ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 8, No 4, 2015
https://doi.org/10.15407/biotech8.04.021
Р. 21-39, Bibliography 142, English
Universal Decimal Classification: 759.873.088.5:661.185
MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES
T. P. Pirog, A. D. Konon, I. V. Savenko
National University of Food Technologies, Kyiv, Ukraine
It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids) and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+), degradation of complex pollution (oil and other hydrocarbons with heavy metals), and the role of microbial surfactants in phytoremediation processes.
The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota); establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.
Key words: microbial surfactants, bioremediation.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1. Chen J., Chen Q., Ma Q. Influence of surface functionalization via chemical oxidation of the properties of carbon nanotubes. J. Colloid. Interface Sci. 2012, 370 (1), 32–38. doi: 10.1016/j.jcis.2011.12.073.
2. Ramos-Perez V., Cifuentes A., Coronas N., de Pablo A., Borr?s S. Modification of carbon nanotubes for gene delivery vectors. Nanomaterial interfaces in biology: methods and protocols. Methods in molecular biology. Bergese P., Hamad-Schifferli K. (Eds.). New York: Springer Sci. 2013, V. 1025, P. 261–269. doi: 10.1007/978-1-62703-462-3_2.
3. Welsher K., Liu Z., Sherlock S. P., Robinson J. T., Chen Z., Daranciang D., Dai H. A route to brightly fluorescent carbon nanotubes for nearinfrared imaging in mice. Nat. Nanotechnol. 2009, 4 (11), 773–780. doi: 10.1038/nnano.2009.294.
4. Chen X., Chen J., Deng C., Xiao C., Yang Y., Nie Z., Yao S. Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode. Talanta. 2008, V. 76, P. 763–767.
doi: 10.1016/j.talanta.2008.04.023.
5. Kostarelos K., Lacerda L., Pastorin G., Wu W., Wieckowski S., Luangsivilay J., Godefroy S., Pantarotto D., Briand J. P., Muller S., Prato M., Bianco A. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2007, V. 2, P. 108–113. doi: 10.1038/nnano.2006.209.
6. Lay C.L., Liu H.Q., Tan H.R., Liu Y. Delivery of paclitaxel by physically loading onto poly-(ethylene glycol) PEG-graft-carbon nanotubes for potent cancer therapeutics. Nano technology. 2010, 21(6), 065101–065111. doi: 10.1088/0957-4484/21/6/065101.
7. Liu Y., Wu D. C., Zhang W. D., Jiang X., He C. B., Chung T. S., Goh S. H., Leong K. W. Polyethylenimine-grafted multiwalled carbon nanotubes for secure non-covalent immo bilization and efficient delivery of DNA. Angew. Chem. Int. Edn. 2005, 44 (30), 4782–4785.
doi: 10.1002/anie.200500042.
8. Liu Z., Winters M., Holodniy M., Dai H. J. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Edn. 2007, V. 46, P. 2023–2027. PMID: 17290476.
9. Herrero M. A., Toma F. M., Al-Jamal K. T., Kostarelos K., Bianco A., Da Ros T., Bano F., Casalis L., Scoles G., Prato M. Synthesis and characterization of a carbon nanotube–dendron series for efficient siRNA delivery. J. Am. Chem. Soc. 2009, V. 131, P. 9843–9848. doi: 10.1021/ja903316z.
10. Kang Y., Liu Y. C., Wang Q., Shen J. W., Wu T., Guan W. J. On the spontaneous encapsulation of proteins in carbon nanotubes. Biomaterials. 2009, V. 30, P. 2807–2815.
doi: 10.1016/j.biomaterials.2009.01.024.
11. Ali-Boucetta H., Al-Jamal K. T., McCarthy D., Prato M., Bianco A., Kostarelos K. Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem. Commun. 2008, V. 4, P. 459–461. doi: 10.1039/B712350G.
12. Liu Z., Chen K., Davis C., Sherlock S., Cao Q., Chen X., Dai H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008, V. 68, P. 6652–6660.
doi: 10.1158/0008-5472.CAN-08-1468.
