ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 4, 2018
https://doi.org/10.15407/biotech11.04.050
Р. 50-56, Bibliography 31, English
Universal Decimal Classification: 577.29:661.8
O. V. Shtapenko1, I. I. Gevkan1, Yu. I. Slyvchyk1, Ye. O. Dzen1, V. Ya. Syrvatka2, N. M. Matvienko3
1Institute of Animal Biology of the National Academy of Agrarian Sciences of Ukraine, Lviv
2Ivan Franko National University of Lviv, Ukraine
3 Institute of Fisheries of the National Academy of Agrarian Sciences of Ukraine, Kyiv
The purpose of this study was to investigate the effect of supplementation with organic zinc, manganese and chromium in the form of liposomal complex on the fertilizing ability and the level of antioxidant responses of female rabbits. Feeding of female rabbits with supplementation of organic forms of trace elements prior to insemination resulted in increase the numbers of corpora lutea, implantation and living fetuses compared to the control group. Moreover, there were the 4.4% and 1.7% decrease in pre- and post-implantation losses in animals receiving the organic microelements prior to insemination, respectively. The level of thiobarbituric-acid-reacting substances in ovary of experimental group was significantly higher (P ≤ 0.05) compare to the control group, while the level of lipid hydroperoxides in experimental group was decreased. In the uterus of rabbits after addition organic compound of trace elements significantly decreasing the thiobarbituric-acid-reacting substances level was by compare to the control animals (P ≤ 0.001). The level of the superoxide dismutase activity in uterus and ovary of female rabbits in the experimental group were significantly higher than in the control group (P ≤ 0,01). Our studies indicated that supplementation organic microelements in liposomal form to the basal diet for 2 weeks before insemination had a beneficial effect on the metabolism intensity and maintaining antioxidant-prooxidant balance in reproductive organs that improve fertilization and mbryo implantation.
Key words:. organic forms of trace elements, female rabbits, antioxidant reactions.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Fortun-Lamothe L. Energy balance and reproductive performance in rabbit does. J. Anim. Reprod. Sci. 2006, 93 (1–2), 1–15. https://doi.org/10.1016/j.anireprosci.2005.06.009
2. Marai M., Rashwan A. A. Rabbits behaviour under modern commercial production conditions. Arch. Tierz., Dummerstorf. 2003, 46 (4), 357–376.
3. Manal A. F., Tony M. A., Ezzo O. H. Feed restriction of pregnant nulliparous rabbit does: consequences on reproductive performance and maternal behaviour. Anim. Reprod. Sci. 2010, 120, 179–186. https://doi.org/10.1016/j.anireprosci.2010.03.010
4. Nafeaa A., Ahmed S. A. E., Hallah S. F. Effect of feed restriction during pregnancy on performance and productivity of New Zealand white rabbit does. Veter. Med. Intern. 2011, ID 839737, 5 p.
5. Goliomytis M., Skoupa E.-P., Konga A., Symeon G. K., Charismiadou M. A., Deligeorgis S. G. Influence of gestational maternal feed restriction on growth performance and meat quality of rabbit offsprings. Animal. 2016, 10 (1), 157–162. https://doi.org/10.1017/S1751731115001871
6. Hostetler C. E., Kincaid R. L., Mirando M. A. The role of essential trace elements in embryonic and fetal development in livestock. The Veterinary J. 2003, 166, 125–139. https://doi.org/10.1016/S1090-0233(02)00310-6
7. Mahan D. C., Vallet J. L. Vitamin and mineral transfer during fetal development and the early postnatal period in pigs. J. Anim. Sci. 1997, 75, 2731–2738. https://doi.org/10.2527/1997.75102731x
8. Terrin G., Canani R. B., Chiara D. M., Pietravalle A., Aleandri V., Conte F., Curtis M. D. Zinc in early life: a key element in the fetus and preterm neonate. Nutrients. 2015, 7 (12), 10427–10446. https://doi.org/10.3390/nu7125542
9. Johnston L., Shurson J., Whitney M. Nutritional effects on fetal imprinting in swine. Proceeding of 2008 Minnesota Nutrition Conference, Owatonna, MN. 2008, 207–222.
10. Aurousseau B., Gruffat D., Durand D. Gestation linked radical oxygen species fluxes and vitamins and trace mineral deficiencies in the ruminant. Reprod. Nutr. Dev. 2006, 46 (6), 601–620. https://doi.org/10.1051/rnd:2006045
11. Kamyshnikov V. S. Reference book on clinic and biochemical researches and laboratory diagnostics. MEDpress-inform, Moskva. 2004. (In Russian).
