ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 12, No 1, 2019
Р. 5-28, Bibliography 202, English
Universal Decimal Classification: 004:591.5:612:616-006
https://doi.org/10.15407/biotech12.01.005
BIOTECHNICAL INFORMATION SYSTEMS FOR MONITORING OF CHEMICALS IN ENVIRONMENT: BIOPHYSICAL APPROACH
Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv
The newest biotechnical systems for environment ecological monitoring based on the use of modern information and computer technologies and existing databases of chemical substances have been analyzed. In particular, there were observed such modern biophysical research methods as imitation and program modeling, based on the author results obtained in the experiments with registration of chemo-sensitive transmembrane electric currents in neurons in voltage clamp mode, use of neuronal fluorescent markers and accounting of organisms-bioindicators. The developed systems and methods allow revealing and identification of substances hazardous to living organisms and to make conclusions about their possible biological effects. The functioning of biotechnical information systems for environmental monitoring was analyzed in a wide time ranges, using modern databases, expert subsystems and interfaces capable to identify different types of chemicals. It is shown that for such systematic environmental monitoring it is possible to study and predict the effects of substances influences for a long time – from the first moments of their exposure to individual cells of organism to months and years after exposure to the whole organism.
Key words: biotechnical information monitoring system, environmental pollution, bioindicators, databases.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Klyuchko O. M. Information and computer technologies in biology and medicine. Kyiv: NAU-druk. 2008, 252 p. (In Ukrainian).
2. Allenby B. R., Compton W. D., Richards D. J. Information Systems and the Environment Overview and Perspectives. https://www.nap.edu/read/6322/chapter/2
3. Klyuchko O. М. Application of artificial neural networks method in biotechnology. Biotechnol. acta. 2017, 10 (4), 5–13. https://doi.org/10.15407/biotech10.04.005
4. Klyuchko O. М. Cluster analysis in biotechnology. Biotechnol. acta. 2017, 10 (5), 5–18. https://doi.org/10.15407/biotech10.05.005
5. Klyuchko O. М. Technologies of brain images processing. Biotechnol. acta. 2017, 10 (6), 5–17. https://doi.org/10.15407/biotech10.05.005
6. Klyuchko O. М., Onopchuk Yu. M. Some trends in mathematical modeling for biotechnology. Biotechnol. acta. 2018, 11 (1), 39–57. https://doi.org/10.15407/biotech11.01.039
7. Klyuchko O. М. Electronic information systems in biotechnology. Biotechnol. acta. 2018, 11 (2), 5–22. https://doi.org/10.15407/biotech11.02.005
8. Klyuchko O. М. Information computer technologies for biotechnology: electronic medical information systems. Biotechnol. acta. 2018, 11 (3), 5–26. https://doi.org/10.15407/biotech11.03.005
9. Klyuchko O. М., Klyuchko Z. F. Electronic databases for Arthropods: methods and applications. Biotechnol. acta. 2018, 11 (4), 28–49. https://doi.org/10.15407/biotech11.04.028
10. Klyuchko O. М., Klyuchko Z. F. Electronic information systems for monitoring of populations and migrations of insects. Biotechnol. acta. 2018, 11 (5), 5–25. https://doi.org/10.15407/biotech11.05.005
11. Klyuchko O. М. Expert systems for biology and medicine. Biotechnol. аcta. 2018, 11 (6), 5–28. https://doi.org/10.15407/biotech11.06.005
12. Klyuchko O. М. On the mathematical methods in biology and medicine. Biotechnol. acta. 2017, 10 (3), 31–40. https://doi.org/10.15407/biotech10.03.031
13. Roland Eils. Expert system for classification and prediction of genetic diseases. Patent US, JP, CA, WO2002047007A3. Priority date: 2000-12-07.WO Application2002-12-12. https://patents.google.com/patent/WO2002047007A2
14. Prasad S. Kodukula, Charles R. Stack. Water treatment monitoring system. Patent US 6845336B2. Priority date: 25-06-2002; Grant: 01-18-2005. https://patents.google.com/patent/US6845336
15. Judith M. Hushon. Overview of Environmental Expert Systems. Expert Systems for Environmental Applications. Chapt. 1, Р. 1–24. https://doi.org/10.1021/bk-1990-0431.ch001; ACS Symposium Series. V. 431. Publ. 05.06.1990 https://doi.org/10.1021/bk-1990-0431.ch001
16. Glenn F. Osborne, Simon S. M. Chin, Paul McDonald, Scott Schneider. Artificial intelligence system for genetic analysis. Patent US 8693751B2. Priority date: 1999-08-27, 2014-04-08 Grant. https://patents.google.com/patent/US8693751
17. Trinus K. F., Klyuchko O. M. Mediators influence on motoneurons retrogradly marked by primulin. Physiol. J. 1984, 30 (6), 730–733. (In Russian).
18. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Algorithmic and program support for optimization of interval hypoxic training modes selection of pilots. Electronics and Control Systems. 2017, 2 (52), 85–93. https://doi.org/10.18372/1990-5548.52.11882
19. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Mathematic and program models for investigation of reliability of operator professional activity in “Human-Machine” systems. Electronics and Control Systems. 2017, 1 (51), 105–113. https://doi.org/10.18372/1990-5548.51.11712
20. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Mathematical model for research of organism restoring for operators of continuously interacted systems. Electronics and Control Systems. 2016, 3 (49), 100–105. https://doi.org/10.18372/1990-5548.49.11245
21. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Investigation of reliability of operators work at fluctuating temperature conditions. Electronics and Control Systems. 2016, 2 (48), 132–139. https://doi.org/10.18372/1990-5548.48.11227
22. Plakhotnij S. A., Klyuchko O. M., Krotino va M. V. Information support for automatic industrial environment monitoring systems. Electronics and Control Systems. 2016, 1 (47), 19–34. https://doi.org/10.18372/1990-5548.47.10266
23. Onopchuk Yu. M., Aralova N. I., Klyuchko O. M., Beloshitsky P. V. Mathematic models and integral estimation of organism systems reliability in extreme conditions. Electronics and Control Systems. 2015, 4 (46), 109–115. https://doi.org/10.18372/1990-5548.46.9978v
24. Onopchuk Yu. M., Aralova N. I., Klyuchko O. M., Beloshitsky P. V. Integral estimations of human reliability and working capacity in sports wrestling. Journal of the Engineering Academy. 2015, N 3, 145–148. (In Russian).
