ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 6 , 2021
P. 5-22, Bibliography 143, Engl.
UDC: 577.112.7: 612.115
https://doi.org/10.15407/biotech14.06.005
MOLECULAR MECHANISMS OF INTRAVASCULAR INHIBITION AND STIMULATION OF EXTRAVASCULAR THROMBOSIS
Chernyshenko V. O, Lugovska N. E.
Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine
The hemostasis system is designed to maintain a balance between the processes of blood clotting, anticoagulation, as well as fibrinolysis, to ensure constant effective blood circulation in the body and rapid cessation of bleeding in the event of their occurrence. The procoagulant potential of the hemostasis system is based on molecular mechanisms that lead to the formation of fibrin in the bloodstream, which is the framework of the thrombus, and to the aggregation of platelets — the basis of the thrombus body. The anticoagulant potential of blood plasma is provided by mechanisms aimed at inhibiting blood coagulation processes.
Thorough study and understanding of these mechanisms will open up numerous treatments for pathologies associated with both intravascular thrombosis and bleeding of various origins. The purpose of this review is to analyze ways to prevent intravascular thrombosis and stimulate extravascular thrombosis. The review describes and analyzes available and promising means of thrombosis prevention, in particular, direct and indirect anticoagulants and antiplatelets, as well as methods of effective stimulation of thrombosis, which is necessary in case of vascular damage.
The result of this analysis is to determine the nodal points of the protein network of the hemostasis system, the action of which by specific molecular effectors will control the process of thrombosis.
Key words: anticoagulants, antiplatelets, activator, blood clotting, thrombosis.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Komisarenko S. V. Scientists’ pursuit for SARS-COV-2 coronavirus: strategies against pandemic. Ukr. Biochem. J. 2020, 92 (6), 5–52. https://doi.org/10.15407/ubj92.06.005
2. Kumar D. R., Hanlin E., Glurich I., Mazza J. J., Yale S. H. Virchow’s Contribution to the Understanding of Thrombosis and Cellular Biology. Clin. Med. Res. 2010, 8 (3–4), 168–172. https://doi.org/10.3121/cmr.2009.866
3. Shatzel J. J., O'Donnell M., Olson S. R., Kearney M. R., Daughety M. M., Hum J., Nguyen K. P., DeLoughery T. G. Venous thrombosis in unusual sites: A practical review for the hematologist. Eur. J. Haematol. 2019, 102 (1), 53–62. https://doi.org/10.1111/ejh.13177
4. O'Donnell M., Shatzel J. J., Olson S. R., Daughety M. M., Nguyen K. P., Hum J., DeLoughery T. G. Arterial thrombosis in unusual sites: A practical review. Eur. J. Haematol. 2018, 101 (6), 728–736. https://doi.org/10.1111/ejh.13165
5. Bode W. The structure of thrombin: a janus-headed proteinase. Semin. Thromb. Hemost. 2006, V. 32, P. 16–31. https://doi.org/10.1055/s-2006-939551
6. Davie E. W., Fujikawa K., Kisiel W. The coagulation cascade: initiation, maitenance, and regulation. Biochemistry. 1991, 30 (43), 10363–10370. https://doi.org/10.1021/bi00107a001
7. Furie B., Furie B. C. The molecular basis of blood coagulation. Cell. 1988, V. 53, P. 505–518. https://doi.org/10.1016/0092-8674(88)90567-3
9. Lugovskoy E. V., Makogonenko E. M., Komi-sarenko S. V. Molecular mechanisms of forma-tion and destruction of fibrin. Kyiv: Naukova Dumka. 2013, 230 p. (In Russian).