13. Bhirde A., Patel V., Gavard J., Zhang G., Sousa A. A., Masedunskas A., Leapman R. D., Weigert R., Gutkind J. S., Rusling J. F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotubebased drug delivery. ACS Nano. 2009, V. 3, P. 307–316. doi: 10.1021/nn800551s.
14. Chen J. Y., Chen S. Y., Zhao X. R., Kuznetsova L. V., Wong S. S., Ojima I. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc. 2008, V. 130, P. 16778–16785. doi: 10.1021/ja805570f.
15. Pantarotto D., Singh R., McCarthy D., Erhardt M., Briand J.-P., Prato M., Kostarelos K., Bianco A. Functionalized carbon nanotubes for plasmid gene DNA delivery. Angew. Chem. Int. Ed. Engl. 2004, V. 43, P. 5242–5246. PMID: 15455428.
16. Singh R., Pantarotto D., McCarthy D. O., Chaloin O., Hoebeke J., Partidos C. D., Briand J. P., Prato M., Bianco A., Kostarelos K. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 2005, V. 127, P. 4388–4396. PMID: 15783221.
17. Kam N. W. S., Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 2005, V. 127, P. 6021–6026. doi: 10.1021/ja050062v.
18. Rojas-Chapana J., Troszczynska J., Firkowska I., Morsczeck C., Giersig M. Multi-walled carbon nanotubes for plasmid delivery into E. coli cells. Lab. Chip. 2005, V. 5, P. 536–539.
PMID: 15856091.
19. Raffa V., Vittorio O., Costa M., Ziaei A., Ni to das S., Riggio C., Al-Jamal K., Gherardini L., Bardi G., Pizzorusso T., Karachalios T., Cuschieri A. Multiwalled carbon nanotube antennas induce effective plasmid DNA transfection of bacterial cells. J. Nanoneurosci. 2012, 2 (1), 56–62.
doi: http://dx.doi.org/10.1166/ jns.2012.1016.
20. Mattos I. B, Alves D. A., Hollanda L. M., Ceragiogli H. J., Baranauskas V., Lancellotti M. Effects of multi-walled carbon nanotubes (MWCNT) under Neisseria meningitides transformation process. J. Nanobiotechnol. 2011, V. 9, P. 53 (9 pp). doi: 10.1186/1477-3155-9-53.
21. Nunes A., Amsharov N., Guo C., Van den Bossche J., Santhosh P., Karachalios T., Nitodas S., Burghard M., Kostarelos K., Al-Jamal K. T. Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small. 2010, 6 (20), 2281–2291. doi: 10.1002/smll.201000864.
22. Rafsanjani M. S. O., Alvari A., Samim M., Hejazi M. A., Abdin M. Z. Application of novel nanotechnology strategies in plant biotransformation: a contemporary overview. Recent Pat. Biotechnol. 2012, V. 6, P. 69–79. PMID: 22420883.
23. Serag M. F., Kaji N., Gaillard C., Okamoto Y., Terasaka K., Jabasini M., Tokeshi M., Mizukami H., Bianco A., Baba Y. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano. 2011, 5 (1), 493–499. doi: 10.1021/nn102344t.
24. Yuan H., Hu S., Huang P., Song H., Wang K., Ruan J., He R., Cui D. Single walled carbon nanotubes exhibit dual-phase regulation to exposed Arabidopsis mesophyll cells. Nanoscale Res. Lett. 2011, V. 6, P. 44 (9 pp). doi: 10.1007/s11671-010-9799-3.
25. Serag M. F., Kaji N., Tokeshiac M., Baba Y. Introducing carbon nanotubes into living walled plant cells through cellulase-induced nanoholes. RSC Advances. 2012, V. 2, P. 398–400.
doi: 10.1039/C1RA00760B.
26. Liu Q., Chen B., Wang Q., Shi X., Xiao Z., Lin J., Fang X. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 2009, 9 (3), 1007–1010. doi: 10.1021/nl803083u.
27. Dresselhaus M. S., Dresselhaus G., Avouris P. Carbon nanotubes: Synthesis, structure, properties and applications. Berlin: Springer. 2001, 451 p. doi: 10.1007/3-540-39947-X.
28. Saito R., Dresselhaus G., Dresselhaus M. S. Physical Properties of Carbon Nanotubes. London: Imper. Coll. Press. 1998, 258 p. ISBN: 978-1-86094-093-4.
29. Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 2002, 35 (12), 1035–1044. doi: 10.1021/ar0101640.
30. Karousis N., Tagmatarchis N., Tasis D. Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 2010, 110 (9), 5366–5397. doi: 10.1021/cr100018g.
31. Kharisov B. I., Kharissova O. V., Gutierre H. L., Mendez U. O. Recent advances on the soluble carbon nanotubes. Ind. Eng. Chem. Res. 2009, V. 48, P. 572–590. doi: 10.1021/ie800694f.
32. Tasis D., Tagmatarchis N., Bianco A., Prato M. Chemistry of carbon nanotubes. Chem. Rev. 2006, V. 106, P. 1105–1136. doi: 10.1021/cr050569o.
33. Clark M. D., Subramanian S., Krishnamoorti R. Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. J. Colloid. Interface Sci. 2011, 354 (1), 144–151.
doi: 10.1016/j.jcis.2010.10.027.
34. Tu W., Lei J., Ju H. Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid: Direct electrochemistry and highly sensitive amperometric biosensing for trichloroacetic acid. Chem. Eur. J. 2009, V. 15, P. 779–784. doi: 10.1002/chem.200801758.
35. Sanchez-Pomales G., Pagan-Miranda C., Santiago-Rodriguez L., Cabrera C. R. DNAwrapped carbon nanotubes: From synthesis to applications. Carbon nanotubes. Marulanda J. M. (Ed.) Croatia, Vukovar: InTech. 2010, P. 721–748. doi: 10.5772/39450.
36. Holder P. G., Francis M. B. Integration of a self-assembling protein scaffold with watersoluble single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2007, V. 46, P. 4370–4373.
doi: 10.1002/anie.200700333.
37. Yang W., Thordarson P., Gooding J. J., Rin ger S. P., Braet F. Carbon nanotubes for biological and biomedical applications. Nanotechnology. 2007, V. 18, P. 412001(12pp.).
doi: 10.1088/0957-4484/18/41/412001.
38. Mohanpuria P., Rana N., Yadav S. Biosynthesis of nanoparticles: technological concepts and future applications. J.Nanopart. Res. 2008, V. 10, P. 507–517. doi: 10.1007/s11051-007-9275-x.
39. Virkutyte J., Varma R. S. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2011, V. 2, P. 837–846.
doi: 10.1039/C0SC00338G.
40. Lee S. Y., Rasheed S. A simple procedure for maximum yield of high-quality plasmid DNA. Biotechniques. 1990, 9 (6), 676–679. PMID: 2271166.
41. Hunter P. R., Craddock C. P., di Benedetto S., Roberts L. M., Frigerio L. Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells. Plant Physiol. 2007, V. 145, P. 1371–1382. doi: http://dx.doi.org/10.1104/pp.107.
42. Inoue H., Nojima H., Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene. 1990, V. 96, P. 23–28. PMID: 2265755.
43. Shimmel G. Methods in electron microscopy. Moskva: Mir. 1972, 300 p. (In Russian).
44. Cheng Q., Debnath S., Gregan E., Byrne H. J. Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent. J. Phys. Chem. C. 2010, V. 14, P. 8821–8827.
doi: 10.1021/jp101431h.
45. Nakashima N., Okuzono S., Murakami H., Nakai T., Yoshikawa K. DNA dissolves singlewalled carbon nanotubes in water. Chem. Lett. 2003, 32 (5), 456–457. doi: 10.1246/cl.2003.456.
46. Kraszewski S., Bianco A., Tarek M., Ramseyer C. Insertion of short amino-functionalized single-walled carbon nanotubes into phospholipid bilayer occurs by passive diffusion. PLoS ONE. 2012, 7 (7), 40703 (11 p.). doi: 10.1371/journal.pone.0040703.
47. Serag M. F., Kaji N., Habuchi S., Bianco A., Baba Y. Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv. 2013, V. 3, P. 4856–4862.
doi: 10.1039/C2RA22766E.
48. Xu Y., Pehrsson P. E., Chen L., Zhang R., Zhao W. Double-stranded DNA singlewalled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. J. Phys. Chem. C. 2007, V. 111, P. 8638–8643. doi: 10.1021/jp0709611.