25. Klyuchko O. M., Shutko V. N., Navrotskyi D. O., Mikolushko A. M. The set of program models for ecological monitoring technical system based on principles of biophysics. Electronics and Control Systems. 2014, 4 (42), 135–142. https://doi.org/10.18372/1990-5548.42.8834
26. Klyuchko O. M., Sheremet D. Yu. Computer simulation of biological nanogenerator functions. Electronics and Control Systems. 2014, 2 (40), 103–111. https://doi.org/10.18372/1990-5548.40.7447
27. Klyuchko O. M., Shutko V. N. Computer modeling of auto-oscillating phenomena in neuron complexes. Electronics and Control Systems. 2014, 1 (39), 127–132. https://doi.org/10.18372/1990-5548.39.7349
28. Klyuchko O. M., Sheremet D. Yu. Computer modeling of biologic voltage-activated nanostructures. Electronics and Control Systems. 2014, 1 (39), 133–139. https://doi.org/10.18372/1990-5548.39.7350
29. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. M. Radiation damage of organism and its correction in conditions of adaptation to high-mountain meteorological factors. Bulletin of NAU. 2010, N 1, Р. 224–231. (In Ukrainian).
30. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu., Makarenko M. V. Estimation of psycho-physiological functions of a person and operator work in extreme conditions. Bulletin of NAU. 2009, N 3, Р. 96–104. (In Ukrainian).
31. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu., Kolchinska A. Z. Results of research of higher nervous activity problems by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2009, N 2, Р. 105–112. (In Ukrainian).
32. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of structural and functional interdependencies by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2009, N 1, Р. 61–67. (In Ukrainian).
33. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of highlands factors influence on health and longevity by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2008, N 4, Р. 108–117. (In Ukrainian).
34. Onopchuk Yu. M., Klyuchko O. M., Beloshitsky P. V. Development of mathematical models basing on researches of Ukrainian scientists at Elbrus. Bulletin of NAU. 2008, N 3, Р. 146–155. (In Ukrainian). ttps://doi.org/10.18372/2306-1472.36.1609
35. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of adaptation problems by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2008, N 1, Р. 102–108. (In Ukrainian).
36. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of hypoxia problems by Ukrainian scientists in Elbrus region. Bulletin of NAU. 2007, N 3–4, Р. 44–50. (In Ukrainian).
37. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of medical and biological research of Ukrainian scientists at Elbrus. Bulletin of NAU. 2007, N 2, Р. 10–16. (In Ukrainian).
38. Belan P., Gerasimenko O., Tepikin A. Localization of Ca++ extrusion sites in pancreatic acinar cells. Journal of Biological Chemistry. 1996, V. 271, 7615–7619. https://doi.org/10.1074/jbc.271.13.7615
39. Belan P., Gardner J., Gerasimenko O. Extracellular Ca2+ spikes due to secretory events in salivary gland cells. Journal of Biological Chemistry. 1998, V. 273. 4106–4111. https://doi.org/10.1074/jbc.273.7.4106
40. Jabs R., Pivneva T., Huttmann K. Synaptic transmission onto hyppocampal glial cells with hGFAP promoter activity. Journal of Cell Science. 2005, V. 118. 3791–3803. https://doi.org/10.1242/jcs.02515
41. Gavrilovich M. Spectra image processing and application in biotechnology and pathology.Dissertation for Ph.D. Acta Universitatis Upsaliensis. Upsala. 2011, 63 p.
42. Perner P., Salvetti O. Advances in Mass Data Analysis of Images and Signals in Medicine, Biotechnology, Chemistry and Food Industry. Third International Conference, Leipzig, (Germany): Springer, 2008, Proceedings. 2008, 173 p. https://doi.org/10.1007/978-3-540-70715-8
43. Baert P., Meesen G., De Schynkel S., Poffijn A., Oostveldt P. V. Simultaneous in situ profiling of DNA lesion endpoints based on image cytometry and a single cell database approach. Micron. 2005, 36 (4), 321–330. https://doi.org/10.1016/j.micron.2005.01.005
44. Berks G., Ghassemi A., von Keyserlingk D. G. Spatial registration of digital brain atlases based on fuzzy set theory. Comp. Med. Imag. Graph. 2001, 25 (1), 1–10.https://doi.org/10.1016/S0895-6111(00)00038-0
45. Nowinski W. L., Belov D. The Cerefy Neuroradiology Atlas: a Talairach – Tournoux atlas-based tool for analysis of neuroimages available over the internet. NeuroImage. 2003, 20 (1), 50–57. https://doi.org/10.1016/S1053-8119(03)00252-0
46. Chaplot S., Patnaik L. M., Jagannathan N. R. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Signal Process. Control. 2006, 1 (1), 86–92. https://doi.org/10.1016/j.bspc.2006.05.002
47. Kovalev V. A., Petrou M., Suckling J. Detection of structural differences between the brains of schizophrenic patients and controls. Psychiatry Research: Neuroimaging. 2003, 124 (3), 177–189. https://doi.org/10.1016/S0925-4927(03)00070-2
48. Klyuchko O. M., Hayrutdinov R. R. Modeling of electrical signals propagation in neurons and its nanostructures. Electronics and control systems. 2011, 28 (2), 120–124. (In Ukrainian). https://doi.org/10.18372/1990-5548.28.870
49. Vecht-Lifshitz S. E., Ison A. P. Biotechnological applications of image analysis: present and future prospects. J. Biotechnol. 1992, 23 (1), 1–18. https://doi.org/10.1016/0168-1656(92)90096-R
50. Toga A. W., Thompson P. M. The role of image registration in brain mapping. Image and Vision Computing. 2001, 19 (1–2), 3–24. https://doi.org/10.1016/S0262-8856(00)00055-X
51. Shu-Hsien Liao. Expert system methodologies and applications – a decade review from 1995 to 2004. Expert Systems with Applications. 2005, 28 (1), 93–103. https://doi.org/10.1016/j.eswa.2004.08.003
52. Weiskopf N., Scharnowski F., Veit R. Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J. Physiol. Paris. 2004, 98 (4–6), 357–373. https://doi.org/10.1016/j.jphysparis.2005.09.019
53. Yan H., Y. Jiang, J. Zheng The internet-based knowledge acquisition and management method to construct large-scale distributed medical expert systems. Computer methods and programs in biomedicine. 2004, 74 (1), 1–10. https://doi.org/10.1016/S0169-2607(03)00076-2https://doi.org/10.1016/S0169-2607(03)00076-2
