ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 8, No 4, 2015
https://doi.org/10.15407/biotech8.04.009
Р. 9-20, Bibliography 69, English
Universal Decimal Classification: 573.6: 639.3
APPLYING OF DNA- MICROARRAYS IN A MODERN FISH-FARMING
Zaloilo I. A. 1, Zaloilo O. V. 2, Buchatskiy L. P.2, 3
1National University of Bioresources and Environmental Management of Ukraine, Kyiv
2Institute of Fisheries of the Ukrainian National Academy of Agrarian Sciences, Kyiv
3 Kyiv Taras Shevchenko National University, Ukraine
The paper is a review of the literature concerning the most advanced areas of applying the DNA microarrays method in modern fish farming. Particular attention is given to the efficiency of this approach in diagnostics of various stages of viral and bacterial fish diseases. DNA microarrays using is shown to deadly effect for studying of genetic changes in fish under the influence of temperature factors and aquatic pollutants (including feed excess). Various possibilities of DNA microarrays application of DNA microarrays for interspecies and intraspecies identification of individuals in the wild conditions and fish industry are discribed.
Key words: DNA — microarrays, genotyping, molecular and genetic diagnostics.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1. Schena M. Genome analysis with gene expression microarrays. Bioеssays. 1996, 18 (5), 427–431.
2. Bumgarner R. DNA microarrays: Types, Applications and their future. Curr. Prot.Mol. Biol. 2013. doi:10.1002/0471142727.mb2201s101.
3. J?rgensen S. M., Afanasyev S., Krasnov A.Gene expression analyses in Atlantic salmonchallenged with infectious salmon anemia virus reveal differences between individuals with early, intermediate and late mortality. BMC Genomics. 2008, 9:179. doi:10.1186/1471-2164-9-179.
4. Schi?tz B. L., J?rgensen S. M., Rexroad C.,Gj?en T., Krasnov A. Transcriptomic analysis of responses to infectious salmon anemia virus infection in macrophage-like cells. Virus Res. 2008, 136 (1–2), 65–74.
http://dx.doi.org/10.1016/j.virusres.2008.04.019
5. Li J., Boroevich K. A., Koop B. F., Davidson W. S.Comparative genomics identifies candidate genes for infectious salmon anemia (ISA) resistance in Atlantic salmon (Salmo salar). Mar. Biotechnol. (NY). 2011, 13 (2), 232–241. doi: 10.1007/s10126-010-9284-0.
6. LeBlanc F., Laflamme M., Gagn? N. Genetic markers of the immune response of Atlanticsalmon (Salmo salar) to infectious salmon anemia virus (ISAV). Fish Shellfish Immunol. 2010, 29 (2), 217–232. doi: 10.1016/j.fsi.2010.03.007.
7. Workenhe S. T., Hori T. S., Rise M. L.,Kiben ge M. J., Kibenge F. S. Infectious salmon anaemia virus (ISAV) isolates induce distinct gene expression responses in the Atlantic salmon (Salmo salar) macrophage/dendritic-like cell line TO, assessed using genomic techniques. Mol. Immunol. 2009, 46 (15), 2955–2974.
http://dx.doi.org/10.1016/j.molimm.2009.06.015
8. LeBlanc F., Arseneau J. R., Leadbeater S., Glebe B., Laflamme M., Gagn? N. Transcriptional response of Atlantic salmon (Salmo salar) after primary versus secondary exposure to infectious salmon anemia virus (ISAV). Mol. Immunol. 2012, 51 (2), 197–209.
doi: 10.1016/j.molimm.2012.03.021.
9. Timmerhaus G., Krasnov A., Takle H., Afanasyev S., Nilsen P., Rode M., J?rgensen S. M. Comparison of Atlantic salmon individuals with different outcomes of cardiomyopathy syndrome (CMS). BMC Genomics. 2012, 30;13:205.
doi: 10.1186/1471-2164-13-205.
10. Timmerhaus G., Krasnov A., Nilsen P., Alarcon M., Afanasyev S., Rode M., Takle H., J?rgensen S. M. Transcriptome profiling of immune responses to cardiomyopathy syndrome (CMS) in Atlantic salmon. BMC Genomics. 2011, Sep 23;12:459.
doi: 10.1186/1471-2164-12-459.