10. Morales-Vidal S., Schneck M. J., Flaster M., Biller J. Direct thrombin inhibitors and factor Xa inhibitors in patients with cerebrovascular disease. Expert Review of Neurotherapeutics. 2012, 12 (2), 179–189, quiz 190. https://doi.org/10.1586/ern.11.185
11. Alquwaizani M., Buckley L., Adams C., Fanikos J.. Anticoagulants: A Review of the Pharmacology, Dosing, and Complications. Curr. Emerg. Hosp. Med. Rep. 2013, 1 (2), 83–97. https://doi.org/10.1007/s40138-013-0014-6
12. Kaye J. B., Schultz L. E., Steiner H.E., Kittles R. A., Cavallari L. H., Karnes J. H. Warfarin Pharmacogenomics in Diverse Populations. Pharmacotherapy. 2017, 37 (9), 1150–1163. https://doi.org/10.1002/phar.1982
13. Onundarson P. T., Arnar D. O., Lund S. H., Gudmundsdottir B. R., Francis C. W., Indridason O. S. Fiix-prothrombin time monitoring improves warfarin anticoagulation outcome in atrial fibrillation: a systematic review of randomized trials comparing Fiix-warfarin or direct oral anticoagulants to standard PT-warfarin. Int. J. Lab. Hematol. 2016, V. 1, P. 78–90. https://doi.org/10.1111/ijlh.12537
14. Gumulec J., Kessler P., Penka M., Klodov? D., Kr?lov? S., Brejcha M., Wr?bel M., Sumn? E., Blatn? J., Klaricov? K., Riedlov? P., Lasota Z. Hemorrhagic complications during warfarin treatment. Vnitr. Lek. 2006, 52 (l), 79–91. PMID: 16637455
15. Linhardt R. J., Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. J. Med. Chem. 2003, V. 46, P. 2551–2564. https://doi.org/10.1021/jm030176m
16. Alquwaizani M., Buckley L., Adams C., Fanikos J. Anticoagulants: A Review of the Pharmacology, Dosing, and Complications. Curr. Emerg. Hosp. Med. Rep. 2013, 1 (2), 83–97. https://doi.org/10.1007/s40138-013-0014-6
17. Onishi A., Ange K. St., Dordick J. S., Linhardt R. J. Heparin and anticoagulation. Front Biosci. (Landmark Ed). 2016, V. 21, P. 1372–1392. https://doi.org/10.2741/4462
19. Petsch B., Madlener K., Sushko E. Hemostasiology: rational diagnosis and therapy. Kyiv: Zdorov'ya. 2006, P. 1–287.
20. Shanberge J. N., Fukui H. Studies on the anticoagulant action of heparin, protamine, and Polybrene in the activation of factor IX. J. Lab. Clin. Med. 1967, 69 (6), 927–937. PMID: 6025496
21. Hoffmann A., Markwardt F. Z. Pharmacology of heparin. Gesamte Inn. Med. 1979, 34 (1), 3–8. PMID: 373277
22. Aguilar M. D., Kleiman M. D. Low molecular weight heparins. Expert Opin. Pharmacother. 2000, 1 (6), 1091–1103. https://doi.org/10.1517/14656566.1.6.1091
23. Xiao Z., Zhao W., Yang B., Zhang Z., Guan H., Linhardt R. J. Heparinase 1 selectivity for the 3,6-di-O-sulfo-2-deoxy-2-sulfamido-alpha-D-glucopyranose (1,4) 2-O-sulfo-alpha-L-idopyranosyluronic acid (GlcNS3S6S-IdoA2S) linkages. Glycobiology. 2011, 21 (1), 13–22. https://doi.org/10.1093/glycob/cwq123
24. Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Low Molecular Weight Heparins. 2017 Nov 13]. Bookshelf. – URL: https://www.ncbi.nlm.nih.gov/books/f
25. Senchuk A. Ya., Ventskovsky B. M. Thromboembolic complications in obstetrics and gynecology: monograph. Kyiv: Makkom. 2003, P. 270–272.
26. Hirsh J., Warkentin T. E., Shaughnessy S. G., Anand S. S., Halperin J. L., Raschke R., Granger C., Ohman E. M., Dalen J. E. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001, 119 (1), 64S–94S. https://doi.org/10.1378/chest.119.1_suppl.64s
27. Weitz J. I. Low-molecular-weight heparins. N. Engl. J. Med. 1997, V. 337, P. 688–698. https://doi.org/10.1056/NEJM199709043371007
28. Onishi A., Ange K. St., Dordick J. S., Linhardt R. J. Heparin and anticoagulation. Frontiers in Bioscience, Landmark. 2016, V. 21, P. 1372–1392. https://doi.org/10.2741/4462
29. Casu B., Torri G. Structural characterization of low-molecular weight heparins. Semin. Thromb. Hemost. 1999, 25 (3), 17–25.
30. Fareed J., Hoppensteadt D., Walenga J., Iqbal O., Ma Q., Jeske W., Sheikh T. Pharmacodynamic and pharmacokinetic properties of enoxaparin: implications for clinical practice. Clin. Pharmacokinet. 2003, 42 (12), 1043–1057. https://doi.org/10.2165/00003088-200342120-00003
31. Ageno W., Bosch J., Cucherat M., Eikelboom J. W. Nadroparin for the prevention of venous thromboembolism in nonsurgical patients: a systematic review and meta-analysis. J. Thromb. Thrombolysis. 2016, 42 (1), 90–98. https://doi.org/10.1007/s11239-015-1294-3
32. Moayer A. F., Mohebali N., Razmkon A. Incidence of Deep Vein Thrombosis in Patients Undergoing Degenerative Spine Surgery onProphylactic Dalteparin; A Single Center Report. Bull. Emerg. Trauma. 2016, 4 (1), 38–42. PMCID: PMC4779468, PMID: 27162925
33. Helfer H., Siguret V., Mah?Am I. J. Tinzaparin Sodium Pharmacokinetics in Patients with Chronic Kidney Disease: Practical Implications. Cardiovasc. Drugs. 2020, 20 (3), 223–228. https://doi.org/10.1007/s40256-019-00382-0
34. Vavilova T. V. Antithrombotic therapy and methods of its laboratory control (lecture). Clinical Laboratory Diagnostics. 2004, N 12, Р. 21–33. (In Russian).