54. Yi M. Y., Jackson J. D., Park J. S. Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & Management. 2006, 43 (3), 350–363. https://doi.org/10.1016/j.im.2005.08.006
55. Young R. Genetic toxicology: web-resources. Toxicology. 2002, 173 (1–2), 103–121. https://doi.org/10.1016/S0300-483X(02)00026-4https://doi.org/10.1016/S0300-483X(02)00026-4https://doi.org/10.1016/S0300-483X(02)00026-4
56. Yu C. Methods in biomedical ontology. J. Biomed. Inform. 2006, 39 (3), 252–266. https://doi.org/10.1016/j.jbi.2005.11.006
57. Zhang J., Sun J., Yang Y. Web-based electronic patient records for collaborative medical applications. Computerized Medical Imaging and Graphics. 2005, 29 (2–3), 115–124. https://doi.org/10.1016/j.compmedimag.2004.09.005
58. Zhoua X., Weib J., Xub C.-Z. Quality-of-service differentiation on the Internet: A taxonomy. J. Network and Computer Applications. 2007, V. 30, P. 354–383. https://doi.org/10.1016/j.jnca.2005.07.001
59. Zimowska G. J., Handler A. M. Highly conserved piggyBac elements in Noctuidae species of Lepidoptera. Insect Biochem. Mol. Biology. 2006, 36 (5), 421–428. https://doi.org/10.1016/j.ibmb.2006.03.001
60. Carro S. A., Scharcanski J. A framework for medical visual information exchange on the WEB. Computers in Biology and Medicine. 2006, 36 (4), 327–338. https://doi.org/10.1016/j.compbiomed.2004.10.004
61. Chakravarty M. M., Bertrand G., Hodge C. P., Sadikot A. F., Collins D. L. The creation of a brain atlas for image guided neurosurgery using serial histological data. NeuroImage. 2006, 30 (2), 359–376. https://doi.org/10.1016/j.neuroimage.2005.09.041
62. Dikshit A., Wu D., Wu C., Zhao W. An online interactive simulation system for medical imaging education. Comp. Med. Imag. Graph. 2005, 29 (6), 395–404. https://doi.org/10.1016/j.compmedimag.2005.02.001
63. Singh R., Schwarz N., Taesombut N., Leea D., Jeongb B., Renambotb L., Lina A. W., Westa R.,Otsukae H., Naitof S., Peltiera S. T., Martonea M. E., Nozakid K., Leighb J., Ellisman M. H. Real-time multi-scale brain data acquisition, assembly, and analysis using an end-to-end. OptIPuter Future Generation Computer Systems. 2006. https://doi.org/10.1016/j.future.2006.03.017
64. Stefanescu R., Pennec X., Ayache N. Grid powered nonlinear image registration with locally adaptive regularization. Medical Image Analysis. 2004, 8 (3), 325–342. https://doi.org/10.1016/j.media.2004.06.010
65. Ma Y., Hof P. R., Grant S. C., Blackband S. J., Bennett R., Slatest L., McGuigan M. D., Benveniste H. A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience. 2005, 135 (4), 1203–1215. https://doi.org/10.1016/j.neuroscience.2005.07.014
66. Yu-Len Huang. Computer-aided Diagnosis Using Neural Networks and Support Vector Machines for Breast Ultrasonography. J. Med. Ultrasound. 2009, 17 (1), 17–24. https://doi.org/10.1016/S0929-6441(09)60011-4
67. Prachi Damodhar Shahare, Ram Nivas Giri. Comparative Analysis of Artificial Neural Network and Support Vector Machine Classification for Breast Cancer Detection. International Research Journal of Engineering and Technology (IRJET). 2015, 2 (9).
68. Natrajan R., Sailem H., Mardakheh F. K., Garcia M. F., Tape C. G., Dowsett M., Bakal C., Yuan Y. Microenvironmental heterogeneity parallels breast cancer progression: a histology–genomic integration analysis. PLoS medicine. 2016, 13 (2), e1001961. https://doi.org/10.1371/journal.pmed.1001961
69. Klyuchko O. M. Brain images in information systems for neurosurgery and neurophysiology. Electronics and control systems. 2009, 3 (21), 152–156. (In Ukrainian). https://doi.org/10.18372/1990-5548.21.733
70. Klyuchko O. M. Using of images’ databases for diagnostics of pathological changes in organism tissues. Electronics and control systems. 2009, 2 (20), 62–68. (In Ukrainian). https://doi.org/10.18372/1990-5548.20.687
71. Klyuchko O. M. Elements of different level organization of the brain as material for electronic databases with images. Electronics and control systems. 2009, 1 (19), 69–75. (In Ukrainian). https://doi.org/10.18372/1990-5548.19.665
72. Klyuchko O. M., Shutko V. N., Mikolushko A. M., Navrotskyi D. A. Possibility of images recognition by artificial biotechnical system. 2014 IEEE 3d Intl Conference: MSNMC Proceedings. 2014, P. 165–169.
73. Klyuchko O. M., Managadze Yu. L., Pashkivsky A. O. Program models of 2D neuronal matrix for ecological monitoring and images’ coding. Bulletin of the Engineering Academy. 2013, N 3–4, P. 77–82. (In Ukrainian).
74. Klyuchko O. M., Piatchanina T. V., Mazur M. G. Combined use of relation databases of images for diagnostics, therapy and prognosis of oncology diseases. “Integrated robototechnic complexes”. Х ІІRTC2017- Conference Proceedings. P. 275–276. (In Ukrainian).
75. Shutko V. M, Shutko O. M., Kolganova O. O. Methods and means of compression of information. Kyiv: Naukova dumka. 2012, 168 p. (In Ukrainian).
76. Jecheva V., Nikolova E. Some clustering-based methodology applications to anomaly intrusion detection systems. Int. J. Secur. Appl. 2016, 10 (1), 215–228. https://doi.org/10.14257/ijsia.2016.10.1.20
77. Iakovidis D. K., Maroulis D. E., Karkanis S. A. Texture multichannel measurements for cancer precursors’ identification using support vector machines. Measurement. 2004, V. 36, P. 297–313. https://doi.org/10.1016/j.measurement.2004.09.010
78. Nguyen H. Q., Carrieri-Kohlman V., Rankin S. H., Slaughter R., Stulbarg M. S. Internet-based patient education and support interventions: a review of evaluation studies and directions for future research. Comp. Biol. Med. 2004, 34 (2), 95–112. https://doi.org/10.1016/S0010-4825(03)00046-5
79. J?z?quel P., Loussouarn L., Gu?rin-Charbonnel C., Campion L., Vanier A., Gouraud W., Lasla H., Guette C., Valo I., Verri?le V., Campone M. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res. 2015, 17 (1), 43. https://doi.org/10.1186/s13058-015-0550-y
80. Bozhenko V. K. Multivariable analysis of laboratory blood parameters for obtaining diagnostic information in experimental and clinical oncology. The dissertation author’s abstract on scientific degree editions. Dc. Med. Study. Moscow. 2004. (In Russian).