11. Herath T. K., Bron J. E., Thompson K. D.,Taggart J. B., Adams A., Ireland J. H.,Richards R. H. Transcriptomic analysis of the host response to early stage salmonid alphavirus (SAV-1) infection in Atlanticsalmon Salmo salar L. Fish Shellfish Immunol. 2012, 32 (5), 796–807.
doi: 10.1016/j.fsi.2012.02.001.
12. Martinez-Rubio L., Morais S., Evensen O.,Wadsworth S., Ruohonen K., Vecino J. L.,Bell J. G., Tocher D. R. Functional feeds reduce heart inflammation and pathology in Atlantic Salmon (Salmo salar L.) following experimental challenge with Atlantic salmon reovirus (ASRV). PLoS One. 2012, 7 (11), e40266.
doi: 10.1371/journalpone.0040266.
13. Skjesol A., Skj?veland I., Eln?s M., Timmerhaus G., Fredriksen B. N., J?rgensen S. M., Krasnov A., J?rgensen J. B. IPNV with high and low virulence: host immune responses and viral mutations during infection. Virol. J. 2011, Aug 10;8:396.
doi: 10.1186/1743-422X-8-396.
14. Krasnov A., Timmerhaus G., Schi?tz B. L.,Torgersen J., Afanasyev S., Iliev D., J?rgensen J., Takle H., J?rgensen S. M. Genomic survey of early responses to viruses in Atlantic salmon, Salmo salar L. Mol.Immunol. 2011, 49 (1–2), 163–174.
doi: 10.1016/j.molimm.
15. Novoa B., Mackenzie S., Figueras A.Inflammation and innate immune response against viral infections in marine fish. Curr.Pharm. Des. 2010, 16 (38), 4175–4184.
http://dx.doi.org/10.2174/138161210794519156
16. Donohoe O. H., Henshilwood K., Way K.,Hakimjavadi R., Stone D. M., Walls D.Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs. PLoS One. 2015, 10 (4):e0125434.
http://dx.doi.org/10.1371/journal.pone.0125434
17. Rakus K. ?., Irnazarow I., Adamek M.,Palmeira L., Kawana Y., Hirono I., Kondo H.,Matras M., Steinhagen D., Flasz B.,Brogden G., Vanderplasschen A., Aoki T. Gene expression analysis of common carp (Cyprinus carpio L.) lines during Cyprinid herpesvirus 3 infection yields insights into differential immune responses. Dev.Comp. Immunol. 2012, 37 (1), 65–76. doi:10.1016/j.dci.2011.12.006.
18. Iwakiri S., Song J. Y., Nakayama K., Oh M. J.,Ishida M., Kitamura S. Host responses of Japanese flounder Paralichthys olivaceus with lymphocystis cell formation. Fish Shellfish Immunol. 2014, 38 (2), 406–411. doi: 10.1016/j.fsi.2014.03.028.
19. Yasuike M., Kondo H., Hirono I., Aoki T.Difference in Japanese flounder, Paralichthys olivaceus gene expression profile following hirame rhabdovirus (HIRRV) G and N protein DNA vaccination. Fish Shellfish. Immunol. 2007, 23 (3), 531–541.
20. Byon J. Y. 1., Ohira T., Hirono I., Aoki T. Use of a cDNA microarray to study immunity against viral hemorrhagic septicemia (VHS) in Japanese flounder (Paralichthys olivaceus) following DNA vaccination. Fish Shellfish Immunol. 2005, 18 (2), 135–147.
21. Tsoi S. C., Cale J. M., Bird I. M., Ewart V.,Brown L. L., Douglas S. Use of human cDNA microarrays for identification of differentially expressed genes in Atlantic salmon liver during Aeromonas salmonicida infection. Mar. Biotechnol. (NY). 2003, 5 (6), 545–554.
http://dx.doi.org/10.1007/s10126-002-0112-z
22. Warsen A. E., Krug M. J., LaFrentz S.,Stanek D. R., Loge F. J., Call D. R. Simultaneous discrimination between 15 fishpathogens by using 16S ribosomal DNA PCR and DNAmicroarrays. Appl. Envir.Microbiol. 2004, 70 (7), 4216–4221.