35. Lovecchio F. Heparin-induced thrombocytopenia. Clin. Toxicol. (Phila). 2014, 52 (6), 579–583. https://doi.org/10.3109/15563650.2014.917181
36. Krauel K., Hackbarth C., F?rll B., Greinacher A. Heparin-induced thrombocytopenia: in vitro studies on the interaction of dabigatran, rivaroxaban, and low-sulfated heparin, with platelet factor 4 and anti-PF4/heparin antibodies. Blood. 2012, 119 (5), 1248–1255. https://doi.org/10.1182/blood-2011-05-353391
37. Bara L., Samama M. Pharmacokinetics of low molecular weight heparins. Acta Chir. Scand. Suppl. 1988, V. 543, P. 65–72. PMID: 2847460
38. Padmanabhan A., Jones C. G., Bougie D. W., Curtis B. R., McFarland J. G., Wang D., Aster R. H. Heparin-independent, PF4-dependent binding of HIT antibodies to platelets: implications for HIT pathogenesis. Blood. 2015, 125 (1), 155–161. https://doi.org/10.1182/blood-2014-06-580894
39. Nicolaes G. A. F., Sorensen K. W., Friedrich U., Tans G., Rosing J., Autin L., Dahlb?ck B., Villoutreix B. O. Altered Inactivation Pathway of Factor Va by Activated Protein C in the presence of heparin. Eur. J. Biochem. 2004, V. 271, P. 2724–2736. https://doi.org/10.1111/j.1432-1033.2004.04201.x
40. Hogwood J., Mulloy B., Gray E. Precipitation and Neutralization of Heparin from Different Sources by Protamine Sulfate. Pharmaceuticals (Basel). 2017, 10 (3), 59. https://doi.org/10.3390/ph10030059
41. Legnani C., Preda L., Palareti G., Lunghi B., Rossi E., Coccheri S. Reduced inhibition of activated prothrombin by heparin and venous thromboembolism: heparin resistance revisited. Haematologica. 2002, 87 (2), 182–188. PMID: 11836169
42. Samuelson B. T., Cuker A. Measurement and reversal of the direct oral anticoagulants. Blood Rev. 2017, 31 (1), 77–84. https://doi.org/10.1016/j.blre.2016.08.006
43. DeAnglis A. P., Nur I., Gorman A. J., Meidler R. A method to measure thrombin activity in a mixture of fibrinogen and thrombin powders. Blood Coagul. Fibrinolys. 2017, V. 28, P. 134–138. https://doi.org/10.1097/MBC.0000000000000560
44. Stangier J. Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin inhibitor dabigatran etexilate. Clin. Pharmacokinet. 2008, 47 (5), 285–295. https://doi.org/10.2165/00003088-200847050-00001
45. Liesenfeld K. H., Lehr T., Dansirikul C., Reilly P. A., Connolly S. J., Ezekowitz M. D., Yusuf S., Wallentin L., Haertter S., Staab A. J. Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with non-valvular atrial fibrillation from the RE-LY trial. Thromb. Haemost. 2011, 9 (11), 2168–2175. https://doi.org/10.1111/j.1538-7836.2011.04498.x
46. Graff J., Harder S. Anticoagulant therapy with the oral direct factor Xa inhibitors rivaroxaban, apixaban and edoxaban and the thrombin inhibitor dabigatran etexilate in patients with hepatic impairment. Clin. Pharmacokinet. 2013, 52 (4), 243–254. https://doi.org/10.1007/s40262-013-0034-0
47. Yegneswaran S., Banerjee Y., Fern?ndez J. A., Deguchi H., Griffin J. H. Lyso-Sulfatide Binds Factor Xa and Inhibits Thrombin Generation by the Prothrombinase Complex. PLoS One. 2015, 10 (8), e0135025 https://doi.org/10.1371/journal.pone.0135025
48. Koklic T., Chattopadhyay R., Majumder R., Lentz B. R. Factor Xa dimerization competes with prothrombinase complex formation on platelet-like membrane surfaces. Biochem. J. 2015, 467 (1), 37–46. https://doi.org/10.1042/BJ20141177
49. Zubairov D. M. Molecular bases of blood coagulation and thrombus formation. Kazan: FEN. P. 1–364. (In Russian).
50. Volkov G. L., Platonova T. N., Savchuk A. N., Gornitskaya O. V., Chernyshenko T. M., Krasnobryzha E. N. Modern ideas about the hemostasis system: monograph. Kyiv: Naukova Dumka. 2005, 296 p. (In Russian).
