ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
Biotechnologia Acta V. 8, No 3, 2015
https://doi.org/10.15407/biotech8.03.067
Р. 67-77, Bibliography 46, Ukrainian
Universal Decimal Classification: 612.822:615.853:577.352:577.122.7
Palladin Institute of Biochemistry, of the National Academie of Sciences of Ukraine, Kyiv
The effects of highly-selective blocker of γ-aminobutyric acid transporters of GAT1, NO-711, and substrate inhibitor of γ aminobutyric acid transporters GAT3, β-alanine on the initial velocity of L-[14C]glutamate and [3H]-γ-aminobutyric acid uptake by cortical, hippocampal and thalamic nerve terminals (synaptosomes) were analyzed in norm and after perinatal hypoxia.
Rats were underwent to hypoxia and seizures (airtight chamber, 4% O2 and 96% N2) at the age of 10–12 postnatal days. The experiments were performed at 8–9 weeks in the control and after hypoxia. It was shown that NO-711 (30 microM) and β-alanine (100 microM) did not affect initial velocity of L-[14C] glutamate uptake by cortical, hippocampal and thalamic synaptosomes. In cortical synaptosomes, NO-711 and β-alanine decreased the initial velocity of [3H]-γ-aminobutyric acid uptake, but their inhibitory effects were similar in control and hypoxia groups. The effectiveness of β-alanine to influence [3H]-γ-aminobutyric acid uptake was increased in hippocampal and thalamic nerve terminals as a result of perinatal hypoxia, whereas the capacity of NO-711 in thalamic nerve terminals was decreased.
These results suggest changes in the ratio of active GAT1/GAT3 expressed in the plasma membrane of nerve terminals after perinatal hypoxia. Thus, β-alanine is a promising substance for development of neurotropic pharmacological preparations for the transporter-mediated regulation of GABA-ergic neurotransmission.
Key words: perinatal hypoxia, plasma membrane GABA transporters, NO-711, β-alanine.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1. Richerson G. B., Wu Y. Role of GABA transporter in epilepsy. Adv. Exp. Med. Biol.2004, V. 548, P. 76–91.
doi:10.1007/978-1-4757-6376-8_6.
2. Richerson G. B., Wu Y. The dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J. Neurophysiol. 2003, V. 90, P. 1363–1374.
http://dx.doi.org/10.1152/jn.00317.2003
3. Borden L. A. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem. Int. 1996, V. 29, P. 335–356.
doi:10.1016/0197-0186(95)00158-1.
4. Schousboe A., Kanner B. GABA transporters: Functional and pharmacological properties. In: Glutamate and GABA Receptors and Transporters; Structure, Function and Pharmacology. London: Taylor and Francis. 2002, V. 43, Р. 337–349.
5. Zhou Y., Danbolt N. C. GABA and Glutamate Transporters in Brain. Front Endocrinol. 2013, 4 (165), 1–14.
doi:10.3389/fendo.2013.00165.
6. Borisova T., Krisanova N. Presynaptic transporter-mediated release of glutamate evoked by the protonophore FCCP increases under altered gravity conditions. Adv. Space Res. 2008, V. 42, P. 1971–1979.
http://dx.doi.org/10.1016/j.asr.2008.04.012
7. Borisova T., Krisanova N., Sivko R., Borysov A. Cholesterol depletion attenuates tonic release but increases the ambient level of glutamate in rat brain synaptosomes. Neurochem. Int. 2010, V. 56, P. 466–478.
http://dx.doi.org/10.1016/j.neuint.2009.12.006
8. Borisova T., Sivko R., Borysov A., Krisanova N. Diverse presynaptic mechanisms underlying methyl-beta-cyclodextrin — mediated changes in glutamate transport. Cell Mol. Neurobiol. 2010, 30 (7), 1013–1023.
doi:10.1007/s10571-010-9532-x.
9. Borisova T. Cholesterol and presynaptic glutamate transport in the brain. New York: Springer. 2013, 78 p.
http://dx.doi.org/10.1007/978-1-4614-7759-4
10. Krisanova N., Trikash I., Borisova T. Synaptopathy under conditions of altered gravity: Changes in synaptic vesicle fusion and glutamate release. Neurochem. Int. 2009, V. 55, P. 724–731.
http://dx.doi.org/10.1016/j.neuint.2009.07.003
11. Vannucci S. J., Hagberg H. Hypoxia-ischemia in the immature brain. J. Exp. Biol. 2004, V. 207, P. 3149–3154.
doi:10.1242/jeb.01064.