81. Ko J. H., Ko E. A., Gu W., Lim I., Bang H., Zhou T. Expression profiling of ion channel genes predicts clinical outcome in breast cancer. Mol. Cancer. 2013, 12 (1), 106. https://doi.org/10.1186/1476-4598-12-106
82. Kawai M., Nakashima A., Kamada S., Kikkawa U. Midostaurin preferentially attenuates proliferation of triple-negative breast cancer cell lines through inhibition of Aurora kinase family. J. Biomed. Sci. 2015, 22 (1), 48. https://doi.org/10.1186/s12929-015-0150-2
83. Uhr K., Wendy J. C., Prager-van der Smissen, Anouk A. J. Heine, Bahar Ozturk, Marcel Smid, Hinrich W. H. G hlmann, Agnes Jager, John A. Foekens, John W. M. Martens. Understanding drugs in breast cancer through drug sensitivity screening. SpringerPlus. 2015, 4 (1), 611. https://doi.org/10.1186/s40064-015-1406-8
84. Onopchuk Yu. M., Biloshitsky P. V., Klyuchko O. M. Development of mathematical models based on the results of researches of Ukrainian scientists at Elbrus. Visnyk NAU. 2008, N 3, P. 146–155. (In Ukrainian). https://doi.org/10.18372/2306-1472.36.1609
85. Ankur Poudel, Dhruba Bahadur Thapa, Manoj Sapkota. Cluster Analysis of Wheat (Triticum aestivum L.) Genotypes Based Upon Response to Terminal Heat Stress. Int. J. Appl. Sci. Biotechnol. 2017, 5 (2), 188–193. https://doi.org/10.3126/ijasbt.v5i2.17614
86. Zaslavsky L., Ciufo S., Fedorov B., Tatusova T. Clustering analysis of proteins from microbial genomes at multiple levels of resolution. BMC Bioinform. 2016, 17 (8), 276. Published online 2016 Aug 31. https://doi.org/10.1186/s12859-016-1112-8
87. Zhou J., Richardson A. J., Rudd K. E. EcoGene-RefSeq: EcoGene tools applied to the RefSeq prokaryotic genomes. Bioinformatics. 2013, 29 (15), 1917–1918. Published: 04 June 2013. https://doi.org/10.1093/bioinformatics/btt302
88. Zhang J., Wu G., Hu X., Li S., Hao S. A Parallel Clustering Algorithm with MPI – MKmeans. J. Comput. 2013, 8 (1), 1017. https://doi.org/10.4304/jcp.8.1.10-17
89. Tatusova T., Zaslavsky L., Fedorov B., Haddad D., Vatsan A., Ako-adjei D., Blinkova O., Ghazal H. Protein Clusters. The NCBI Handbook. 2nd edition. Available at https://www.ncbi.nlm.nih.gov/books/NBK242632
90. Anderson J. G. Evaluation in health informatics: computer simulation. Computers in Biology and Medicine. 2002, 32 (3), 151–164. https://doi.org/10.1016/S0010-4825(02)00012-4
91. Aruna P., Puviarasan N., Palaniappan B. An investigation of neuro-fuzzy systems in psychosomatic disorders. Exp. Syst. Appl. 2005, 28 (4), 673–679. https://doi.org/10.1016/j.eswa.2004.12.024
92. Bange M. P., Deutscher S. A., Larsen D., Linsley D., Whiteside S. A handheld decision support system to facilitate improved insect pest management in Australian cotton systems. Comp. Electron. Agricult. 2004, 43 (2), 131–147. https://doi.org/10.1016/j.compag.2003.12.003
93. Beaulieu A. From brainbank to database: the informational turn in the study of the brain. Stud. Hist. Phil. Biol. Biomed. Sci. 2004, V. 35, P. 367–390. https://doi.org/10.1016/j.shpsc.2004.03.011
94. Bedathur S. J., Haritsa J. R., Sen U. S. The building of BODHI, a bio-diversity database system. Inform. Syst. 2003, 28 (4), 347–367. https://doi.org/10.1016/S0306-4379(02)00073-X
95. Brake I. Unifying revisionary taxonomy: insect exemplar groups. Abstr. XV SEL Congr. Berlin (Germany). 2007.
96. Braxton S. M., Onstad D. W., Dockter D. E., Giordano R., Larsson R., Humber R. A. Description and analysis of two internet-based databases of insect pathogens: EDWIP and VIDIL. J. Invertebr. Pathol. 2003, 83 (3), 185–195. https://doi.org/10.1016/S0022-2011(03)00089-2
97. Breaux A., Cochrane S., Evens J., Martindaled M., Pavlike B., Suera L., Benner D. Wetland ecological and compliance assessments in the San Francisco Bay Region, California, USA. J. Environm. Manag. 2005, 74 (3), 217–237. https://doi.org/10.1016/j.jenvman.2004.08.017
98. Budura A., PhilippeCudr -Mauroux P., Aberer K. From bioinformatic web portals to semantically integrated Data Grid networks. Future Generation Computer Systems. 2007, 23 (3), 281–522. https://doi.org/10.1016/j.future.2006.03.002
99. Burns G., Stephan K. E., Lud?scher B., Gupta A., K?tter R. Towards a federated neuroscientific knowledge management system using brain atlases. Neurocomputing. 2001, V. 3840, P. 1633–1641. https://doi.org/10.1016/S0925-2312(01)00520-3
