ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 10, No 2, 2017
https://doi.org/10.15407/biotech10.04.034:
Р. 34-43, Bibliography 44, English
Universal Decimal Classification: 577.112:616
1Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
2Bohomolets National Medical University, Kyiv, Ukraine
The aim of this research was to study the effect of glutamine deprivation on the expression of genes encoding for HTRA1/PRSS11, LONP1/PRSS15, and some cathepsins in U87 glioma cells in relation to inhibition of IRE1 (inositol requiring enzyme-1). It was shown that in control glioma cells (transfected by empty vector) glutamine deprivation up-regulated the expression of LONP1, CTSD, CTSF, CTSO, and CTSS genes, down-regulated HTRA1, CTSC, and CTSK gene expressions, and did not significantly change the expression of CTSA, CTSB, and CTSL genes. Inhibition of ІRE1 signaling enzyme function in U87 glioma cells modified the effect of glutamine deprivation on the expression of HTRA1, LONP1, CTSD, CTSL, CTSO, and CTSS genes: removed the effect of glutamine deprivation on HTRA1 and CTSO genes, introduces on CTSL gene, reduced — on CTSD gene, and enhanced — on LONP1 and CTSS genes. Therefore, glutamine deprivation affect the expression level of most studied genes in relation to the functional activity of IRE1 enzyme, a central mediator of endoplasmic reticulum stress, which responsible for control of cell proliferation and tumor growth.
Key words: RNA expression, HTRA1/PRSS11, LONP1/PRSS15, cathepsins, IRE1 knockdown, glutamine deprivation, U87 glioma cells.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Montilla N. A., Blas M. P., Santalla M. L., Villa J. M. Mucosal immune system: A brief review. Inmunolog?a. 2004, 23 (2), 207–216.
2. Holmgren J., Czerkinsky C. Mucosal immunity and vaccines. Nat. Med. 2005, 11 (4), 45–53. https://doi.org/10.1038/nm1213
3. Torch? A. M., Jouan H., Le Corre P., Albina E., Primault R., Jestin A., Le Verge R. Ex vivo and in situ PLGA microspheres uptake by pig ileal Peyer’s patch segment. Int. J. Pharmaceut. 2000, 201 (1), 15–27. https://doi.org/10.1016/S0378-5173(00)00364-1
4. Finzi G., Cornaggia M., Capella C., Fiocca R., Bosi F., Solcia E., Samloff I. M. Cathepsin E in follicle associated epithelium of intestine and tonsils: localization to M cells and possible role in antigen processing. Histochemistry. 1993, 99 (3), 201–211. https://doi.org/10.1007/BF00269138
5. Schenk M., Mueller C. The mucosal immune system at the gastrointestinal barrier. Best practice & Research. Clin. Gastroenterol. 2008, 22 (3), 391–409. https://doi.org/10.1016/j.bpg.2007.11.002
6. Yuki Y., Kiyono H. Mucosal vaccines: novel advances in technology and delivery. Expert review of vaccines. 2009, 8 (8), 1083–1097. https://doi.org/10.1586/erv.09.61
7. Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat. Rev. Immunol. 2012, 12 (8), 592–605. https://doi.org/10.1038/nri3251
8. Csaba N., Garcia-Fuentes M., Alonso M. J. Nanoparticles for nasal vaccination. Adv. Drug Deliv. Rev. 2008, 61 (2), 140–157. https://doi.org/10.1016/j.addr.2008.09.005
9. Yun Y., Cho Y. W., Park K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev. 2012, 65 (6), 822–832. https://doi.org/10.1016/j.addr.2012.10.007
10. Neutra M. R., Kozlowski P. A. Mucosal vaccines: the promise and the challenge. Nat. Revi. Immunol. 2006, 6 (2), 148–158. https://doi.org/10.1038/nri1777
11. He Q., Mitchell A. R., Johnson S. L., Wagner-Bartak C., Morcol T., Bell S. J. Calcium phosphate nanoparticle adjuvant. Clin. Diagnost. Lab. Immunol. 2000, 7 (6), 899–903. https://doi.org/10.1128/CDLI.7.6.899-903.2000
12. Chadwick S., Kriegel C., Amiji M. Delivery strategies to enhance mucosal vaccination. Expert Opin. Biol. 2009, 9 (4), 427–440. https://doi.org/10.1517/14712590902849224
13. Chadwick S., Kriegel C., Amiji M. Nanotechnology solutions for mucosal immunization. Adv. Drug Deliv. Rev. 2009, 62 (4–5), 394–407. https://doi.org/10.1016/j.addr.2009.11.012
14. Labyntsev A. Yu., Oliinyk O. S., Kaberniuket A. A., Chunihin O. J., Gorchev V. F., Kyrchenko T. O., Chernushov V. I., Kolibo D. V. Optimizing protein A–colloidal gold conjugates synthesis conditions and developing approaches for their characterization. Biotechnol. аcta. 2009, 2 (2), 76–83. (In Ukrainian).
15. Kaberniuk A. A., Labyntsev A. J., Kolibo D. V., Oliinyk O. S., Redchuk T. A., Korotkevich N. V., Gorchev V. F., Karahim S. O., Komisarenko S. V. Fluorescent derivatives of diphtheria toxin’s subunit b and their interaction with Vero cells. Ukr. Biochem. J. 2009, 81 (1), 67–77. (In Ukrainian).
16. Malyala P., Singh M. Micro/nanoparticle adjuvants: preparation and formulation with antigens. Meth. Mol. Biol. Clifton N. J. Springer protocols. 2010, Р. 91–101.
17. Sch?gger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987, 166 (2), 368–379.
18. Ohno M., Abe T. Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J. Immunol. Meth. 1991, 145 (1–2), 199–203.