ISSN 410-7751 (Print)
ISSN 2410-776X (on-line)
"Biotechnologia Acta" V. 10, No 4, 2017
https://doi.org/10.15407/biotech10.04.025
Р. 25-33, Bibliography 17, English
Universal Decimal Classification: 579.841:577.114
T. P. Pirog A. A. Voronenko, M. O. Ivakhniuk
National University of Food Technologies, Kyiv, Ukraine
The purpose of the research was to establish Acinetobacter sp. IMB B-7005 cultivation conditions, which provide the maximal synthesis of microbial exopolysaccharide ethapolan on a mixture of molasses and sunflower oil, and to explore the possibility of replacing refined oil in a mixture with molasses for waste one. On the basis of theoretical calculations of energy consumption for the synthesis of ethapolan and biomass, it was determined that the optimal molar ratio of the concentrations of energy-deficient (sucrose) and energy-excessive (sunflower oil) substrates in the mixture was 1.0:0.9. Experiments have shown that the highest values of exopolysaccharide synthesis were observed at a molar ratio of monosubstrates in mixture 1.0:1.1, which is as close as possible to the theoretically calculated one. It was shown that increasing concentration of molasses and refined oil in mixture from 1.0 to 1.5% was accompanied by increase in amount of synthesized exopolysaccharide and its synthesizing capacity by 1.2 and 1.3 times, respectively. The possibility of replacing refined oil in a mixture with molasses for various types of waste (after frying potatoes, meat, vegetables and mixed) was established. The maximum parameters of exopolysaccharide synthesis (concentration 14 g/l, synthesizing capacity 3.5 g exopolysaccharide/g biomass) were observed when using mixed waste oil for both inoculum obtaining and EPS biosynthesis. The obtained results testify to the possibility of development of universal technology for obtaining microbal exopolysaccharide ethapolan on a mixture of waste (molasses and waste oil) independent of the type and provider of waste oil.
Key words: microbial exopolysaccharides, synthesis intensification, mixture of substrates.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Pidhorskyy V., Iutinska G., Pirog T. Intensification of microbial synthesis technologies. К.: Nauk. Dumka. 2010, 327 p. (In Ukrainian).
2. Schmid J., Sieber V., Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front. Microbiol. 2015, V. 6. https://doi.org/10.3389/fmicb.2015.00496
3. Ates O. Systems biology of microbial exopolysaccharides production. Front. Bioeng. Biotechnol. 2015, V. 3. https://doi.org/10.3389/fbioe.2015.00200
4. Gupta P., Diwan B. Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. 2016, V. 13, P. 58–71. https://doi.org/10.1016/j.btre.2016.12.006
5. Pirog T. P., Ivakhniuk M. O., Voronenko A. A. Exopolysaccharides synthesis on industrial waste. Biotechnol. acta. 2016, 9 (2), 7–18. https://doi.org/10.15407/biotech9.02.007
6. Pirog T. P., Shulyakova M. A., Shevchuk T. A. Mixed substrates in environment and biotechnological processes. Biotechnol. acta. 2013, 6 (6), 28–44. https://doi.org/10.15407/biotech6.06.028 (In Ukrainian).
7. Pirog T. P., Konon A. D., Shevchuk T. A., Bilets I. V. Intensification of biosurfactant synthesis by Acinetobacter calcoaceticus IMV B-7241 on a hexadecane–glycerol mixture. Microbiology. 2012, 81 (5), 565–572. https://doi.org/10.1134/S0026261712050128
8. Pirog T., Shevchuk T., Beregova K., Kudrya N. Intensification of surfactants synthesis under cultivation Nocardia vaccinii ІMV B-7405 on a mixture of glucose and glycerol. Biotechnol. аcta. 2015, 8 (6), 23–31. https://doi.org/10.15407/biotech8.06.023
9. Ratledge C. Biodegradation of oils, fats and fatty acids. In: Biochemistry of microbial degradation. Dordrecht: Kluwer Academic Publishers. 1994, 590 p.
https://doi.org/10.1007/978-94-011-1687-9_4
10. Babel W., M?ller R. H. Mixed substrates utilizationin microorganisms: biochemical aspects and energetics. J. Gen. Microbiol. 1985, 131 (1), 39?45.
11. Tsouko E., Kourmentza C., Ladakis D., Kopsahelis N., Mandala I., Papanikolaou S., Paloukis F., Alves V., Koutinas A. Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 2015, 16 (7), 14832–14849. https://doi.org/10.3390/ijms160714832
12. Sellami M., Oszako T., Miled N., Ben Rebah F. Industrial wastewater as raw material for exopolysaccharide production by Rhizobium leguminosarum. Braz. J. Microbiol. 2015, 46 (2), 407–413. https://doi.org/10.1590/S1517-838246220140153
13. Feng X., Walker T. H., Bridges W. C., Thornton C., Gopalakrishnan K. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Bioresour. Technol. 2014, V. 166, P. 17–23. https://doi.org/10.1016/j.biortech.2014.03.120
14. Mart?n M. A., Fern?ndez R., Serrano A., Siles J. A. Semi-continuous anaerobic co-digestion of orange peel waste and residual glycerol derived from biodiesel manufacturing. Waste Manag. 2013, 33 (7), 1633–1639.https://doi.org/10.1016/j.wasman.2013.03.027
15. Louhasakul Y., Cheirsilp B. Industrial waste utilization for low-cost production of raw material oil through microbial fermentation. Appl. Biochem. Biotechnol. 2013, 169 (1), 110?122.