51. Wen-Jun Dong, Hui-Juan Qian, Yan Qian, Ling Zhou, and San-Lian Hu. Fondaparinux vs. enoxaparin for the prevention of venous thromboembolism after total hip replacement: A meta-analysis. Exp. Ther. Med. 2016, 12 (2), 969–974. https://doi.org/10.3892/etm.2016.3351
52. Marcy T. R., Truong T., Rai A. Comparing Direct Oral Anticoagulants and Warfarin for Atrial Fibrillation, Venous Thromboembolism, and Mechanical Heart Valves. Consult. Pharm. 2015, 30 (11), 644–656. https://doi.org/10.4140/TCP.n.2015.644
53. Pollack C. V. Jr, Reilly P. A., van Ryn J., Eikelboom J. W., Glund S., Bernstein R. A., Dubiel R., Huisman M. V., Hylek E. M., Kam C. W., Kamphuisen P. W., Kreuzer J., Levy J. H., Royle G., Sellke F. W., Stangier J., Steiner T., Verhamme P., Wang B., Young L., Weitz J. I. Idarucizumab for Dabigatran Reversal – Full Cohort Analysis. N. Engl. J. Med. 2017, 377 (5), 431–441. https://doi.org/10.1056/NEJMoa1707278
54. Haas S., Bode C., Norrving B., Turpie A. G. Practical guidance for using rivaroxaban in patients with atrial fibrillation: balancing benefit and risk. Vasc. Health. Risk. Manag. 2014, V. 10, P. 101–114. https://doi.org/10.2147/VHRM.S55246
55. Kvasnicka T., Malikova I., Zenahlikova Z., Kettnerova K., Brzezkova R., Zima T., Ulrych J., Briza J., Netuka I., Kvasnicka J. Rivaroxaban – Metabolism, Pharmacologic Properties and Drug Interactions. Curr. Drug Metab. 2017, 18 (7), 636–642. https://doi.org/10.2174/1389200218666170518165443
56. Greig S. L., Garnock-Jones K. P. Eliquis (apixaban) full prescribing information, 2015; Apixaban: A Review in Venous Thromboembolism. Drugs. 2016, 76 (15), 1493–1504. https://doi.org/10.1007/s40265-016-0644-6
57. Klibanov O. M., Phan D., Ferguson K. Drug updates and approvals: 2015 in review. Nurse Pract. 2015, 40 (12), 34–43; SAVAYSA™ (edoxaban) Tablets Prescribing Information. Nurse Pract. 2015, 40 (12), 34–43. https://doi.org/10.1097/01.NPR.0000473071.26873.3c
58. Corsini A., Ferri N., Proietti M., Boriani G. Edoxaban and the Issue of Drug-Drug Interactions: From Pharmacology to Clinical Practice. Drugs. 2020, 80 (11), 1065–1083. https://doi.org/10.1007/s40265-020-01328-6
59. Milling T. J. Jr, MDa, Kaatz S. Preclinical and clinical data for factor Xa and “universal” reversal agent. Am. J. Emerg. Med. 2016, 34 (11), 39–45. https://doi.org/10.1016/j.amjmed.2016.06.009
60. De Pont A. C. J. M., Schultz M. J. Anticoagulant properties of drotrecogin alfa (activated) during hemofiltration in patients with severe sepsis. Crit. Care. 2009, 13 (1), 113. https://doi.org/10.1186/cc7684
61. Bernard G. R., Vincent J. L., Laterre P. F., LaRosa S. P., Dhainaut J. F., Lopez-Rodriguez A., Steingrub J. S., Garber G. E., Helterbrand J. D., Ely E. W., Fisher C. J. Jr. Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 2001, 344 (10), 699–709. https://doi.org/10.1056/NEJM200103083441001
62. Vincent J. L. Drotrecogin alpha (activated): the treatment for severe sepsis? Expert Opin. Biol. Ther. 2007, 7 (11), 1763–1777. https://doi.org/10.1517/14712598.7.11.1763
63. T?nnesen K. H., Sager P., Gormsen J. Treatment of severe foot ischaemia by defibrination with ancrod: a randomized blind study. Scand. J. Clin. Lab. Invest. 1978, 38 (5), 431–435. https://doi.org/10.3109/00365517809108447
64. Jahnke H. Experimental ancrod (Arvin) for acute ischemic stroke: nursing implications. J. Neurosci. Nurs. 1991, 23 (6), 386–389. https://doi.org/10.1097/01376517-199112000-00008
65. Dempfle C. E., Argiriou S., Kucher K., M?ller-Peltzer H., R?bsamen K., Heene D. L. Analysis of fibrin formation and proteolysis during intravenous administration of ancrod. Blood. 2000, 96 (8), 2793–2802. PMID: 11023513. https://doi.org/10.1182/blood.V96.8.2793