23. Ewart K. V., Belanger J. C., Williams J.,Karakach T., Penny S., Tsoi S. C.,Richards R. C., Douglas S. E. Identification of genes differentially expressed in Atlantic salmon (Salmo salar) in response to infection by Aeromonas salmonicida using cDNA microarray technology. Dev. Comp. Immunol. 2005, 29 (4), 333–347.
http://dx.doi.org/10.1016/j.dci.2004.08.004
24. Li C., Beck B., Su B., Terhune J., Peatman E. Early mucosal responses in blue catfish (Ictalurus furcatus) skin to Aeromonas hydrophila infection. Fish Shellfish Immunol. 2013, 34 (3), 920–928.
http://dx.doi.org/10.1016/j.fsi.2013.01.002
25. Li C., Wang R., Su B., Luo Y., Terhune J.,Beck B., Peatman E. Evasion of mucosal defenses during Aeromonas hydrophila infection of channel catfish (Ictalurus punctatus) skin. Dev. Comp. Immunol.2013, 39 (4), 447–455. doi: 10.1016/j.dci.2012.11.009.
26. Peatman E., Terhune J., Baoprasertkul P.,Xu P., Nandi S., Wang S., Somridhivej B.,Kucuktas H., Li P., Dunham R., Liu Z. Microarray analysis of gene expression in the bluecatfish liver reveals early activation of the MHC class I pathway after infection with Edwardsiella ictaluri. Mol. Immunol. 2008, 45 (2), 553–566.
http://dx.doi.org/10.1016/j.molimm.2007.05.012
27. Peatman E., Baoprasertkul P., Terhune J., Xu P., Nandi S., Kucuktas H., Li P., Wang S., Somridhivej B., Dunham R., Liu Z. Expression analysis of the acute phase response in channel catfish (Ictalurus punctatus) after infection with a Gramnegative bacterium. Dev. Comp. Immunol. 2007, 31 (11), 1183–1196.
http://dx.doi.org/10.1016/j.dci.2007.03.003
28. Moon J. Y., Hong Y. K., Kong H. J., Kim D. G.,Kim Y. O., Kim W. J., Ji Y. J., An C. M., Nam B. H. A cDNA microarray analysis to identify genes involved in the acute-phase response pathway of the olive flounder after infection with Edwardsiella tarda. Vet Immunol Immunopathol. 2014, 161(1–2), 49–56. doi: 10.1016/j.vetimm.2014.07.002.
29. Yasuike M., Takano T., Kondo H., Hirono I.,Aoki T. Differential gene expression profiles in Japanese flounder (Paralichthys olivaceus) with different susceptibilities to edwardsiellosis. Fish Shellfish Immunol. 2010, 29 (5), 747–752. doi: 10.1016/j.fsi.2010.07.008.
30. Wynne J. W., O’Sullivan M. G., Cook M. T.,Stone G., Nowak B. F., Lovell D. R., Elliott N. G. Transcriptome analyses of amoebic gill disease-affected Atlantic salmon (Salmo salar) tissues reveal localized host gene suppression. Mar. Biotechnol.(NY). 2008, 10 (4), 388–403.
doi: 10.1007/s10126-007-9075-4.
31. Krasnov A., Skugor S., Todorcevic M.,Glover K. A., Nilsen F. Gene expression in Atlantic salmon skin in response to infection with the parasitic copepod Lepeophtheirus salmonis, cortisol implant, and their combination. BMC Genomics. 2012, 13:130. doi:10.1186/1471-2164-13-130.
32. Bontems F. 1., Baerlocher L., Mehenni S., Bahechar I., Farinelli L., Dosch R. Efficient mutation identification in zebrafish bymicroarray capturing and next generation sequencing. Biochem. Biophys. Res. Commun. 2011, 405 (3), 373–376.
http://dx.doi.org/10.1016/j.bbrc.2011.01.024
33. Leaver M. J., Villeneuve L. A., Obach A.,Jensen L., Bron J. E., Tocher D. R., Taggart J. B. Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar). BMC Genomics. 2008, 9:299. doi:10.1186/1471-2164-9-299.