https://doi.org/10.1007/s12010-012-9965-4
16. Xin B., Wang Y., Tao F., Li L., Ma C., Xu P. Co-utilization of glycerol and lignocellulosic hydrolysates enhances anaerobic 1,3-propanediol production by Clostridium diolis. Sci. Rep. 2016, V. 6. https://doi.org/10.1038/srep19044
17. Xu Y., Coda R., Shi Q., Tuomainen P., Katina K., Tenkanen M. Exopolysaccharides production during the fermentation of soybean and fava bean flours by Leuconostoc mesenteroides DSM 20343. J. Agric. Food Chem. 2017, 65 (13), 2805?2815. https://doi.org/10.1021/acs.jafc.6b05495
{/spoiler}
1. Pidhorskyy V., Iutinska G., Pirog T. Intensification of microbial synthesis technologies. К.: Nauk. Dumka. 2010, 327 p. (In Ukrainian).
2. Schmid J., Sieber V., Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front. Microbiol. 2015, V. 6. doi: 10.3389/fmicb.2015.00496.
3. Ates O. Systems biology of microbial exopolysaccharides production. Front. Bioeng. Biotechnol. 2015, V. 3. doi: 10.3389/fbioe.2015.00200.
4. Gupta P., Diwan B. Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. 2016, V. 13, P. 58–71. doi: 10.1016/j.btre.2016.12.006.
5. Pirog T. P., Ivakhniuk M. O., Voronenko A. A. Exopolysaccharides synthesis on industrial waste. Biotechnol. acta. 2016, 9 (2), 7–18. doi: 10.15407/biotech9.02.007.
6. Pirog T. P., Shulyakova M. A., Shevchuk T. A. Mixed substrates in environment and biotechnological processes. Biotechnol. acta. 2013, 6 (6), 28–44. doi: 10.15407/biotech6.06.028. (In Ukrainian).
7. Pirog T. P., Konon A. D., Shevchuk T. A., Bilets I. V. Intensification of biosurfactant synthesis by Acinetobacter calcoaceticus IMV B-7241 on a hexadecane–glycerol mixture. Microbiology. 2012, 81 (5), 565–572. doi: 10.1134/S0026261712050128.
8. Pirog T., Shevchuk T., Beregova K., Kudrya N. Intensification of surfactants synthesis under cultivation Nocardia vaccinii ІMV B-7405 on a mixture of glucose and glycerol. Biotechnol. аcta. 2015, 8 (6), 23–31. doi: 10.15407/biotech8.06.023.
9. Ratledge C. Biodegradation of oils, fats and fatty acids. In: Biochemistry of microbial degradation. Dordrecht: Kluwer Academic Publishers. 1994, 590 p.
10. Babel W., M?ller R. H. Mixed substrates utilizationin microorganisms: biochemical aspects and energetics. J. Gen. Microbiol. 1985, 131 (1), 39?45.
11. Tsouko E., Kourmentza C., Ladakis D., Kopsahelis N., Mandala I., Papanikolaou S., Paloukis F., Alves V., Koutinas A. Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 2015, 16 (7), 14832–14849. doi: 10.3390/ijms160714832.
12. Sellami M., Oszako T., Miled N., Ben Rebah F. Industrial wastewater as raw material for exopolysaccharide production by Rhizobium leguminosarum. Braz. J. Microbiol. 2015, 46 (2), 407–413. doi: 10.1590/S1517-838246220140153.
13. Feng X., Walker T. H., Bridges W. C., Thornton C., Gopalakrishnan K. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Bioresour. Technol. 2014, V. 166, P. 17–23. doi: 10.1016/j.biortech.2014.03.120.
14. Mart?n M. A., Fern?ndez R., Serrano A., Siles J. A. Semi-continuous anaerobic co-digestion of orange peel waste and residual glycerol derived from biodiesel manufacturing. Waste Manag. 2013, 33 (7), 1633–1639. doi: 10.1016/j.wasman.2013.03.027.
15. Louhasakul Y., Cheirsilp B. Industrial waste utilization for low-cost production of raw material oil through microbial fermentation. Appl. Biochem. Biotechnol. 2013, 169 (1), 110?122.
16. Xin B., Wang Y., Tao F., Li L., Ma C., Xu P. Co-utilization of glycerol and lignocellulosic hydrolysates enhances anaerobic 1,3-propanediol production by Clostridium diolis. Sci. Rep. 2016, V. 6. doi: 10.1038/srep19044.
17. Xu Y., Coda R., Shi Q., Tuomainen P., Katina K., Tenkanen M. Exopolysaccharides production during the fermentation of soybean and fava bean flours by Leuconostoc mesenteroides DSM 20343. J. Agric. Food Chem. 2017, 65 (13), 2805?2815. doi: 10.1021/acs.jafc.6b05495.