ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
Biotechnologia Acta V. 8, No 3, 2015
https://doi.org/10.15407/biotech8.03.078
Р. 78-88, Bibliography 88, English
Universal Decimal Classification: 612.015:616.153.96:616.894
1State Institution “Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine”, Kharkiv
2State Institution “Institute for Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine”, Kyiv
The purpose of this study was to investigate the effect of curcumin on cytokine response and angiotensin-converting activity in terms of intrahippocampus administration of β-amyloid peptide in rats. Animals with experimental model of Alzheimer’s disease received nasal therapy aqueous solution of curcumin. Recorded concentration of cytokines (interleukin-1β, interleukin-6, interleukin-10, tumor necrosis factor-α) and angiotensin-converting activity in the parts of the brain (cerebral cortex and hippocampus) and blood serum, as well as indicators of conditional reflex escapers action. Install a reduction in cytokine response intrahippocampus administering Aβ42_Human and angiotensin-converting activity inhibition in the brain but not in the blood serum of animals under the action of curcumin. Recorded improvement in cognitive performance in rats with a model of Alzheimer’s disease as a result of curcumin therapy. Nasal treatment with an aqueous solution of curcumin has anti-inflammatory effect in the targeted parts of the brain (сerebral cortex and hippocampus), but inhibits angiotensin-converting activity.
Кey words: curcumin, β-amyloid peptide, cytokines, angiotensin-converting enzyme, Alzheimer’s disease.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1.Shezad A., Lee Y. S. Molecular mechanisms of curcumin action: signal transduction. Biofactors. 2013, V. 39, P. 27–36.
http://dx.doi.org/10.1002/biof.1065
2. Aggarwal B. B., Kumar A., Bharti A. C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003, V. 23, P. 363.
3. Bharti A. C., Takada Y., Aggarwal B. B. Curcumin (diferuloylmethane) inhibits receptor activator of NF-kB ligand-induced NF-kB activation in osteoclast precursors and suppresses osteoclastogenesis. J. Immunol. 2004, V. 172, P. 5940–5947.
http://dx.doi.org/10.4049/jimmunol.172.10.5940
4. Teiten M. N., Dicato M., Diederich V. Curcumin as a regulator of epigenetic events. Mol. Nutr. Food Res. 2013, V. 57, P. 1619–1629.
http://dx.doi.org/10.1002/mnfr.201300201
5. Lee W. H., Loo C. Y., Bedawy M., Luk F., Mason R. S., Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol. 2013, V. 11, P. 338–378.
http://dx.doi.org/10.2174/1570159X11311040002
6. Jackson J. K., Higo T., Hunter W. L., Burt H. M. The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis. Inflamm. Res. 2006, 55 (4), 168–175.
http://dx.doi.org/10.1007/s00011-006-0067-z
7. Banerjee M., Tripathi L. M., Srivastava V. M., Puri A., Shukla R. Modulation of inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacol. Immunotoxicol. 2003, 25 (2), 213–224.
http://dx.doi.org/10.1081/IPH-120020471
8. Kunnumakkara A. B., Anand P., Aggarwal B. B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008, 269 (2), 199–225.
http://dx.doi.org/10.1016/j.canlet.2008.03.009
9. Ono K., Hasegawa K., Naiki H., Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J. Neurosci. Res. 2004, 75 (6), 742–750.
http://dx.doi.org/10.1002/jnr.20025
10. Yang F., Lim G.P., Begum A.N., Ubeda O.J., Simmons M.R., Ambeqaokar S.S., Chen P.P., Kayed R., Glabe C.G., Frautschy S.A., Cole G. M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005, 280 (7), 5892–5901.
http://dx.doi.org/10.1074/jbc.M404751200
11. Zhang L., Fiala M., Cashman J., Sayre J., Espinosa A., Mahanian M., Zaghi J., Badmaev V., Graves M. C., Bernard G., Rosenthal M. Curcuminoids enhance amyloid-beta uptake by macrophages of Alzheimer’s disease patients. J. Alzheimer Dis. 2006, 10 (1), 1–7.