12. Deiana L., Carru C., Pes G., Tadolini B. Spectrophotometric measurement of hydroperoxides at increased sensitivity by oxidation of Fe2+ in the presence of xylenol orange. Free Radic. Res. 1999, 31 (3), 237–244. https://doi.org/10.1080/10715769900300801
13. Chiang S. P., Lowry O. H., Senturia B. H. Micro-chemical studies on normal cerumen. II. The percentage of lipid and protein in casual and fresh cerumen. J. Invest. Dermatol. 1957, 28 (1), 63–68. https://doi.org/10.1038/jid.1957.7
14. Kostiuk V. A., Potapovich A. I., Kovaleva Zh. V. A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetin oxidation. Vopr. Med. Khim. 1990, 36 (2), 88–91. (Article in Russian, abstract in English).
15. Koroliuk M. A., Ivanova L. I., Ma?orova I. G., Tokarev V. E. A method of determining catalase activity. Lab. Delo. 1988, 1, 16–19. (In Russian).
16. Stanton T. L., Whittier J. C., Geary T. W., Kimberling C. V., Johnson A. B. Effects of trace mineral supplementation on cow-calf performance, reproduction, and immune function. Prof. Anim. Sci. 2000, 16, 121–127. https://doi.org/10.15232/S1080-7446(15)31674-0
17. Phiri E. C. J. H., Nkya R., Pereka A. E., Mgasa M. N., Larsen T. The effects of calcium, phosphorus and zinc supplementation on reproductive performance of crossbred dairy cows in Tanzania. Trop. Anim. Health Prod. 2007, 39, 317–323. https://doi.org/10.1007/s11250-007-9016-2
18. Tang Xiao-lin, Ding Lin-lin, YANG Yang, X. U. Qing-song1, L. I. Shuguang1, Wang Xiu-Wu. Effect of chitooligosaccharide-zinc on growth and reproduction performance in female kunming mice. Acta Nutrimenta Sinica. 2013, N 3.
19. Adam B., Malatyalioglu E., Alvur M., Talu C. Magnesium, zinc and iron levels in preeclampsia. J. Matern. Fetal Med. 2001, 10, 246–250. https://doi.org/10.1080/jmf.10.4.246.250-14
20. Srivastava S., Mehrotra P. K., Srivastava S. P., Siddiqui M. K. Some essential elements in maternal and cord blood in relation to birth weight and gestational age of the baby. Biol. Trace Elem. Res. 2001, 86 (2), 97–105.
21. Diaz E., Halhali A., Luna C., Diaz L., Avila E., Larrea F. Newborn birth weight correlates with placental zinc, umbilical insulin-like growth factor I, and leptin levels in preeclampsia. Arch. Med. Res. 2002, 33, 40–47. https://doi.org/10.1016/S0188-4409(01)00364-2
22. Mahomed K., Bhutta Z., Middleton P. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst. Rev. 2007, 2, CD000230. https://doi.org/10.1002/14651858.CD000230.pub3
23. Reddi A. R., Jensen L. T., Naran U. A., Rosenfeld L., Leung E., Shah R., Culotta V. C. The overlapping roles of manganese and Cu/ZnSOD in oxidative stress protection. Free Radical. Biol. Med. 2009, 46, 154–162. https://doi.org/10.1016/j.freeradbiomed.2008.09.032
24. Ramos R. S., Oliveira M. L., Izaguirry A. P., Vargas L. M., Soares M. B., Mesquite F. S.,Santos F. W., Binelli M. The periovulatory endocrine milieu affects the uterine redox environment in beef cows. Reprod. Biol. Endocrinol. 2015, 13, 39. https://doi.org/10.1186/s12958-015-0036-x
25. Bansal A. K. Manganese as an antioxidant in semen. Iran. J. Appl. Anim. Sci. 2013, 3 (2), 217–221.
26. Anand R. J. K., Kanwar U. Role of same trace metal ions in placental membrane lipid peroxidation. Biol. Trace. Elem. Res. 2001, 82, 61–75. https://doi.org/10.1385/BTER:82:1-3:061
27. Swati S., Sarvesh K., Saurabh S. Free radicals and antioxidants enzymes status in normal pregnant women. Sch. J. App. Med. Sci. 2015, 3 (4B), 1703–1706.
28. Mistry H. D., Williams P. J. The importance of antioxidant micronutrients in pregnancy. Oxid. Med. Cell. Longevity. 2011, Article ID 841749, 12 pages. https://doi.org/10.1155/2011/8417492011
29. Haddad A. S., Subbiah V., Lichtin A. E. Hypocupremia and bone marrow failure. Haematology. 2008, 93, 1–5. https://doi:10.3324/haematol.12121
30. Tian X., Diaz F. J. Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Devel. Biol. 2013, 376, 51–61. https://doi.org/10.1016/j.ydbio.2013.01.015
31. Tian X., Diaz F. J. Zinc depletion causes multiple defects in ovarian function during the periovulatory period in mice. Endocrinology. 2012, 153, 873–886. https://doi.org/10.1210/en.2011-1599