66. Castro H. C., Zingali R. B., Albuquerque M. G., Pujol-Luz M., Rodrigues C. R. Snake venom thrombin-like enzymes: from reptilase to now. Cell Mol. Life Sci. 2004, 61 (7–8), 843–856. https://doi.org/10.1007/s00018-003-3325-z
67. He J., Chen S., Gu J. Identification and characterization of Harobin, a novel fibrino(geno)lytic serine protease from a sea snake (Lapemis hardwickii). FEBS Lett. 2007, 581 (16), 2965–2973. https://doi.org/10.1016/j.febslet.2007.05.047
68. Gardiner E. E., Andrews R. K. The cut of the clot(h): snake venom fibrinogenases as therapeutic agents. J. Thromb. Haemost. 2008, 6 (8), 1360–1362. https://doi.org/10.1111/j.1538-7836.2008.03057.x
69. Mohamed Abd El-Aziz T., Garcia Soares A., Stockand J. D. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins (Basel). 2019, 11 (10), 564. https://doi.org/10.3390/toxins11100564
70. Weisel J. W., Litvinov R. I. Mechanisms of fibrin polymerization and clinical implications. Blood. 2013, 121 (10), 1712–1719. https://doi.org/10.1182/blood-2012-09-306639
71. Chernysh I. N., Nagaswami Ch., Purohit P. K., Weisel J. W. Fibrin clots are equilibrium polymers that can be remodeled without proteolytic digestion. Sci. Rep. 2012, 2 (879), 1–6. https://doi.org/10.1038/srep00879
72. Shrivastava S., Singh S. K., Mukhopadhyay A., Sinha A. S., Mandal R. K., Dash D. Negative regulation of fibrin polymerization and clot formation by nanoparticles of silver. Colloids Surf. B Biointerfaces. 2011, 82 (1), 241–246. https://doi.org/10.1016/j.colsurfb.2010.08.048
73. Watson J. W., Doolittle R. F. Peptide-derivatized albumins that inhibit fibrin polymerization. Biochemistry. 2011, 50 (45), 9923–9927. https://doi.org/10.1021/bi201406c
75. Lugovskoy E. V., Gritsenko P. G., Koshel T. A. Calix[4]arene methylenebisphosphonic acids as inhibitors of fibrin polymerization. FEBS J. 2011, V. 278, P. 1244–1251. https://doi.org/10.1111/j.1742-4658.2011.08045.x
76. Chernyshenko V. O., Korol?a D. S., Nikolaenko T. V., Dosenko V. E., Pashevin D. A., Kalchenko V. I., Cherenok S. A., Khranovskaya N. N., Garmanchuk L. V., Lugovskoy E. V., Komisarenko S. V. Effect of calix [4] arena 145 on the cell unit of the hemostasis system. Biotechnol. acta. 2016, 9 (3), 37–43 . https://doi.org/10.15407/biotech9.03.037
. Rubenstein D. A, Yin W. Platelet-Activation Mechanisms and Vascular Remodeling. Compr. Physiol. 2018, 8 (3), 1117–1156. https://doi.org/10.1002/cphy.c170049. PMID: 29978900
78. Lisman T., Weeterings C., de Groot P. G. Platelet aggregation: involvement of thrombin and fibrin(ogen). Front Biosci. 2005, V. 10, P. 2504–2517. https://doi.org/10.2741/1715
79. Estevez B., Du X. New Concepts and Mechanisms of Platelet Activation Signaling. Physiology (Bethesda). 2017, 32 (2), 162–177. https://doi.org/10.1152/physiol.00020.2016
81. Prevost N., Wolfe D., Tognolini M., Brass L. F. Contact-dependent signaling during the late events of platelet activation. J. Thromb. Haemost. 2003, 1 (7), 1613–1627. https://doi.org/10.1046/j.1538-7836.2003.00327.x
82. Falati S., Gross P., Merril-Skoloff G. Real-time in vivo imagin of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat. Med. 2002, V. 8, P. 1175–1180. https://doi.org/10.1038/nm782
83. Grotti S., Bolognese L. P2Y12 inhibitors in acute coronary syndrome: when to give them and when to prolong their use. J. Cardiovasc. Med. (Hagerstown). 2018, 19 (1), 9–12. https://doi.org/10.2459/JCM.0000000000000595
84. Wang D., Yang X. H., Zhang J. D., Li R. B., Jia M., Cui X. R. Compared efficacy of clopidogrel and ticagrelor in treating acute coronary syndrome: a meta-analysis. BMC Cardiovasc. Disord. 2018. 18 (1), 217. https://doi.org/10.1186/s12872-018-0948-4
85. Schr?r K. Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis. Semin. Thromb. Hemost. 1997, 23 (4), 349–356. https://doi.org/10.1055/s-2007-996108