100. Butenko S., Wilhelm W. E. Clique-detection models in computational biochemistry and genomics. Eur. J. Oper. Res. 2006, 173 (1), 117. https://doi.org/10.1016/j.ejor.2005.05.026
101. Carro S. A., Scharcanski J. Framework for medical visual information exchange on the WEB. Comp. Biol. Med. 2006, 36 (4), 327–338. https://doi.org/10.1016/j.compbiomed.2004.10.004
102. Chau M., Huang Z., Qin J., Zhou Y., Chen H. Building a scientific knowledge web portal: The NanoPort experience. Decision Support Systems. 2006. https://doi.org/10.1016/j.dss.2006.01.004
103. Chen M., Hofest?dt R. A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. J. Biomed. Inform. 2006, 39 (2), 147–159. https://doi.org/10.1016/j.jbi.2005.05.005
104. Chli M., De Wilde P. Internet search: Subdivision-based interactive query expansion and the soft semantic web Applied Soft Computing. 2006. https://doi.org/10.1016/j.asoc.2005.11.003
105. Despont-Gros C., Mueller H., Lovis C. Evaluating user interactions with clinical information systems: A model based on human–computer interaction models. J. Biomed. Inform. 2005, 38 (3), 244–255. https://doi.org/10.1016/j.jbi.2004.12.004
106. Despont-Gros C., Mueller H., Lovis C. Evaluating user interactions with clinical information systems: a model based on human-computer interaction models. J. Biomed. Inform. 2005, 38 (3), 244–255. https://doi.org/10.1016/j.jbi.2004.12.004
107. Marios D., Dikaiakos M. D. Intermediary infrastructures for the World Wide Web. Comp. Networks. 2004, V. 45, P. 421–447. https://doi.org/10.1016/j.comnet.2004.02.008
108. Dimitrov S. D., Mekenyan O. G., Sinks G. D., Schultz T. W. Global modeling of narcotic chemicals: ciliate and fish toxicity. J. Mol. Struc.: Theochem. 2003, 622 (12), 63–70. https://doi.org/10.1016/S0166-1280(02)00618-8
109. Dong Y., Zhuang Y., Chen K., Tai X. A hierarchical clustering algorithm based on fuzzy graph connectedness. Fuzzy Sets. Syst. 2006, V. 157, P. 1760–1774. https://doi.org/10.1016/j.fss.2006.01.001
110. Duan Y., Edwards J. S., Xu M. X. Web-based expert systems: benefits and challenges. Inf. Manag. 2005, 42 (6), 799–811. https://doi.org/10.1016/j.im.2004.08.005
111. Essen van D. C. Windows on the brain: the emerging role of atlases and databases in neuroscience. Curr. Opin. Neurobiol. 2002, 12 (5), 574–579. https://doi.org/10.1016/S0959-4388(02)00361-6
112. Fellbaum C., Hahn U., Smith B. Towards new information resources for public health From Word Net to Medical Word Net. J. Biomed. Inform. 2006, 39 (3), 321–332. https://doi.org/10.1016/j.jbi.2005.09.004
113. Ferraris M., Frixione P., Squarcia S. Network oriented radiological and medical archive. Comp. Physics Commun. 2001, V. 140, P. 226–232. https://doi.org/10.1016/S0010-4655(01)00273-9
114. Flower D. R., Attwood T. K. Integrative bioinformatics for functional genome annotation: trawling for G protein-coupled receptors. Semin. Cell. Dev. Biol. 2004, 15 (6), 693–701. https://doi.org/10.1016/j.semcdb.2004.09.008
115. Fink E., Kokku P. K., Nikiforou S., Hall L. O., Goldgof D. B., Krischer J. P. Selection of patients for clinical trials: an interactive web-based system. Art. Intell. Med. 2004, 31 (3), 241–254. https://doi.org/10.1016/j.artmed.2004.01.017
116. Fitzpatrick M. J., Ben-Shahar Y., Smid H. M., Vet L. E., Robinson G. E., Sokolowski M. B. Candidate genes for behavioural ecology. Trend Ecol. Evol. 2005, 20 (2), 96–104. https://doi.org/10.1016/j.tree.2004.11.017
117. Fox J., Alabassi A., Patkar V., Rose T., Black E. An ontological approach to modelling tasks and goals. Comp. Biol. Med. 2006, V. 36, P. 837–856. https://doi.org/10.1016/j.compbiomed.2005.04.011
118. Fu Zetian, Xu Feng, Zhou Yun, Shuan X. Z. Pig-vet: a web-based expert system for pig disease diagnosis. 2006. https://doi.org/10.1016/j.eswa.2005.01.011
119. Gaulton A., Attwood T. K. Bioinformatics approaches for the classification of G-protein-coupled receptors. Curr. Opin. Pharmacol. 2003, 3 (2), 114–120. https://doi.org/10.1016/S1471-4892(03)00005-5
120. Gevrey M., Worner S., Kasabov N., Pitt J., Giraudel J. L. Estimating risk of events using SOM models: A case study on invasive species establishment. Ecol. Modell. 2006, 197 (34), 361–372. https://doi.org/10.1016/j.ecolmodel.2006.03.032
121. Glenisson P., Gl?nzel W., Janssens F., Moor B. D. Combining full text and bibliometric information in mapping scientific disciplines. Inf. Proc. Manag. 2005, 41 (6), 1548–1572. https://doi.org/10.1016/j.ipm.2005.03.021