12. Jensen F. E., Wang C., Stafstrom C. E., Liu Z., Geary C., Stevens M. C. Acute and chronic increases in excitability in rat hippocampal slices after perinatal hypoxia in vivo. J. Neurophysiol. 1998, V. 79, P. 73–81.
13. Jensen F. E., Wang C. Hypoxia-induced hyperexcitability in vivo and in vitro in the immature hippocampus. Epilepsy Res. 1996, V. 26, P. 131–140.
doi:10.1016/S0920-1211(96)00049-6.
14. Owens J., Robbins C. A, Wenzel J., Schwartzkroin P. A. Acute and chronic effects of hypoxia on the developing hippocampus. Ann. Neurol. 1997, V. 41, P. 187–199.
http://dx.doi.org/10.1002/ana.410410210
15. Haut S. R., Veliskova J., Moshe S. L. Susceptibility of immature and adult brains to seizure effects. Lancet Neurol. 2004, V. 3, P. 608–617.
http://dx.doi.org/10.1016/S1474-4422(04)00881-6
16. During M. J., Ryder K. M., Spencer D. D. Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature. 1995, V. 376, P. 174–177.
http://dx.doi.org/10.1038/376174a0
17. Sarup A., Larsson O. M., Schousboe A. GABA transporters and GABA transaminase as drug targets. Curr. Drug Targets CNS Neurol. Disord. 2003, V. 4, P. 269–277.
http://dx.doi.org/10.2174/1568007033482788
18. Czapinski P., Blaszczyk B., Czuczwar S. J. Mechanisms of action of antiepileptic drugs. Curr. Top. Med. Chem. 2005, V. 5, P. 3–14.
http://dx.doi.org/10.2174/1568026053386962
19. Dalby N. O. Inhibition of g-aminobutyric acid uptake: anatomy, physiology and effects against epileptic seizures. Europ. J. Pharmacol. 2003, V. 479, P. 127–137. doi:10.1016/j.ejphar.2003.08.063
20. Liu Q.-R., Lopez-Corcuera B., Mandiyan S., Nelson H., Nelson N. Molecular characterization of four pharmacologically distinct g-aminobutyric acid transporters in mouse brain. J. Biol. Chem. 1993, 268 (3), 2106–2112.
21. Sutch R. J., Davies C. C., Bowery N. G. GABA release and uptake measured in crude synaptosomes from Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Neurochem. Int. 1999, V. 34, P. 415–425.22. Kersante F., Rowley S. C., Pavlov I., Guti?rrez-Mecinas M., Semyanov A., Reul J. M.
A functional role for both -aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus. J. Physiol. 2013, V. 591, P. 2429–2441.
doi:10.1113/jphysiol.2012.246298.
23. Madsen K. K., White H. S., Schousboe A. Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs. Pharmacol. Ther. 2010, V. 125, P. 394–401. doi:10.1016/j.pharmthera.2009.11.007.
24. Meldrum B. S., Rogawski M. A. Molecular targets for antiepileptic drug development. Neurotherapeutics. 2007, V. 4, P. 18–61.
doi:10.1016/j.nurt.2006.11.010.
25. Sa?at K., Wi?ckowska A., Wi?ckowski K., H?fner G. C., Kami?ski J., Wanner K. T., Malawska B., Filipek B., Kuliget K. Synthesis and pharmacological properties of new GABA uptake inhibitors. Pharmacol. Rep. 2012, 64 (4), 817–833.
doi:10.1016/S1734-1140(12)70877-0.
26. Tiedje K. E., Stevens K., Barnes S., Weaver D. F. b-Alanine as a small molecule neurotransmitter. Neurochem Int. 2010, V. 57, P. 177–188.
doi:10.1016/j.neuint.2010.06.001.
27. Krishtal O. A., Osipchuk Y. V., Vrublevsky S. V. Properties of glycine-activated conductance in rat brain neurons. Neurosci. Lett. 1988, V. 84, P. 271–276.
28. Tan C. Y. K., Wainman D., Weaver D. N-, a-, and b- substituted 3-aminopropionic acids: design, syntheses and antiseizure activities. Bioorg. Med. Chem. 2003, V. 11, P. 113–121.
doi:10.1016/S0968-0896(02)00330-9.
29. Monaghan D. T., Irvine M. W., Costa B. M., Fang G., Jane D. E. Pharmacological Modulation of NMDA Receptor Activity and the Advent of Negative and Positive Allosteric Modulators. Neurochem. Int. 2012, 61 (4), 581–592.
http://dx.doi.org/10.1016/j.neuint.2012.01.004
30. Cotman C. W. Isolation of synaptosomal and synaptic plasma membrane fractions. Meth. Enzymol. 1974, V. 31, P. 445–452.
doi:10.1016/0076-6879(74)31050-6.