86. Ornelas A., Zacharias-Millward N., Menter D. G., Davis J. S., Lichtenberger L., Hawke D., Hawk E., Vilar E., Bhattacharya P., Millward S. Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev. 2017, 36 (2), 289–303. https://doi.org/10.1007/s10555-017-9675-z
87. Schr?r K. Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis. Semin. Thromb. Hemost. 1997, 23 (4), 349–356. https://doi.org/10.1055/s-2007-996108
88. Floyd C. N., Ferro A. Mechanisms of aspirin resistance. Pharmacol. Ther. 2014, 141 (1), 69–78. https://doi.org/10.1016/j.pharmthera.2013.08.005
89. Noma K., Higashi Y. Cilostazol for treatment of cerebral infarction. Expert Opin. Pharmacother. 2018, 19 (15), 1719–1726. https://doi.org/10.1080/14656566.2018.1515199
90. Eisert W. G. Dipyridamole in antithrombotic treatment. Adv. Cardiol. 2012, V. 47, P. 78–86. https://doi.org/10.1159/000338053
91. Varga-Szabo D., Pleines I., Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler. Thromb. Vasc. Biol. 2008, V. 3, P. 403–412. https://doi.org/10.1161/ATVBAHA.107.150474
92. O’Toole, Mandelman D., Forsyth J. Modulation of the affinity of integrin ?IIb?3 (GPIIbIIIa) by the cytoplasmic domain of ?IIb. Science. 1991, V. 254, P. 845–847. https://doi.org/10.1126/science.1948065
93. De Cristofaro R., Landolfi R., De Candia E. Allosteric equilibria in the binding of fibrinogen to platelets. Proc. Nat. Acad. Sci. USA. 1988, 85 (22), 8473–8476. https://doi.org/10.1073/pnas.85.22.8473
94. Litvinov R. I., Bennett J. S. Multi-Step Fibrinogen Binding to the Integrin ?IIb?3 Detected Using Force Spectroscopy. Biophys. J. 2005, 89 (4), 2824–2834. https://doi.org/10.1529/biophysj.105.061887
95. Fradera X., De La Cruz X., Silva C. H. Ligand-induced changes in the binding sites of proteins. Bioinformatics. 2002, 8 (7), 939–948. https://doi.org/10.1093/bioinformatics/18.7.939
96. Hantgan R. R., Rocco M., Nagaswami C., Weisel J. W. Binding of a fibrinogen mimetic stabilizes integrin alphaIIbbeta3's open conformation. Protein Sci. 2001, 10 (8), 1614–1626. https://doi.org/10.1110/ps.3001
97. Buensuceso C., de Virgilio M., Shattil S. J. Detection of integrin alpha IIbbeta 3 clustering in living cells. JBC. 2003, 278 (17), 15217–15224. https://doi.org/10.1074/jbc.M213234200
98. Rooney M. M., Farrell D. H., van Hemel B. M. The contribution of the three hypothesized integrin-binding sites in fibrinogen to platelet-mediated clot retraction. Blood. 1998, 92 (7), 2374–2381. PMID: 9746777, https://doi.org/10.1182/blood.V92.7.2374.2374_2374_2381
99. Lazarovici P., Marcinkiewicz C., Lelkes P. I. From Snake Venom's Disintegrins and C-Type Lectins to Anti-Platelet Drugs. Toxins (Basel). 2019, 11 (5), 303. https://doi.org/10.3390/toxins11050303
100. Zhao M., Wang C., Jiang X., Pen S. Synthesis of RGD containing peptides and their bioactivities. Prep. Biochem. Biotechnol. 2002, 32 (4), 363–380. https://doi.org/10.1081/PB-120015464
101. Chernyshenko V., Petruk N., Korolova D., Kasatkina L., Gornytska O., Platonova T., Chernyshenko T., Rebriev A., Dzhus O., Garmanchuk L., Lugovskoy E. Antiplatelet and anti-proliferative action of disintegrin from Echis multisquamatis snake venom. Croat. Med. J. 2017, 58 (2), 118–127. https://doi.org/10.3325/cmj.2017.58.118. PMID: 28409495; PMCID: PMC5410738
102. Swenson S., Ramu S., Markland F. S. Anti-angiogenesis and RGD-containing snake venom disintegrins. Curr. Pharm. Des. 2007, 13 (28), 2860–2871. https://doi.org/10.2174/138161207782023793
103. Blankenship J. C., Balog C., Sapp S. K., Califf R. M., Lincoff A. M., Tcheng J. E., Topol E. J. Reduction in vascular access site bleeding in sequential abciximab coronary intervention trials. Catheter Cardiovasc. Interv. 2002, 57 (4), 476–483. https://doi.org/10.1002/ccd.10322
