental Therapy, Russian journal. 2019, 63 (3), 20–28. https://doi.org/10.25557/0031-2991.2019.03.20-28 (In Russian.)
78. Halder U., Banerjee A., Bandopadhyay R. Structural and functional properties, biosynthesis, and patenting trends of Bacterial succinoglycan: A review. Indian J. Microbiol. 2017, V. 57, P. 278–284. https://doi.org/10.1007/s12088-017-0655-3
79. Banerjee A., Bandopadhyay R. Use of dextran nanoparticle: a paradigm shift in bacterial exopolysaccharide based biomedical applications. Int. J. Biol. Macromol. 2016, V. 87, P. 295–301. https://doi.org/10.1016/j.ijbiomac.2016.02.059
80. Yun D., Cho E., Dindulkar S. D., Jung S. Succinoglycan octasaccharide conjugated polydiacetylene-doped alginate beads for barium (II) detection. Macromol. Mater. Eng. 2016, V. 301, P. 805–811. https://doi.org/10.1002/mame.201600060
81. Jeong J. P., Kim Y., Hu Y., Jung S. Bacterial Succinoglycans: Structure, Physical Properties, and Applications. Polymers (Basel). 2022, 14 (2), 276. https://doi.org/10.3390/polym14020276. PMID: 35054683; PMCID: PMC8778030
82. Muratova A. Yu., Golubev S. N., Turkovskaya O. V. Shtamm bakterij Sinorhizobium meliloti P221, destruktor policiklicheskih aromaticheskih uglevodorodov i stimulyator rosta rastenij dlya povysheniya effektivnosti fitoremediacii. RF. Patent RU2406758C2. 2010. 12. 20.
83. Kozhemyakov A. P., Simarov B. V., Rumyanceva M. L., Onishuk O. P., Kurchak O. N., Laktionov Yu. V., Muntyan V. S. Shtamm klubenkovyh bakterij lyucerny Sinorhizobium meliloti – simbioticheskij azotofiksator dlya normalnyh i zasolyonnyh pochv. RF. Patent RU2593714C1. 2016. 08. 10.
84. Kozhemyakov A. P., Simarov B. V., Rumyanceva M. L., Onishuk O. P., Kurchak O. N., Laktionov Yu. V., Muntyan V. S. Shtamm klubenkovyh bakterij lyucerny Sinorhizobium meliloti AK55 ? simbioticheskij azotfiksator dlya razlichnyh agroklimaticheskih uslovij. RF. Patent RU2734944C2. 2020. 10. 26
85. Lakzian A. Adsorption capability of lead: nickel and zinc by Exopolysaccharide and dried cell of Ensifer meliloti. Asian J. Chem. 2008, V. 20, P. 6075–6080.
86. Kwon C.-H., Park B.-H., Kim H.-W., Jung S.-H. Green synthesis of silver nanoparticles by sinorhizobial octasaccharide isolated from Sinorhizobium meliloti. Bull. Korean Chem. Soc. 2009, V. 30, P. 1651–1654. https://doi.org/10.5012/bkcs.2009.30.7.1651
87. John R. P., Tyagi R. D., Brar S. K., Pre?vost D., Surampalli R. Y. Effect of emulsion formulation of Sinorhizobium meliloti and pre-inoculated seeds on alfalfa nodulation and growth: a pouch study. J. Plant Nutr. 2013, 36 (2), 231–242. https://doi.org/10.1007/s10526-015-9673-4