122. Goldys E. M. Fluorescence Applications in Biotechnology and the Life Sciences. USA: John Wiley & Sons. 2009, 367 p.
123. Graham C. H., Ferrier S., Huettman F., Moritz C., Peterson A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trend. Ecol. Evol. 2004, 19 (9), 497–503. https://doi.org/10.1016/j.tree.2004.07.006
124. Gruber T. R. A translation approach to portable ontologies. Knowledge Acquisition. 1993, 5 (2), 199–220. https://doi.org/10.1006/knac.1993.1008
125. Hirano S., Sun X., Tsumoto S. Comparison of clustering methods for clinical databases. Inform. Sci. 2004, 159 (34), 155–165. https://doi.org/10.1016/j.ins.2003.03.011
126. Hong Yu., Hatzivassiloglou V., Rzhetsky A., Wilbur W. J. Automatically identifying gene/protein terms in MEDLINE abstracts. J. Biomed. Inform. 2002, 35 (56), 322–330. https://doi.org/10.1016/S1532-0464(03)00032-7
127. Horn W. AI in medicine on its way from knowledge-intensive to data-intensive systems. Artificial Intelligence in Medicine. Elsevier. 2001, 23 (1), 512. https://doi.org/10.1016/S0933-3657(01)00072-0
128. Hsi-Chieh Lee, Szu-Wei Huang, Li E. Y. Mining protein–protein interaction information on the internet. Exp. Syst. Appl. Elsevier. 2006, 30 (1), 142–148. https://doi.org/10.1016/j.eswa.2005.09.083
129. Jabs R., Pivneva T., Huttmann K., Wyczyns ki A., Nolte C., Kettenmann H., Stein h?user C. Synaptic transmission onto hyppocampal glial cells with hGFAP promoter activity. J. Cell Sci. 2005, V. 118, P. 3791–3803. https://doi.org/10.1242/jcs.02515
130. Johnson S. B., Friedman R. Bridging the gap between biological and clinical informatics in a graduate training program. J. Biomed. Inform. 2007, 40 (1), 59–66. Epub. 2006 Mar 15. https://doi.org/10.1016/j.jbi.2006.02.011
131. Kaiser M., Hilgetag C. C. Modelling the development of cortical systems networks. Neurocomputing. 2004, V. 5860, P. 297–302. https://doi.org/10.1016/j.neucom.2004.01.059
132. Yan H., Jiang Y., Zheng J. The internet-based knowledge acquisition and management method to construct large-scale distributed medical expert system. Comp. Meth. Progr. Biomed. 2004, 74 (1), 1–10. https://doi.org/10.1016/S0169-2607(03)00076-2
133. Kannathal N., Acharya U. R., Lim C. M., Sadasivan P. K. Characterization of EEG. A comparative study. Comp. Meth. Progr. Biomed. 2005, 80 (1), 17–23. https://doi.org/10.1016/j.cmpb.2005.06.005
134. Koh W., McCormick B. H. Brain microstructure database system: an exoskeleton to 3D reconstruction and modelling. Neurocomputing. 2002, V. 4446, P. 1099–1105. https://doi.org/10.1016/S0925-2312(02)00426-5
135. Koh W., McCormick B. H. Registration of a 3D mouse brain atlas with brain microstructure data. Neurocomputing. 2003, V. 5254, P. 307–312. https://doi.org/10.1016/S0925-2312(02)00793-2
136. Kulish V., Sourin A., Sourina O. Human electro encephalograms seen as fractal time series: Mathematical analysis and visualization. Comp. Biol. Med. 2006, 36 (3), 291–302. https://doi.org/10.1016/j.compbiomed.2004.12.003
137. Lubitz von D., Wickramasinghe N. Networkcentric healthcare and bioinformatics: Unified operations within three domains of knowledge. Exp. Syst. Appl. 2006, 30 (1), 11–23. https://doi.org/10.1016/j.eswa.2005.09.069
138. Martin-Sanchez F., Iakovidis I., Norager S., Maojo V., de Groen P., Van der Lei J., Jones T., Abraham-Fuchs K., Apweiler R., Babic A., Baud R., Breton V., Cinquin P., Doupi P., Dugas M., Eils R., Engelbrecht R., Ghazal P., Jehenson P., Kulikowski C., Lampe K., De Moor G., Orphanoudakis S., Rossing N., Sara chan B., Sousa A., Spekowius G., Thireos G., Zahlmann G., Zv?rov? J., Hermosilla I., Vicente F. J. Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. J. Biomed. Inform. 2004, 37 (1), 30–42. https://doi.org/10.1016/j.jbi.2003.09.003
139. Masseroli M., Visconti A., Bano S. G. Pinciroli F. He@lthCo-op: a web-based system to support distributed healthcare cooperative work. Comp. Biol. Med. 2006, 36 (2), 109–127. https://doi.org/10.1016/j.compbiomed.2004.09.005
140. Moon S., Byun Y., Han K. FSDB: A frameshift signal database. Comp. Biol. Chem. 2007, 31 (4), 298–302. https://doi.org/10.1016/j.compbiolchem.2007.05.004
141. Orgun B., Vu J. HL7 ontology and mobile agents for interoperability in heterogeneous medical information systems. Comp. Biol. Med. 2006, 36 (78), 817–836. https://doi.org/10.1016/j.compbiomed.2005.04.010
142. P?rez-Rey D., Maojo V., Garc?a-Remesal M., Alonso-Calvo R., Billhardt H., Martin-S?nchez F., Sousa A. Ontofusion: Ontology-based integration of genomic and clinical databases. Comp. Biol. Med. 2006, 36 (78), 712–730. https://doi.org/10.1016/j.compbiomed.2005.02.004
143. Krishtal O. A., Kiskin N. I., Tsyndrenko A. Ya., Klyuchko E. M. Pharmacological properties of amino acid receptors in isolated hippo campal neurons. In: Receptors and ion channels. Ed. By Ovchinnikov Y. A., Hucho F. Berlin-New York: Walter de Gruyter. 1987, P. 127–137.
144. Klyuchko E. M, Klyuchko Z. F., Beloshitsky P. V. Some adaptation characteristics of insects in mountains of Prielbrussie. Nalchik (Russia), “Hypoxia: automatic analysis of hypoxic states of healthy people and sick ones”. 2005, V. 1, P. 137–140. (In Russian).
145. Klyuchko O. M. Biophysical methods use for the elaboration of new system for ecological monitoring of airports’ environment. Bulletin of Engineering Academy. 2014, 2, 72–76. (In Ukrainian).
146. Klyuchko O. M. Development of new monitoring system with data protection for conditions of Ukrainian Polyssia. Bulletin of Engineering Academy. 2014, 2, 239–246. (In Ukrainian).
147. Gonchar O., Klyuchko E., Mankovskaya I. Role of complex nucleosides in the reversal of oxidative stress and metabolic disorders induced by acute nitrite poisoning. Indian Journal of Pharmacology. 2006, 38 (6), 414–418. https://doi.org/10.4103/0253-7613.28208
148. Gonchar O., Klyuchko E., Seredenko M., Oliynik S. Corrections of prooxidant – antioxidant homeostasis of organism under hypoxia of different genesis by yackton, new pharmacological preparation. Sofia (Bulgaria), Acta Physiol. Pharmacol. Bulg. 2003, V. 27, P. 53–58.
149. Klyuchko O., Klyuchko Z., Lizunova A. Electronic Noctuidae database: some problems and solutions. Proceed. 16th European Congress of Lepidopterology. Cluj (Romania). 2009, P. 31–32.
150. Klyuchko O., Klyuchko Z., Lizunova A. Noctuidae fauna of Ukrainian Karpathy: results of monitoring (1956–2008). Proceed. 16th European Congress of Lepidopterology. Cluj (Romania). 2009, P. 31.
151. Klyuchko O. M., Klyuchko Z. F., Lizunova A. G. Development Of Database For Noctuidae Species In Ukraine. 5-th International Conference on the Biology of Butterflies, Roma. 2007.
152. Klyuchko Z. F., Klyuchko O. M. Diversity аnd biogeography of Noctuidae Species In Ukraine. 5-th International Conference on the Biology of Butterflies, Roma. 2007.
153. Klyuchko O. M., Beloshitsky P. V. Investigation of insect adaptation characteristics in Prielbrussie in 2004–2005. Mater. VIII World Congress of International Society for Adaptive Medicine (ISAM). Moscow (Russia). 2006, Р. 165–166.