12. Sadigh-Eteghad S., Sabermarouf B., Majdi A., Talebi M., Farhoudi M., Mahmoudi J. Amyloid-Beta: A Crucial Factor in Alzheimer’s Disease. Med. Princ. Pract. 2015, V. 42, P. 1–10.
http://dx.doi.org/10.1159/000369101
13. Esparza T. J., Zhao H., Cirrito J. R., Cairns N. J., Bateman R. J., Holtzman D. M., Brody D. L.Amyloid-beta oligomerization in Alzheimer dementia versus high-pathology controls. Ann. Neurol.2013, V. 73, P. 104–119.
http://dx.doi.org/10.1002/ana.23748
14. Palop J. J., Mucke L. Amyloid-b-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat. Neurosci. 2010, V. 13, P. 812–818.15. Hardy J., Selkoe D. J.
15.The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002, V. 297, P. 353–356.
http://dx.doi.org/10.1126/science.1072994
16. Grienberger C., Rochefort N. L., Adelsberger H., Henning H. A., Hill D. N., Reichwald J., Staufenbiel M., Konnerth A. Staged decline of neuronal function in vivo in an animal model of Alzheimer’s disease. Nat. Commun. 2012, V. 774, P. 1–10.
http://dx.doi.org/10.1038/ncomms1783
17. Nakajima C., Kulik A., Frotscher M., Herz J., Sch?fer M., Bock H. H., May P. LDL receptor-related protein 1 (LRP1) modulates N-methyl-D-aspartate (NMDA) receptor-dependent intracellular signaling and NMDA-induced regulation of postsynaptic protein complexes. J. Biol. Chem. 2013, V. 30, P. 21909–21923.
http://dx.doi.org/10.1074/jbc.M112.444364
18. Selkoe D. J. Soluble oligomers of the amyloid b-protein impair synaptic plasticity and behavior. Behav. Brain Res. 2008, V. 192, P. 106–113.
http://dx.doi.org/10.1016/j.bbr.2008.02.016
19. O’Brien R. J., Wong P. C. Amyloid precursor protein processing and Alzheimer’s disease. Ann. Rev. Neurosci. 2011, V. 34, P. 185–204.
http://dx.doi.org/10.1146/annurev-neuro-061010-113613
20. Maltsev A. V., Dovidchenko N. V., Uteshev V. K., Sokolik V. V., Shtang O. M., Yakushin M. A., Sokolova N. M., Surin A. K., Galzitskaya O. V. Intensive protein synthesis in neurons and phosphorylation of beta-amyloid precursor protein and tau-protein are triggering factors of neuronal amyloidosis and Alzheimer’s disease. Biomed. Chem. 2013, V. 7, P. 278–293.
http://dx.doi.org/10.1134/s1990750813040057
21. Kim J-H., Anwyl R., Suh Y-H., Djamgoz M. B. A., Rowan M. J. Use-dependent effects of amyloidogenic fragments of b-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. J. Neurosci. 2001, V. 21, P. 1327–1333.
22. Hartmann T., Bieger S. C., Br?hl B., Tienari P. J., Ida N., Allsop D., Roberts G. W., Masters C. L., Dotti C. G., Unsicker K., Beyreuther K. Distinct sites of intracellular production for Alzheimer’s disease Abeta40/42 amyloid peptides. Nat. Med. 1997, V. 3, P. 1016–1020.
http://dx.doi.org/10.1038/nm0997-1016
23. Colombo A., Bastone A., Ploia C., Sclip A., Salmona M., Forloni G., Borsello T. JNK regulates APP cleavage and degradation in a model of Alzheimer’s disease. Neurobiol. Dis. 2009, V. 33, P. 518–525.
http://dx.doi.org/10.1016/j.nbd.2008.12.014
24. Andersen O. M., Reiche J., Schmidt V., Gotthardt M., Spoelgen R., Behlke J., von Arnim C. A. F., Breiderhoff T., Jansen P., Wu X., Bales K. R., Cappai R., Masters C. L., Glieman J., Mufson E. J., Hyman B. T., Paul S. M., Nykj?r A., Willnow T. E. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc. Natl. Acad. Sci. USA. 2005, V. 102, P. 13461–13466.
http://dx.doi.org/10.1073/pnas.0503689102
25. Ridge P. G., Ebbert M. T., Kauwe J. S. Genetics of Alzheimer’s disease. Biomed. Res. Int. 2013,V. 25, P. 49–54.
http://dx.doi.org/10.1155/2013/254954
26. Hsiao K., Chapman P., Nilsen S., Eckman C., Harigaya Y., Younkin S., Yang F., Cole G. Correlative memory deficits, Ab elevation, and amyloid plaques in transgenic mice. Science. 1996, V. 274, P. 99–102.
