ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 4, 2018
https://doi.org/10.15407/biotech11.04.057
Р. 57-67, Bibliography 27, English
Universal Decimal Classification: 543.06 + 577.15 + 543.553
APPLICATION OF GLUTAMATE-SENSITIVE BIOSENSOR FOR ANALYSIS OF FOODSTUFF
Kucherenko D. Yu.1, Kucherenko I. S.2, Soldatkin O. O.1, 2, Soldatkin A. P.1, 2
1Institute of High Technologies, Taras Shevchenko Kyiv National University
2Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics, NAS of Ukraine
The aim of the work were the optimization of an amperometric glutamate-sensitive biosensor and its utilization for the determination of the glutamate concentrations in food samples. Amperometric method of measurements was used. The biosensor was based on immobilized glutamate oxidase and platinum disc electrode. The biosensor was connected to the working cell with auxiliary (platinum wire) and reference (Ag/AgCl) electrodes. The biosensor exhibited high sensitivity to glutamate, duration of one analysis was about 5 min. An influence of the ionic strength, pH, and buffer capacity on the biosensor operation was investigated. The sensitivity of biosensor to various possible interfering substances, including amino acids, was studied; high selectivity to glutamate was shown. The reproducibility of analysis of food samples and an impact of sample dilution was evaluated. Glutamate concentrations in different sauces and seasonings were measured by the developed biosensor; the results correlated well with those obtained by the spectrophotometric method (R2 = 0,988). Thus, the amperometric biosensor for glutamate determination was successfully optimized and used for measurement of glutamate concentrations in sauces and seasonings.
Key words: amperometric biosensor, glutamate oxidase, poly(phenylenediamine), glutamate, food samples.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Raiten D. J., Talbot J. M., Fisher K. D. Executive Summary from the Report: Analysis of Adverse Reactions to Monosodium Glutamate (MSG). J. Nutr. 1995, 125(11), 2891S-2906S. https://doi.org/10.1093/jn/125.11.2891S
2. Ghobadi S., Gorton L. Bienzyme Carbon Paste Electrodes for L-Glutamate Determination. Curr. Sep. 1996, 4, 94–102.
3. Chapman J., Zhou M. Microplate-based fluorometric methods for the enzymatic determination of l-glutamate: application in measuring l-glutamate in food samples. Anal. Chim. Acta. 1999, 402 (1–2), 47–52. https://doi.org/10.1016/S0003-2670(99)00533-4
4. Meldrum B. S. Glutamate as a Neurotransmitter in the Brain: Review of Physiology and Pathology. J. Nutr. 2000, 130(4), 1007S-1015S. https://doi.org/10.1093/jn/130.4.1007S
5. Church W. H., Shawn Lee C., Dranchak K. M. Capillary electrophoresis of glutamate and aspartate in rat brain dialysate Improvements in detection and analysis time using cyclodextrins. J. Chromatogr. B. Biomed. Sci. Appl. 1997, 700 (1–2), 67–75. https://doi.org/10.1016/S0378-4347(97)00314-9
6. G?nd?z T., G?nd?z N., K?l?? E., K?seo?lu F., ?ztas S. G. Titrations in non-aqueous media. Part X. Potentiometric and conductimetric titrations of amino acids with tetrabutylammonium hydroxide in pyridine and acetonitrile solvents. Analyst. 1988,113 (5), 715–719. https://doi.org/10.1039/AN9881300715
7. Kondrat R. W., Kanamori K., Ross B. D. In vivo microdialysis and gas-chromatography/massspectrometry for 13C-enrichment measurement of extracellular glutamate in rat brain. J. Neurosci. Meth. 2002, 120 (2), 179–192. https://doi.org/10.1016/S0165-0270(02)00201-7
8. Valero E., Garcia-Carmona F. A Continuous Spectrophotometric Method Based on Enzymatic Cycling for Determiningl-Glutamate. Anal. Biochem. 1998, 259 (2), 265–271. https://doi.org/10.1006/abio.1998.2650
9. Murachi T., Tabata M. Use of A Bioreactor Consisting of Sequentially Aligned L-Glutamate Dehydrogenase and L-Glutamate Oxidase for the Determination of Ammonia by Chemiluminescence. Biotechnol. Appl. Biochem. 1987, 9 (4), 303–309. https://doi.org/10.1111/j.1470-8744.1987.tb00479.x
10. Lateef M., Siddiqui K., Saleem M., Iqbal L. Estimation of Monosodium Glutamate by Modified HPLC Method in Various Pakistani Spices Formula. J. Chem. Soc. Pak. 2012, 34 (1), 39–42.