154. Beloshitsky P. V., Klyuchko O. M. Contribution of Sirotinin’s school into adaptation medicine. Mater. VIII World Congress of International Society for Adaptive Medicine (ISAM). Moscow (Russia). 2006, Р. 158.
155. Klyuchko O. M., Klyuchko Z. F. Ukrainian Noctuidae Database. Mater. of XIV SEL Congress. Roma (Italy). 2005, P. 49.
156. Klyuchko Z. F., Klyuchko O. M. Noctuidae (Lepidoptera) of Donbass, Ukraine. Mater. of XIV SEL Congress. Roma (Italy). 2005, P. 41–42.
157. Beloshitsky P., Klyuchko O., Onopchuck Yu., Onopchuck G. Mathematic model for hypoxic states development for healthy people and ones with ischemic heart disease. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China). 2004, V. 5, P. 251.
158. Beloshitsky P., Klyuchko O., Kostyuk O., Beloshitsky S. Peculiarities of high mountain factors influence on organism. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China). 2004, V. 5, P. 250.
159. Gonchar O., Klyuchko O., Beloshitsky P. Ways of myocardial metabolic disorders correction at hypoxia by new pharmacological preparations. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China). 2004, V. 5, P. 249.
160. Gonchar O., Klyuchko O., Seredenko M., Oliynyk B. Correction of metabolic disorders at hypoxia by new pharmacological preparations. Mater. 3 FEPS Congress. Nice (France). 2003, P. 228.
161. Troyan V., Klyuchko O., Taran N. About some ways to change gender standards. Standard: abweichung: Mater. Intl. Kongress in Natur wissenschaft und Technik. Berlin (Germany). 2003, P. 208.
162. Seredenko M., Gonchar O., Klyuchko O., Oliynyk S. Peculiarities of prooxidant – antioxidant balance of organism under hypoxia of different genesis and its corrections by new pharmacological preparations. Acta Physiologica Hungarica. Budapest (Hungary). 2002, 89 (1–3), 292.
163. Klyuchko O. M., Kiskin N. I., Krishtal O. A., Tsyndrenko A. Ya. Araneidae toxins as antagonists of excitatory amino acid responses in isolated hippocampal neurons. X School on biophysics of membrane transport. Szczyrk (Poland). 1990, V. 2, P. 271.
164. Akaike N., Kawai N., Kiskin N. I., Krish-tal O. A., Tsyndrenko A. Ya., Klyuchko O. M. Spider toxin blocks excitatory amino acid responses in isolated hippocampal pyramidal neurons. Neurosci. Lett. 1987, V. 79, P. 326–330. https://doi.org/10.1016/0304-3940(87)90453-8
165. Aralova N. I., Klyuchko O. M. Mathematic modeling of functional self-organization of pilots’ respiratory systems. “Integrated intellectual robototechnical complexes” – “IIRTC2018-”: Materials of ХІ Intl.Scient.Tech. Conference. 2018, P. 268–269. (In Ukrainian).
166. Klyuchko Z. F., Klyuchko O. M. Moths (Lepidoptera: Noctuidae s. l.) of Cherkasska Region of Ukraine according to results of long-term monitoring. Eversmannia. 2014, N 37, Р. 32–49. (In Russian).
167. Klyuchko Z. F., Klyuchko O. M. Analysis of moth fauna taxonomic structure (Lepidoptera: Noctuidae s. l.) of Ukraine according to monitoring data. Eversmannia. 2014, 33 (3), 41–45. (In Russian).
168. Klyuchko Z. F. Noctuidae of Ukraine. Kyiv: Raevsky Publishing. 2006. (In Ukrainian).
169. Klyuchko Z. F., Klyuchko O. M. Monitoring of the diversity of Noctuidae (Lepidoptera) fauna in Ukrainian Polissia. “Nature of Polissia: investigation and protection”: Materials of Intl. Scient.Conference. 2014, P. 498–502. (In Ukrainian).
170. Klyuchko Z. F., Klyuchko O. M., Lizunova A. G. Monitoring of Noctuidae fauna of Ukraine using electronic information systems. “Nature of Polissia: investigation and protection”: Materials of Intl. Scient.Conference. 2014, P. 261–265. (In Ukrainian).
171. Klyuchko O. M., Pyatchanina T. V., Mazur M. G. Methods of mathematics and bioinformatics in contemporary oncology. Materials of World Congress “Aviation in the XXI c.”, 10-12 Oct 2018, Kyiv. P. 6.2.10–6.2.14. http://conference.nau.edu.ua/index.php/Congress/Congress2018/paper/viewFile/5014/4327
173. Klyuchko O. M., Biletsky A. Ya., Navro tskyi D. O. Method of bio-sensor test system application. Patent UA 129923 U, G01N33/00, G01N33/50, C12Q 1/02. Priority: 22.03.2018, u201802896, Issued: 26.11.2018, Bull. 22, 7 p. (In Ukrainian). http://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=252946IdClaim=252946
174. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. O. Method of application of biotechnical monitoring system with biosensor (bio-sensor test system). Patent UA 132245 U; G01N33/50. Priority: 22.03.2018 u201802893, Issued: 25.02.2019, Bull. 4, 7 p. (In Ukrainian). http://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=255843
175. Klyuchko O. M., Biletsky A. Ya., Navro tskyi D. O. Method of application of biotechnical monitoring system with biosensor and sub-system for optical registration. Patent UA 129922 U, G01N33/50. Priority: 22.03.2018, u201802894; Issued: 26.11.2018, Bull. 22, 10 p. (In Ukrainian). http://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=252945&chapter=descriptionchapter=description
176. Klyuchko O. M. Method of application of biotechnical monitoring system for bioindicators’ accounting with biosensor and sub-system for optical registration. Patent UA 129987 U, G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27.04.2018, u201804662: Issued: 26.11.2018, Bull. 22, 11 p. (In Ukrainian). a href="https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=25300”IdClaim=253010" " ">"ttps://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=253010”IdClaim=253010
177. Klyuchko O. M. Method for cells’ dissociation. Patent UA 130672 U, G01N 33/00, C12Q 1/02, C12N 15/00. Priority: 27.04.18, u201804668, Issued: 26.12.2018, Bull. 24, 7p. (In Ukrainian).a href="https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim253856&chapter=description”chapter=description" " ">"https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=253856&chapter=description”chapter=description
178. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. Method of application of biotechnical monitoring system with expert subsystem and biosensor. Patent UA 131863 U; G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27.04.18, u201804663, Issued: 11.02.2019, Bull. 3, 7p. (In Ukrainian). https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=255364
179. Klyuchko O. M. Method of qualitative analysis of chemical substances. Patent UA 131016 U, G01N33/50, G01N21/78, C12Q 1/60. Priority: 11.05.2018, u201805174, Issued: 10.01.2019, Bull. 1. (In Ukrainian).a href="https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClim=254309”IdClaim=254309" " ">"https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=254309”IdClaim=254309
180. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. A. Method of quantitative analysis of chemical substances. Patent UA 131524 U; G01N33/50, G01N21/78, C12Q 1/60. Priority: 11.05.2018, u201805175, Issued: 25.01.2019, Bull. 2, 10p. (In Ukrainian). http://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=254915
181. Klyuchko O. M., Biletsky A. Ya. Method of qualitative analysis of chemical substances for the influence on electrical currents in bioobjects. Patent UA; G01N 33/50, G01N 21/78, C12Q 1/60. Priority: May 2018, u201806345. (In Ukrainian).