http://dx.doi.org/10.1126/science.274.5284.99
27. Fantini J., Garmy N., Mahfoud R., Yahi N. Lipid rafts: structure, function and role in HIV, Alzheimer’s and prion diseases. Expert Rev. Mol. Med. 2002, V. 4, P. 1–22.
http://dx.doi.org/10.1017/S1462399402005392
28. Puzzo D., Privitera L., Fa’ M., Staniszewski A., Hashimoto G., Aziz F., Sakurai M., Ribe E. M.,Troy C. M., Mercken M., Jung S. S., Palmeri A., Arancio O. Endogenous amyloid-b is necessary for hippocampal synaptic plasticity and memory. Ann. Neurol. 2013, V. 69, P. 819–830.
http://dx.doi.org/10.1002/ana.22313
29. Kimura R., MacTavish D., Yang J., Westaway D., Jhamandas J. H. Beta amyloid-induced depression of hippocampal long-term potentiation is mediated through the amylin receptor. J. Neurosci. 2012, V. 32, P. 17401–17406.
http://dx.doi.org/10.1523/JNEUROSCI.3028-12.2012
30. Morley J. E., Farr S. A., Banks W. A., Johnson S. N., Yamada K. A., Xu L. A physiological role for amyloid-b protein: enhancement of learning and memory. J. Alzheimer’s disease. 2010, V. 19, P. 441–449.
31. C?rdenas-Aguayo M. C., Silva-Lucero M. C., Cortes-Ortiz M., Jim?nez-Ramos B., G?mez-Virgilio L., Ram?rez-Rodr?guez G., Vera-Arroyo E., Fiorentino-P?rez R., Garc?a U., Luna-Mu?oz J., Meraz-Ros M. A. Physiological role of amyloid beta in neural cells: the cellular trophic activity. INTECH, 2014, 1–26.
32. Cirrito J. R., May P. C., O’Dell M. A., Taylor J. W., Parsadanian M., Cramer J. W., Audia J. E., Nissen J. S., Bales K. R., Paul S. M., DeMattos R. B., Holtzman D. M. In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. J. Neurosci. 2003, V. 23, P. 8844–8853.
33. Puzzo D., Privitera L., Leznik E., Fa M., Staniszewski A., Palmeri A., Arancio O. Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J. Neurosci. 2008, V. 28, P. 14537–14545.
http://dx.doi.org/10.1523/JNEUROSCI.2692-08.2008
34. Atwood C. S., Obrenovich M. E., Liu T., Chan H., Perry G., Smith M. A., Martins R. N. Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. Brain Res. Rev. 2003, V. 43, P. 1–16.
http://dx.doi.org/10.1016/S0165-0173(03)00174-7
35. Cetin F., Yazihan N., Dincer S., Akbulut G. The effect of intrahippocampal beta-amyloid1-42 peptide injection on oxidant and antioxidant status in rat brain. Ann. NY Acad. Sci. 2007, V. 1100, P. 510–517.
http://dx.doi.org/10.1196/annals.1395.056
36. Curtain C. C., Ali F., Volitakis I., Cherny R. A., Norton R. S., Beyreuther K., Barrow C. J., Masters C. L., Bush A. I., Barnham K. J. Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem.2001, V. 276, P. 20466–20473.
http://dx.doi.org/10.1074/jbc.M100175200
37. Chen Y., Dong C. Abeta40 promotes neuronal cell fate in neural progenitor cells. Cell Death Differ. 2009, V. 16, P. 386–394.
http://dx.doi.org/10.1038/cdd.2008.94
38. Atwood C. S., Bishop G. M., Perry G., Smith M. A. Amyloid-beta: a vascular sealant that protects against hemorrhage? J. Neurosci. Res. 2002, V. 70, P. 356.
http://dx.doi.org/10.1002/jnr.10388
39. Soscia S. J., Kirby J. E., Washicosky K. J., Tucker S. M., Ingelsson M., Hyman B., Burton M. A., Goldstein L. E., Duong S., Tanzi R. E., Moir R. D. Bush, Ashley I., ed. The Alzheimer’s disease-associated amyloid b-protein is an antimicrobial peptide. PLoS ONE. 2010, V. 5, P. e9505.