104. Tirofiban. In Meyler's Side Effects of Drugs (Sixteenth Edition), 2016.
105. Laine L., Jensen D. M. Management of patients with ulcer bleeding. Am. J. Gastroenterol. 2012, 107 (3), 345–360. https://doi.org/10.1038/ajg.2011.480
106. Johnstone C., Rich S. E. Bleeding in cancer patients and its treatment: a review. Ann. Palliat. Med. 2018, 7 (2), 265–273. https://doi.org/10.21037/apm.2017.11.01
107. Rowe A. S., Dietrich S. K., Phillips J. W., Foster K. E., Canter J. R. Activated Prothrombin Complex Concentrate Versus 4-Factor Prothrombin Complex Concentrate for Vitamin K-Antagonist Reversal. Crit. Care Med. 2018, 46 (6), 943–948. https://doi.org/10.1097/CCM.0000000000003090
108. Mehringer S. L., Klick Z., Bain J., McNeely E. B., Subramanian S., Pass L. J., Drinkwater D., Reddy V. S. Activated Factor 7 Versus 4-Factor Prothrombin Complex Concentrate for Critical Bleeding Post-Cardiac Surgery. Ann. Pharmacother. 2018, 52 (6), 533–537. https://doi.org/10.1177/1060028017752365
109. Kalafatis M., Egan J. O., van’t Veer C. The Regulation of Clotting Factors. Crit. Rev. Eucariotic. Gene Expr. 1997, 7 (3), 241–280. https://doi.org/10.1615/critreveukargeneexpr.v7.i3.40
110. Colman R. W. Violations of the reactions of thrombin formation. Moskva: Medicine. 1988, 1–240.
111. Hoffman R., Benz E. J., Shattil S. J. Hematology. Basic Principles and Practice. Churchill Livingstone. 1995, 1577–1589.
112. Steffel J., Luscher T. F., Tanner F. C. Tissue Factor in Cardiovascular Deseases. Molecular Mechanisms and Clinical Implications. Circulation. 2006, 113 (5), 722–731. https://doi.org/10.1161/CIRCULATIONAHA.105.567297
113. Zhu S., Diamond S. L. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay. Thromb. Res. 2014, 134 (6), 1335–1343. https://doi.org/10.1016/j.thromres.2014.09.030
114. He S., Eelde A., Petrini P., Wallen H., Gabrielsson L., Svensson J., Blomb?ck M., Holmstr?m M. A ROTEM method using APTT reagent and tissue factor as the clotting activators may better define bleeding heterogeneity in moderate or severe haemophilia A (part I: Study in plasma samples). Thromb. Res. 2018, V. 171, P. 7–13. https://doi.org/10.1016/j.thromres.2018.09.041
115. Naudin C., Burillo E., Blankenberg S., Butler L., Renn? T. Factor XII Contact Activation. Semin. Thromb. Hemost. 2017, 43 (8), 814–826. https://doi.org/10.1055/s-0036-1598003
116. Didiasova M., Wujak L., Schaefer L., Wygrecka M. Factor XII in coagulation, inflammation and beyond. Cell Signal. 2018, V. 51, P. 257–265. https://doi.org/10.1016/j.cellsig.2018.08.006
117. Khanin M. A., Rakov D. V., Kogan A. E. Mathematical Model for the Blood Coagulation Prothrombin Time Test. Thromb. Res. 1998, V. 89, P. 227–232. https://doi.org/10.1016/s0049-3848(97)00288-0
118. Tans G., Rosing J. Snake venom activators of factor X: an overview. Haemostasis. 2001, 31 (3–6), 225–233. https://doi.org/10.1159/000048067
119. Kisiel W., Hermodson M. A., Davie E. W. Factor X activating enzyme from Russell's viper venom: isolation and characterization. Biochemistry. 1976, 15 (22), 4901–4906. https://doi.org/10.1021/bi00667a023
120. Takeya H., Nishida S., Miyata T., Kawada S., Saisaka Y., Morita T., Iwanaga S. Coagulation factor X activating enzyme from Russell's viper venom (RVV-X). A novel metalloproteinase with disintegrin (platelet aggregation inhibitor)-like and C-type lectin-like domains. J. Biol. Chem. 1992, 267 (20), 14109–14117. PMID: 1629211
121. Khan S. U., Al-Saleh S. S. Biochemical characterization of a factor X activator protein purified from Walterinnesia aegyptia venom. Blood Coagul. Fibrinolysis. 2015, 26 (7), 772–777. https://doi.org/10.1097/MBC.0000000000000336
122. Yamada D., Sekiya F., Morita T. Prothrombin and factor X activator activities in the venoms of Viperidae snakes. Toxicon. 1997, 35 (11), 1581–1589. https://doi.org/10.1016/s0041-0101(97)00043-3