182. Klyuchko O. M., Biletsky A. Ya. Method of qualitative analysis of hydrocarbons with a high and toxic effect on bioobjects. Patent UA; G01N 33/50, G01N 21/78, C12Q 1/60. Priority: May 2018, u201806342. (In Ukrainian).
183. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. O. Method of monitoring of chemical substances’ infuences on organisms in few time intervals. Patent UA; G01N33/00, C12Q 1/02. Priority: 14.12.2018, u201812443. (In Ukrainian).
184. Hardy P. B., Sparks T. H., Isaak N. J. Specialism for larval and adult consumer resources among Brittish butterflies: implications for conservation. Biological Conservation. 2007, 138 (3–4), 440–452. https://doi.org/10.1016/j.biocon.2007.05.014
185. Dennis R. L. H., Shreeve T. G., Sparks T. H. A comparison of geographical and neighbourhood models for improving atlas databases. The case of the French butterfly atlas. Biological Conservation. 2002, 108 (2), 143–159. https://doi.org/10.1016/S0006-3207(02)00101-5
186. Ravlin F. W. Development of monitoring and decision-support systems for integrated pest management of forest defoliators in North America. Forest Ecology and Management. 1991, N 39, Р. 3–13. https://doi.org/10.1016/0378-1127(91)90156-P
187. Mahaman B. D., Harizanis P., Filis I., Antonopouloua A., Yialourisa C. P., Sideridisa A. B. A diagnostic expert system for honeybee pests. Computers and Electronics in Agriculture. 2002, 36 (1), 17–31. https://doi.org/10.1016/S0168-1699(02)00069-8
188. Murali N. S., Percy-Smith A. Database management system for monitoring and warning of codling moth (Cydia pomonella) and carrot fly (Psila rosae). Computers and Electronics in Agriculture. 1991, 6 (3), 267–272. https://doi.org/10.1016/0168-1699(91)90007-V
189. Drake V. A., Wang H. K., Harman I. T. Insect monitoring radar: remote and network operation. Computers and Electronics in Agriculture. 2002, 35 (2–3), 77–94. https://doi.org/10.1016/S0168-1699(02)00024-8
190. Franhuck G. M., Isaenko V. M. Ecology, aviation and cosmos. Kyiv: NAU. 2005, 456 p. (In Ukrainian).
191. Nemtzov V. I., Nemtzov A. V. Analytical system for complex analysis and taking of probes of biophysical aerosols. Patent RU 2145706. Priority date: 11.12.1997, Issued: 20.02.2000. http://ru-patent.info/21/45-49/2145706.html (In Russian)
192. Alekseev S. P., Kursin S. B., Yatsenko S. B. Method for the region’s ecological state data collection and an automated system of ecological monitoring and emergency monitoring of the regional environment. Patent RU 2443001C1. Priority date: 2010-08-05. Filed: 2010-08-05. Issued: 2012-02-20. https://patents.google.com/patent/RU2443001C1/en?q=patent&q=ecology&q=qualitative&q=quantitative+analysis&page=3
193. Owe Orwar, Jardemark Kent. Biosensors and methods of using the same. Patent US 20020182642 A1, DE69832381D1. Claimed: 19.6.2002; Published 5.12. 2002. https://www.google.com/patents/US20020182642
194. Deisseroth K., Zhang Feng, Gradinaru V. Light-sensitive ion-passing molecules. Patent US 9,604,073 B2. Priority Date: 03.17.2010; Filed: 05.12.2016. Issued: 03.28.2017. https://insight.rpxcorp.com/pat/US9604073B2
195. Klyuchko O. M., Biletsky A. Ya., Shutko V. N. Method for constructing and testing of physical molecular memory in anisotropic media with molecules – derivatives of phenol. Patent UA; H01B1/121, G01N33/00, C12Q 1/02.
196. Patent UA; Priority: 14.12.2018, u201812430 (InUkrainian).
197. Klyuchko O. M., Biletsky A. Ya., Lizunov G. V., Shutko V. N. Method of electrical signals generating by bio-elements in the technical hybrid system. A61N1/326, G01N33/00, C12Q 1/02. Patent UA; Priority: 14.12.2018, u201812442 (In Ukrainian).
198. Klyuchko O. M., Biletsky A. Ya., Lizunov G. V., Shutko V. N. Method for application of the system of large-scale monitoring of bioobjects with possibility of their radar control. G01N33/00, G01S13/88, C12N 15/00. Patent UA; Priority: 14.12.2018, u201812444 (In Ukrainian).
199. Klyuchko O. M., Biletsky A. Ya., Lizunov G. V., Piankova O. V. Method of application of biosensor test-system with databases. G01N33/00, C12Q 1/02. Patent UA; Priority: 17.01.2019, u201900476 (In Ukrainian).
200. Klyuchko O. M., Biletsky A. Ya., Lizunov G. V., Piankova O. V. Method of application of monitoring system with biosensor and databases. G01N33/00, C12Q 1/02, G06F11/20. Patent UA; Priority: 17.01.2019, u201900476 (In Ukrainian).
201. Nikolov N., Visone R., Nesteruk I., Rasponi M., Redaelly A. A new algorithm to analyze the video data of cell contractions in microfluidic platforms. Innov Biosyst Bioeng. 2018; 2(2): 74–83. https://doi.org/10.20535/ibb.2018.2.2.128477
202. Umanets V. S., Voinyk B. A., Pavlov V. A., Nastenko I. A. Estimation of algorithms efficiency in the task of biological objects clustering. Innov. Biosyst. Bioeng. 2018; 2(2):84-9. https://doi.org/10.20535/ibb.2018.2.2.133466