34. Tacchi L., Secombes C. J., Bicker dike R., Adler M. A., Vene gas C., Takle H.,Martin S. A. Transcriptomic and physiological responses to fishmeal substitution with plant proteins in formulated feed in farmed Atlantic salmon (Salmo salar). BMC Genomics. 2012, 13:363. doi:10.1186/1471-2164-13-363.
35. Limtipsuntorn U., Haga Y., Kondo H., Hirono I., Satoh S. Microarray analysis of hepatic gene expression in juvenile Japanese flounder Paralichthys olivaceus fed diets supplemented with fish or vegetable oils. Mar. Biotechnol. (NY). 2014, 16 (1), 88–102.
doi: 10.1007/s10126-013-9535-y.
36. Morais S., Pratoomyot J., Taggart J. B., Bron J. E., Guy D. R., Bell J. G., Tocher D. R. Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis. BMC Genomics. 2011, 12:255. doi:10.1186/1471-2164-12-255.
37. Sahlmann C., Sutherland B. J., Kortner T. M., Koop B. F., Krogdahl A., Bakke A. M. Early response of gene expression in the distal intestine of Atlantic salmon (Salmo salar L.) during the development of soybean meal induced enteritis. Fish Shellfish Immunol. 2013, 34 (2), 599–609. doi: 10.1016/j.fsi.2012.11.031.
38. Grammes F., Takle H. Anti-inflammatory effects of tetradecylthioacetic acid (TTA) in macrophage-like cells from Atlantic salmon (Salmo salar L.). BMC Immunol. 2011,12:41. doi:10.1186/1471-2172-12-41.
39. Grammes F., R?rvik K. A., Thomassen M. S., Berge R. K., Takle H. Genome wide response to dietary tetradecylthioacetic acid supplementation in the heart of Atlantic Salmon (Salmo salar L). BMC Genomics.2012, 13:180. doi:10.1186/1471-2164-13-180.
40. Martin S. A., Douglas A., Houlihan D. F.,Secombes C. J. Starvation alters the liver transcriptome of the innate immune response in Atlantic salmon (Salmo salar). BMC Genomics. 2010, 11:418. doi:10.1186/1471-2164-11-418.
41. Drew R. E., Rodnick K. J., Settles M., Wacyk J., Churchill E., Powell M. S., Hardy R. W., Murdoch G. K., Hill R. A., Robison B. D. Effect of starvation on transcriptomes of brain and liver in adult female zebrafish (Danio rerio). Physiol. Genomics. 2008, 35 (3), 283–295.
http://dx.doi.org/10.1152/physiolgenomics.90213.2008
42. Gahr S. A., Vallejo R. L., Weber G. M., Shepherd B. S., Silverstein J. T., Rexroad C. E. 3rd. Effects of short-term growth hormone treatment on liver and muscle transcriptomes in rainbow trout (Oncorhynchus mykiss). Physiol. Genomics. 2008, 32 (3), 380–392.
http://dx.doi.org/10.1152/physiolgenomics.00142.2007
43. L? A., Hu X., Xue J., Zhu J., Wang Y., Zhou G. Gene expression profiling in the skin of zebrafish infected with Citrobacter freundii. Fish Shellfish Immunol. 2012, 32 (2), 273–283.
doi: 10.1016/j.fsi.2011.11.016.
44. Rise M. L., Douglas S. E., Sakhrani D., Williams J., Ewart K. V., Rise M., Davidson W. S., Koop B. F., Devlin R. H. Multiple microarray platforms utilized for hepatic gene expression profiling of GH transgenic coho salmon with and without ration restriction. J. Mol. Endocrinol. 2006, 37 (2), 259–282.
http://dx.doi.org/10.1677/jme.1.02031
45. Xu Q., Feng C. Y., Hori T. S., Plouffe D. A., Buchanan J. T., Rise M. L. Family-specific differences in growth rate and hepatic gene expression in juvenile triploid growth hormone (GH) transgenic Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. Part D Genomics Proteomics. 2013, 8 (4), 317–333. doi: 10.1016/j.cbd.2013.09.002.