123. Siigur E., T?nism?gi K., Trummal K., Samel M., Vija H., Subbi J., Siigur J. Factor X activator from Vipera lebetina snake venom, molecular characterization and substrate specificity. Biochim. Biophys. Acta. 2001, 1568 (1), 90–98. https://doi.org/10.1016/s0304-4165(01)00206-9
125. Kornal?k F. Use of ecarin in the diagnosis of coagulation disorders. Cas. Lek. Cesk. 1988, 127 (51), 1578–1581. PMID: 3073011
126. Yamada D., Sekiya F., Morita T. Prothrombin and fX Activator Activities in the Venomes of Viperidae Snakes. Toxicon. 1997, 35 (11), 1581–1589. https://doi.org/10.1016/s0041-0101(97)00043-3
127. Kornalik F., Blomb?ck B. Prothrombin activation induced by Ecarin – a prothrombin converting enzyme from Echis carinatus venom. Thromb. Res. 1975, 6 (1), 57–63. https://doi.org/10.1016/0049-3848(75)90150-4
128. Nishida S., Fujita T., Kohno N., Atoda H., Morita T., Takeya H., Kido I., Paine M. J., Kawabata S., Iwanaga S. cDNA cloning and deduced amino acid sequence of prothrombin activator (ecarin) from Kenyan Echis carinatus venom. Biochemistry. 1995, 34 (5), 1771–1778. https://doi.org/10.1021/bi00005a034
129. Ugarova T. P., Platonova T. N., Soloviev D. A. Reports of the Academy of Sciences of the Ukrainian SSR: A prothrombin activator from the venom of Echis multisquamatis. Ser. B. Geol., Chem. Biol. Sci. 1989, V. 6, P. 75–79.
130. Gornitskaya O. V., Platonova T. N., Volkov G. L. Enzymes of snake venom. Ukr. biochem. J. 2003, 75 (3), 22–32. PMID: 14577148
131. Korolova D. S., Chernyshenko T. M., Gornytska O. V., Chernyshenko V. O., Platonova T. M. Meizothrombin preparation and its role in fibrin formation and platelet aggregation. Advances in Bioscience and Biotechnology. 2014, 5 (7), 588–595. https://doi.org/10.4236/abb.2014.57069
132. Tans G., Govers-Riemslag J. W. P. Purification and Properties of a Protrombin Activator from the Venom of Notechis scutatus. J. Biol. Chem. 1985, 260 (16), 9366–9372. PMID: 3894355. https://doi.org/10.1016/S0021-9258(17)39373-0
133. Platonova T. N., Chernyshenko T. M., Gornitskaya O. V. Complex laboratory diagnostics of disorders of the hemostasis system in disseminated intravascular coagulation. Laboratory Diagnostics. 2000, N 3, P. 3–11.
134. Ullah A., Masood R., Ali I., Ullah K., Ali H., Akbar H., Betzel C. Thrombin-like enzymes from snake venom: Structural characterization and mechanism of action. Int. J. Biol. Macromol. 2018, V. 114, P. 788–811. https://doi.org/10.1016/j.ijbiomac.2018.03.164
135. Gusev E. I., Skvortsova V. I., Suslina Z. A. Batroxobin in patients with ischemic stroke in the carotid system. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova. 2006, 106 (8), 31–34. PMID: 16972594
136. Koh D. C. I., Armugam A., Jeyaseelan K. Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences. 2006, 63 (24), 3030–3041. https://doi.org/10.1007/s00018-006-6315-0
137. Joshi S. A., Gadre K. S., Halli R., Shandilya R. Topical use of Hemocoagulase (Reptilase): A simple and effective way of managing post-extraction bleeding. Ann. Maxillofac. Surg. 2014, 4 (1), 119. https://doi.org/10.4103/2231-0746.133082
138. Aslam S., Francis P. G., Rao B. H., Ummar M., Issac J. K., Nair R. B. A double blind study on the efficacy of local application of hemocoagulase solution in wound healing. J. Contemp. Dent. Pract. 2013, 14 (3), 394–400. https://doi.org/10.5005/jp-journals-10024-1334
139. Qiu M., Zhang X., Cai H., Xu Z., Lin H. The impact of hemocoagulase for improvement of coagulation and reduction of bleeding in fracture-related hip hemiarthroplasty geriatric patients: A prospective, single-blinded, randomized, controlled study. Injury. 2017, 48 (4), 914–919. https://doi.org/10.1016/j.injury.2016.11.028
140. Lerner A., Ramesh A., Matthias T. The temperature and pH repertoire of the transglutaminase family is expanding. FEBS Open Bio. 2020, 10 (4), 492–494. https://doi.org/10.1002/2211-5463.12839