31. Borisova T., Krisanova N., Himmelreich N. Exposure of animals to artificial gravity conditions leads to the alteration of the glutamate release from rat cerebral hemispheres nerve terminals. Adv. Space Res. 2004, V. 33, P. 1362–1367.
http://dx.doi.org/10.1016/j.asr.2003.09.039
32. Borisova T., Himmelreich N. Centrifuge-induced hypergravity: [3H]GABA and l-[14C]glutamate uptake, exocytosis and efflux mediated by high-affinity, sodium-dependent transporters. Adv. Space Res. 2005, V. 36, P. 1340–1345.
http://dx.doi.org/10.1016/j.asr.2005.10.007
33. Larson E., Howlett B., Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determination. Anal. Biochem. 1986, 155 (2), 243–248. doi:10.1016/0003-2697(86)90432-X.
34. Pozdnyakova N., Yatsenko L., Parkhomen ko N., Himmelreich N. Perinatal hypoxia induces long-lasting increase in unstimulated GABA release in rat brain cortex and hippocampus. The protective effect of pyruvate. Neurochem. Int. 2011, V. 58, P. 14–21. doi:10.1016/j.neuint.2010.10.004.
35. Borisova T., Nazarova A., Dekaliuk M., Krisanova N., Pozdnyakova N., Borysov A., Sivko R., Demchenko A. P. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals. Int. J. Biochem. Cell Biol. 2015, V. 59, P. 203–215.
http://dx.doi.org/10.1016/j.biocel.2014.11.016
36. Soldatkin O., Nazarova A., Krisanova N., Borуsov A., Kucherenko D., Kucherenko I., Pozdnyakova N., Soldatkina A., Borisova T. Monitoring of the velocity of high-affinity glutamate uptake by isolated brain nerve terminals using amperometric glutamate biosensor. Talanta. 2015, V. 135, P. 67–74.
37. Sudhof T. C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 2004, V. 27, P. 509–547. doi:10.1146/annurev.neuro.26.041002.131412.
38. Ben-Ari Y. Excitatory actions of GABA during development: the nature of nurture. Nat. Rev. Neurosci. 2002, V. 3, P. 728–739.
doi:10.1038/nrn920.
39. Yatsenko L., Pozdnyakova N., Dudarenko M., Himmelreich N. The dynamics of changes in hippocampal GABAergic system in rats exposed to early-life hypoxia-induced seizures. Neurosci. Lett. 2012, V. 524, P. 69–73.
http://dx.doi.org/10.1016/j.neulet.2012.07.015
40. Melone M., Cozzi A., Pellegrini-Giampietro D. E., Conti F. Transient focal ischemia triggers neuronal expression of GAT-3 in the rat perilesional cortex. Neurobiol. Dis. 2003, V. 14, P. 120–132.
doi:10.1016/S0969-9961(03)00042-1.
41. Hu J., Quick M. W. Substrate-mediated regulation of gammaaminobutyric acid transporter1 in rat brain. Neuropharmacology. 2008, V. 54, P. 309–318.
doi:10.1016/j.neuropharm.2007.09.013.
42. Kirmse K., Kirischuk S., Grantyn R. Role of GABA transporter 3 in GABAergic synaptic transmission at striatal output neurons. Synapse.2009, V. 63, P. 921–929.
doi:10.1002/syn.20675.
43. Harris R. C., Tallon M. J., Dunnett M., Boobis L., Coakley J., Kim H. J., Fallowfield J. L.,Hill C. A., Sale C., Wise J. A. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006, 30 (3), 279–289.
doi:10.1007/s00726-006-0299-9.
44. MacPhee S., Weaver I. N., Weaver D. F. An evaluation of interindividual responses to the orally administered neurotransmitter b-alanine. J. Amino Acids. 2013, (429847), 5 p.
doi:10.1155/2013/429847.
45. Mathers D. A., McCarthy S. M., Cooke J. E., Ghavanini A. A., Puil E. Effects of the beta-amino acid antagonist TAG on thalamocortical inhibition. Neuropharmacology. 2009, V. 56, P. 1097–1105. doi:10.1016/j.neuropharm.2009.03.008.
46. Gemelli T., de Andrade R. B., Rojas D. B., Bonorino N. F., Mazzola P. N., Tortorelli L. S., Funchal C., Filho C. S. D., Wannma cher C. M. D. Effects of b-alanine administration on selected parameters of oxidative stress and phosphoryltransfer network in cortex and cerebellum of rats. Mol. Cell Biochem. 2013, 380 (1–2), 161–170.
doi:10.1007/s11010-013-1669-8.