11. Shi R., Stein K. Flow injection methods for determination of L-glutamate using glutamate decarboxylase and glutamate dehydrogenase reactors with spectrophotometric detection. Analyst. 1996, 121 (9), 1305. https://doi.org/10.1039/an9962101305
12. Villarta R. L., Cunningham D. D., Guilbault G. G. Amperometric enzyme electrodes for the determination of l-glutamate. Talanta. 1991, 38 (1), 49–55. https://doi.org/10.1016/0039-9140(91)80008-Nhttps://doi.org/10.1016/0039-9140(91)80008-Nhttps://doi.org/10.1016/0039-9140(91)80008-N
13. Liu Z., Niwa O., Horiuchi T., Kurita R., Torimitsu K. NADH and glutamate on-line sensors using Os-gel-HRP/GC electrodes modified with NADH oxidase and glutamate dehydrogenase. Biosens. Bioelectron. 1999, 14 (7), 631–638. https://doi.org/10.1016/S0956-5663(99)00041-Xhttps://doi.org/10.1016/S0956-5663(99)00041-Xhttps://doi.org/10.1016/S0956-5663(99)00041-X
14. Ling D., Wu G., Wang C., Wang F., Song G. The preparation and characterization of an immobilized l-glutamic decarboxylase and its application for determination of l-glutamic acid. Enzyme Microb. Technol. 2000, 27 (7), 516–521. https://doi.org/10.1016/S0141-0229(00)00242-8
15. Kusakabe H., Midorikawa Y., Fujishima T. Methods for Determining L-Glutamate in Soy Sauce with L-Glutamate Oxidase. Agric. Biol. Chem. 1984, 48 (1), 181–184. https://doi.org/10.1080/00021369.1984.10866090
16. Ye B.-C., Li Q.-S., Li Y.-R., Li X.-B., Yu J.-T. L-Glutamate biosensor using a novel l-glutamate oxidase and its application to flow injection analysis system. J. Biotechnol. 1995, 42 (1), 45–52. https://doi.org/10.1016/0168-1656(95)00058-X
17. Almeida N. F., Mulchandani A. K. A mediated amperometric enzyme electrode using tetrathiafulvalene and l-glutamate oxidase for the determination of l-glutamic acid. Anal. Chim. Acta. 1993, 282 (2), 353–361. https://doi.org/10.1016/0003-2670(93)80221-6
18. Dremel B. A. A., Schmid R. D., Wolfbeis O. S. Comparison of two fibre-optic l-glutamate biosensors based on the detection of oxygen or carbon dioxide, and their application in combination with flow-injection analysis to the determination of glutamate. Anal. Chim. Acta. 1991, 248 (2), 351–359. https://doi.org/10.1016/S0003-2670(00)84651-6
19. Muslim N. Z. M., Ahmad M., Heng L. Y., Saad B. Optical biosensor test strip for the screening and direct determination of l-glutamate in food samples. Sens. Actuators B. Chem. 2012, 161 (1), 493–497. https://doi.org/10.1016/j.snb.2011.10.066
20. Mizutani F., Sato Y., Hirata Y., Yabuki S. High-throughput flow-injection analysis of glucose and glutamate in food and biological samples by using enzyme/polyion complexbilayer membrane-based electrodes as the detectors. Biosens. Bioelectron. 1998, 13 (7–8), 809–815. https://doi.org/10.1016/S0956-5663(98)00046-3
21. Isa I. M., Ab Ghani S. A non-plasticized chitosan based solid state electrode for flow injection analysis of glutamate in food samples. Food. Chem. 2009, 112 (3), 756–759. https://doi.org/10.1016/j.foodchem.2008.06.043
22. Borisova T., Kucherenko D., Soldatkin O., Kucherenko I., Pastukhov A., Nazarova A., Galkin M., Borysov A., Krisanova N., Soldatkin A., El’skaya A. An amperometric glutamate biosensor for monitoring glutamate release from brain nerve terminals and in blood plasma. Anal. Chim. Acta. 2018, 1022, 113–123. https://doi.org/10.1016/j.aca.2018.03.015
23. Soldatkin O., Nazarova A., Krisanova N., Borуsov A., Kucherenko D., Kucherenko I., Pozdnyakova N., Soldatkin A., Borisova T. Monitoring of the velocity of highaffinity glutamate uptake by isolated brain nerve terminals using amperometric glutamate biosensor. Talanta. 2015, 135, 67–74. https://doi.org/10.1016/j.talanta.2014.12.031
24. Killoran S. J., O’Neill R. D. Characterization of permselective coatings electrosynthesized on Pt–Ir from the three phenylenediamine isomers for biosensor applications. Electrochim. Acta. 2008, 53(24), 7303–7312. https://doi.org/10.1016/j.electacta.2008.03.076.
25. Kucherenko I. S., Didukh D. Y., Soldatkin O. O., Soldatkin A. P. Amperometric biosensor system for simultaneous determination of adenosine-5’-triphosphate and glucose. Anal. Chem. 2014, 86 (11), 5455–5462. https://doi.org/10.1021/ac5006553
26. Soldatkina O. V., Kucherenko I. S., Pye shkova V. M., Alekseev S. A., Soldatkin O. O., Dzyadevych S. V. Improvement of amperometric transducer selectivity using nanosized phenylenediamine films. Nanosc. Res. Lett. 2017, 12 (1), 594. https://doi.org/10.1186/s11671-017-2353-9
27. Kwong A. W. K., Gr?ndig B., Hu J., Renneberg R. Comparative study of hydrogel-immobilized l-glutamate oxidases for a novel thick-film biosensor and its application in food samples. Biotechnol. Lett. 2000, 22 (4), 267–272. https://doi.org/10.1023/A:1005694704872