49. Johnson R. R., Johnson A. T. C., Klein M. L. The nature of DNA-base–carbon-nanotube interactions. Small. 2010, 6 (1), 31–34. doi: 10.1002/smll.200901481.
50. Tihomirov S., Kimstach T. Raman spectroscopy — a promising method for the study of carbon nanomaterials. Analytics. 2011, 1 (1), 28–32. (In Russian).
51. Ivanova M. V., Lamprecht C., Loureiro M. J., Huzil J. T., Foldvari M. Pharmaceutical characterization of solid and dispersed carbon nanotubes as nanoexcipients. Int. J. Nanomed. 2012, V. 7, P. 403–415. doi: 10.2147/IJN.S27442.
52. Nepal D., Geckeler K. E. pH-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool? Small. 2006, V. 2, P. 406–412. PMID: 17193060.
53. Zorbas V., Smith A. L., Xie H., Ortiz-Acevedo A., Dalton A. B., Dieckmann G. R., Draper R. K., Baughman R. H., Musselman I. H. Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J. Amer. Chem. Soc. 2005, V. 127, P. 12323–12328. PMID:16131210.
54. Wang S., Humphreys E. S., Chung S.-Y., Delduco D. F., Lustig S. R., Wang H., Parker K. N., Rizzo N. W., Subramoney S., Chiang Y. M., Jagota A. Peptides with selective affinity for carbon nanotubes. Nat. Mater. 2003, 2 (3), 196–200. doi: 10.1038/nmat833.
55. Hirayama K., Akashi S., Furuya M., Fukuhara K. Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and Frit-FAB LC/MS. Biochem. Biophys. Res. Commun. 1990, 173 (2), 639–646. doi: 10.1016/S0006-291X(05)80083-X.
56. Majorek K. A., Porebski P. J., Dayal A., Zimmerman M. D., Jablonska K., Stewart A. J., Chruszcz M., Minor W. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol. Immunol. 2012, V. 52, P. 174–182. doi: 10.1016/j.molimm.2012.05.011.
57. Fraser J. R., Laurent T. C. Turnover and metabolism of hyaluronan. Ciba Found Symp. 1989, V. 143, P. 41–53; discussion 53–59, 281–285. PMID: 2680348.
58. Swamy R. N., Gnanamani A., Shanmugasamy S. Gopal R. K., Mandal A. B. Bioinformatics in crosslinking chemistry of collagen with selective crosslinkers. BMC Res. Notes. 2011, V. 4, P. 399.
doi: 10.1186/1756-0500-4-399.
59. Saranchuk V. І., Іljashov M. O., Oshovskij V. V., Bіleckij V. S. Chemistry and physics of fossil fuels. Donets’k: Eastern Publishing House. 2008, 600 p. (In Ukrainian).
60. Tan M., Arulselvan P., Fakurazi S., Ithnin H., Hussein M. Z. A review on characterizations and biocompatibility of functionalized carbon nanotubes in drug delivery design. J. Nanomater. 2014, V. 2014, 20 p., ID 917024. doi:10.1155/2014/917024 (http://dx.doi.org/10.1155/2014/917024).
61. Kim S.-J., Park J., Jeong Y., Go H., Lee K., Hong S., Seong M.-J. Metalparticle-induced enhancement of the photoluminescence from biomoleculefunctionalized carbon nanotubes. Nanoscale Res. Lett. 2014, V. 9, P. 85–91. doi:10.1186/1556-276X-9-85.
62. Ali M. A., Srivastava S., Solanki P. R., Reddy V., Agrawal V. V., Kim C. G., John R., Malhotra B. D. Highly efficient bienzyme functionalized nanocomposite-based microfluidics biosensor platform for biomedical application. Sci. Rep. 2013, V. 3, P. 2661–2669. doi:10.1038/srep02661.
63. Ishibashi A., Yamaguchi Y., Murakami H., Nakashima N. Layer-by-layer assembly of RNA/single-walled carbon nanotube nanocomposites. Chem. Phys. Lett. 2006, 419 (4), 74–577.
doi: 10.1016/j.cplett.2005.11.122.