46. Sheader D. L., Williams T. D., Lyons B. P., Chipman J. K. Oxidative stress response of European flounder (Platichthys flesus) to cadmium determined by a custom cDNA microarray. Mar. Environ. Res. 2006, 62 (1), 33–44.
http://dx.doi.org/10.1016/j.marenvres.2006.03.001
47. Williams T. D. 1., Diab A. M., George S. G., Godfrey R. E., Sabine V., Conesa A., Minchin S. D., Watts P. C., Chipman J. K. Development of the GENIPOL European flounder (Platichthys flesus) microarray and determination of temporal transcriptional responses to cadmium at low dose. Envir. Sci. Technol. 2006, 40 (20), 6479–6488.
http://dx.doi.org/10.1021/es061142h
48. Vuori K. A., Koskinen H., Krasnov A., Koivum?ki P., Afanasyev S., Vuorinen P. J., Nikinmaa M. Developmental disturbances in early life stage mortality (M74) of Baltic salmon fry as studied by changes in gene expression. BMC Genomics. 2006, 7:56.
http://dx.doi.org/10.1186/1471-2164-7-56
49. Vuori K. A., Nikinmaa M. M74 syndrome in Baltic salmon and the possible role of oxidative stresses in its development: present knowledge and perspectives for future studies AMBIO: J. Human Envir. 2007, 36 (2), 168–172.
http://dx.doi.org/10.1579/0044-7447(2007)36[168:MSIBSA]2.0.CO;2
50. Hagenaars A., Knapen D., Meyer I. J.,van der Ven K., Hoff P., De Coen W.Toxicity evaluation of perfluorooctane sulfonate (PFOS) in the liver of common carp (Cyprinus carpio). Aquat Toxicol. 2008, 88 (3), 155–163. doi: 10.1016/j.aquatox.2008.04.002.
51. Nakayama K., Kitamura S., Murakami Y., Song J. Y., Jung S. J., Oh M. J., Iwata H., Tanabe S. Toxicogenomic analysis of immune system-related genes in Japanese flounder (Paralichthys olivaceus) exposed to heavy oil. Mar Pollut. Bull. 2008, 57 (6–12), 445–452.
doi: 10.1016/j.marpolbul.2008.02.021.
52. Moens L. N., Smolders R., van der Ven K., van Remortel P., Del-Favero J., De Coen W. M.
Effluent impact assessment using microarray-based analysis in common carp: a systems toxicology approach. Chemosphere.2007, 67 (11), 2293–2304.
http://dx.doi.org/10.1016/j.chemosphere.2006.09.092
53. Osachoff H. L., van Aggelen G. C., Mommsen T. P., Kennedy C. J. Concentrationresponse relationships and temporal patterns in hepatic gene expression of Chinook salmon (Oncorhynchus tshawytscha) exposed to sewage. Comp. Biochem. Physiol. Part D Genomics Proteomics. 2013, 8 (1), 32–44. doi:10.1016/j.cbd.2012.10.002.
54. S?fteland L., Kirwan J. A., Hori T. S., St?rseth T. R., Sommer U., Berntssen M. H., Viant M. R., Rise M. L., Waagb? R.,Torstensen B. E., Booman M., Olsvik P. A. Toxicological effect of single contaminants and contaminant mixtures associated with plant ingredients in novel salmon feeds. Food Chem. Toxicol. 2014, 73:157-74. doi: 10.1016/j.fct.2014.08.008.
55. Hampel M., Alonso E., Aparicio I.,Bron J. E., Santos J. L., Taggart J. B.,Leaver M. J. Potential physiological effects of pharmaceutical compounds in Atlantic salmon (Salmo salar) implied by transcriptomic analysis. Envir. Sci. Pollut. Res. Int. 2010, 17 (4), 917–933.
doi: 10.1007/s11356-009-0282-6.
