ISSN 410-7751 (Print)
ISSN 2410-776X (on-line)
"Biotechnologia Acta" V. 10, No 4, 2017
Р. 14-24, Bibliography 18, English
Universal Decimal Classification: 632.981.3
https://doi.org/10.15407/biotech10.04.014
ADJUVANT PROPERTIES OF NANOPARTICLES IMMOBILIZED RECOMBINANT DIPHTHERIA TOXOID FRAGMENT
T. O. Chudina1, 2, A. Yu. Labyntsev1, D. V. Kolybo1, S V. Komisarenko1
1Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
2Educational and Scientific Center “Institute of Biology” of Kyiv Taras Shevchenko National University
The aim of the research was to compare the characteristics of nanoparticles with different chemical structure and size (colloidal gold Gold 1 and Gold 2, calcium phosphate CaP and poly(lactideco-glykolid) PLGA 1 and 2) to find the most efficient carriers of antigen — recombinant diphtheria toxoid for per os immunization. According to the MTT test, all studied particles show no significant cytotoxic impact on the studied cells in vitro, with the exception of CaP nanoparticles, which in high concentrations have cytotoxic effect on the U937 cells, and Gold nanoparticles 1 and 2, that are able to inhibit growth of the L929 cells. The most effective phagocytosis by macrophage-like cells J774 is observed for PLGA nanoparticles 1 and 2 with the immobilized antigen, while Gold nanoparticles 1 and 2 with antigen can interact with the surface of these cells without being phagocytated by them. In BALB/c mice immunized per os with antigen immobilized on PLGA 1 and 2 as well as Gold 2 carriers, the concentration of specific IgA antibodies in blood significantly increases after the second immunization, compared with controls. In the group of mice treated with PLGA 2 conjugated antigen, the concentration of specific IgG in blood after the third immunization also increases. These results show the promise of nanoparticles PLGA 1 and 2 as adjuvant for immunization per os.
Key words: nanoparticles, calcium phosphate, colloidal gold, poly(lactic-co-glicolic)acid, diphtheria toxoid, oral immunization.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Montilla N. A., Blas M. P., Santalla M. L., Villa J. M. Mucosal immune system: A brief review. Inmunolog?a. 2004, 23 (2), 207–216.
2. Holmgren J., Czerkinsky C. Mucosal immunity and vaccines. Nat. Med. 2005, 11 (4), 45–53. https://doi.org/10.1038/nm1213
3. Torch? A. M., Jouan H., Le Corre P., Albina E., Primault R., Jestin A., Le Verge R. Ex vivo and in situ PLGA microspheres uptake by pig ileal Peyer’s patch segment. Int. J. Pharmaceut. 2000, 201 (1), 15–27. https://doi.org/10.1016/S0378-5173(00)00364-1
4. Finzi G., Cornaggia M., Capella C., Fiocca R., Bosi F., Solcia E., Samloff I. M. Cathepsin E in follicle associated epithelium of intestine and tonsils: localization to M cells and possible role in antigen processing. Histochemistry. 1993, 99 (3), 201–211. dhttps://doi.org/10.1007/BF00269138
5. Schenk M., Mueller C. The mucosal immune system at the gastrointestinal barrier. Best practice & Research. Clin. Gastroenterol. 2008, 22 (3), 391–409. https://doi.org/10.1016/j.bpg.2007.11.002
6. Yuki Y., Kiyono H. Mucosal vaccines: novel advances in technology and delivery. Expert review of vaccines. 2009, 8 (8), 1083–1097. https://doi.org/10.1586/erv.09.61
7. Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat. Rev. Immunol. 2012, 12 (8), 592–605. https://doi.org/10.1038/nri3251
8. Csaba N., Garcia-Fuentes M., Alonso M. J. Nanoparticles for nasal vaccination. Adv. Drug Deliv. Rev. 2008, 61 (2), 140–157. https://doi.org/10.1016/j.addr.2008.09.005
9. Yun Y., Cho Y. W., Park K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev. 2012, 65 (6), 822–832. https://doi.org/10.1016/j.addr.2012.10.007
10. Neutra M. R., Kozlowski P. A. Mucosal vaccines: the promise and the challenge. Nat. Revi. Immunol. 2006, 6 (2), 148–158. https://doi.org/10.1038/nri1777
11. He Q., Mitchell A. R., Johnson S. L., Wagner-Bartak C., Morcol T., Bell S. J. Calcium phosphate nanoparticle adjuvant. Clin. Diagnost. Lab. Immunol. 2000, 7 (6), 899–903. https://doi.org/10.1128/CDLI.7.6.899-903.2000
12. Chadwick S., Kriegel C., Amiji M. Delivery strategies to enhance mucosal vaccination. Expert Opin. Biol. 2009, 9 (4), 427–440.https://doi.org/10.1517/14712590902849224
13. Chadwick S., Kriegel C., Amiji M. Nanotechnology solutions for mucosal immunization. Adv. Drug Deliv. Rev. 2009, 62 (4–5), 394–407. https://doi.org/10.1016/j.addr.2009.11.012
14. Labyntsev A. Yu., Oliinyk O. S., Kaberniuket A. A., Chunihin O. J., Gorchev V. F., Kyrchenko T. O., Chernushov V. I., Kolibo D. V. Optimizing protein A–colloidal gold conjugates synthesis conditions and developing approaches for their characterization. Biotechnol. аcta. 2009, 2 (2), 76–83. (In Ukrainian).
15. Kaberniuk A. A., Labyntsev A. J., Kolibo D. V., Oliinyk O. S., Redchuk T. A., Korotkevich N. V., Gorchev V. F., Karahim S. O., Komisarenko S. V. Fluorescent derivatives of diphtheria toxin’s subunit b and their interaction with Vero cells. Ukr. Biochem. J. 2009, 81 (1), 67–77. (In Ukrainian).
16. Malyala P., Singh M. Micro/nanoparticle adjuvants: preparation and formulation with antigens. Meth. Mol. Biol. Clifton N. J. Springer protocols. 2010, Р. 91–101.
17. Sch?gger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987, 166 (2), 368–379. https://doi.org/10.1016/0003-2697(87)90587-2
18. Ohno M., Abe T. Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J. Immunol. Meth. 1991, 145 (1–2), 199–203. https://doi.org/10.1016/0022-1759(91)90327-C