56. Sha Z., Xu P., Takano T., Liu H., Terhune J., Liu Z. The warm temperature acclimation protein Wap65 as an immune response gene: its duplicates are differentially regulated by temperature and bacterial infections. Mol. Immunol. 2008, 45 (5), 1458–1469.
http://dx.doi.org/10.1016/j.molimm.2007.08.012
57. Quinn N. L., McGowan C. R., Cooper G. A.,Koop B. F., Davidson W. S. Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress. Physiol. Genomics. 2011, 43 (11), 685–696.
http://dx.doi.org/10.1152/physiolgenomics.00008.2011
58. Jeffries K. M., Hinch S. G., Sierocinski T., Pavlidis P., Miller K. M. Transcriptomic responses to high water temperature in two species of Pacific salmon. Evol. Appl. 2014, 7 (2), 286–300. doi: 10.1111/eva.12119.
59. Ju Z., Dunham R. A., Liu Z. Differential gene expression in the brain of channelcatfish (Ictalurus punctatus) in response to cold acclimation. Mol. Genet. Genomics. 2002, 268 (1), 87–95.
http://dx.doi.org/10.1007/s00438-002-0727-9
60. Wang Q., Tan X., Jiao S., You F., Zhang P. J. Analyzing cold tolerance mechanism in ransgenic zebrafish (Danio rerio). PLoS One. 2014, 9 (7):e102492.
doi: 10.1371/journal.pone.0102492.
61. Moriya S 1., Urawa S., Suzuki O., Urano A., Abe S. DNA microarray for rapid detection of mitochondrial DNA haplotypes of chum salmon. Mar. Biotechnol. (NY). 2004, 6 (5), 430–434.
http://dx.doi.org/10.1007/s10126-004-1100-2
62. Moriya S. 1., Sato S., Azumaya T., Suzuki O., Urawa S., Urano A., Abe S. Genetic stock identification of chum salmon in the Bering Sea and North Pacific Ocean using mitochondrial DNA microarray. Mar. Biotechnol. (NY). 2007, 9 (2), 179–191.
http://dx.doi.org/10.1007/s10126-006-6079-4
63. Li R. W., Waldbieser G. C. Production and utilization of a high-density oligonucleotide microarray in channel catfish, Ictalurus punctatus. BMC Genomics. 2006, 7:134. doi:10.1186/1471-2164-7-134.
64. Derome N., Duchesne P., Bernatchez L. Parallelism in gene transcription among sympatric lake whitefish (Coregonus clupeaformis Mitchill) ecotypes. Mol. Ecol. 2006, 15 (5), 1239–1249.
http://dx.doi.org/10.1111/j.1365-294X.2005.02968.x
65. Larsen P. F., Nielsen E. E., Williams T. D., Loeschcke V. Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder (Platichthys flesus). Heredity (Edinb). 2008, 101 (3), 247–259. doi: 10.1038/hdy.2008.54.
66. Koop B. F., von Schalburg K. R., Leong J., Walker N., Lieph R., Cooper G. A., Robb A., Beetz-Sargent M., Holt R. A., Moore R.,Brahmbhatt S., Rosner J., Rexroad C. E. 3rd, McGowan C. R., Davidson W. S. A salmonid EST genomic study: genes, duplications, phylogeny and microarrays. BMC Genomics. 2008, 9:545. doi: 10.1186/1471-2164-9-545.
67. Kochzius M., Seidel C., Antoniou A., Botla S. K., Campo D., Cariani A., Vazquez E. G., Hau schild J., Hervet C., Hj?rleifsdottir S., Hreg g vids son G., Kappel K., Landi M., Ma gou las A., Marteinsson V., N?lte M., Planes S., Tinti F., Turan C., Venugopal M. N., Weber H., Blohm D. Identifying Fishes through DNA Barcodes and Microarrays. PLoS One. 2010, 5 (9):e12620.
doi: 10.1371/journal.pone.0012620.
68. Handy S. M., Chizhikov V., Yakes B. J., Paul S. Z., Deeds J. R., Mossoba M. M. Microarray chip development using infrared imaging for the identification of catfish species. Appl. Spectrosc. 2014, 68 (12), 1365–1373. doi: 10.1366/14-07505.
69. Wargelius A., Furmanek T., Montfort J., Le Cam A., Kleppe L., Juanchich A.,Edvard sen R. B., Taranger G. L., Bobe J. A comparison between egg trancriptomes of cod andsalmon reveals species-specific traits in eggs for each species. Mol. Reprod. Dev. 2015, 82 (5), 397–404.
doi: 10.1002/mrd.22487.