40. Gu Z., Zhong P., Yan Z. Activation of muscarinic receptors inhibits beta-amyloidpeptide-induced signaling in cortical slices. J. Biol. Chem. 2003, V. 278, P. 17546–17556.
http://dx.doi.org/10.1074/jbc.M209892200
41. Jellinger K. A. Challenges in neuronal apoptosis. Curr. Alzheimer Res. 2006, V. 3, P. 377–391.
http://dx.doi.org/10.2174/156720506778249434
42. Goure W. F., Krafft G. A., Jerecic J., Hefti F. Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res. Ther. 2015, V. 6, P. 42.
http://dx.doi.org/10.1186/alzrt272
43. Sakono M., Zako T. Amyloid oligomers: formation and toxicity of Ab oligomers. FEBS J. 2010, V. 277, P. 1348–1358.
http://dx.doi.org/10.1111/j.1742-4658.2010.07568.x
44. Moreth J., Kroker K. S., Schwanzar D., Schnack C., von Arnim C. A. F., Hengerer B., Rosenbrock H., Kussmaul L. Globular and protofibrillar Ab aggregate simper neurotransmission by different mechanism. Biochemistry. 2013, V. 52, P. 1466–1476.
http://dx.doi.org/10.1021/bi3016444
45. Tamburri A., Dudilot A., Licea S., Bourgeois C., Boehm J. NMDA-receptor activation but not ion flux is required for amyloid-beta induced synaptic depression. PLoS One. 2013, V. 8, P. e65350.
http://dx.doi.org/10.1371/journal.pone.0065350
46. Takamura A., Sato Y., Watabe D., Okamoto Y., Nakata T., Kawarabayashi T., Oddo S., Laferla F. M., Shoji M., Matsubara E. Sortilin is required for toxicaction of Ab oligomers (AbOs): extracellular AbOs trigger apoptosis,and intraneuronal AbOs impair degradation pathways. Life Sci. 2012, V. 91, P. 1177–1186.
http://dx.doi.org/10.1016/j.lfs.2012.04.038
47. Slack B. E., Wurtman R. J. Regulation of synthesis and metbolism of the amyloid precursor protein by extracellular signals. Res. Progr. Alzheimer’s Dis. Dement. 2007, V. 2, P. 1–25.
48. Mattson M. P. Pathways towards and away from Alzheimer’s disease. Nature. 2004, V. 430, P. 631–639.
http://dx.doi.org/10.1038/nature02621
49. Mehan S., Arora R., Sehgal V., Sharma D., Sharma G. Inflammatory diseases — immuno pathology, clinical and pharmacological bases; in Khatami M (ed): Dementia: A Complete Literature Review on Various Mechanisms Involved in Pathogenesis and an Intracerebroventricular Streptozotocin-Induced Alzheimer’s Disease. Rijeka, InTech, 2012, P. 3–19.
50. Swardfager W., Lanct?t K., Rothenburg L., Wong A., Cappell J., Herrmann N. A meta-analysis of cytokines in Alzheimer’s disease. Biol. Psychiatry. 2010, V. 68, P. 930–941.
http://dx.doi.org/10.1016/j.biopsych.2010.06.012
51. Minati L., Edginton T., Bruzzone M. G., Giaccone G. Current concepts in Alzheimer’s disease: a multidisciplinary review. Am. J. Alzheim. Dis. & Other Dement. 2009, V. 24, P. 95–121.
http://dx.doi.org/10.1177/1533317508328602
52. Klafki H. W., Staufenbiel M., Kornhuber J., Wiltfang J. Therapeutic approaches to Alzheimer’s disease. Brain. 2006, V. 129, P. 2840–2855
http://dx.doi.org/10.1093/brain/awl280
53. Necula M., Kayed R., Milton S., Glabe C. G. Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem. 2007, V. 282, P. 10311–10324.
http://dx.doi.org/10.1074/jbc.M608207200
54. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev. 2006, CD005593.
http://dx.doi.org/10.1002/14651858.cd005593
55. Gotti C., Riganti L., Vailati S., Clementi F. Brain neuronal nicotinic receptors as new targets for drug discovery. Curr. Pharm. Des. 2006, V. 12, P. 407–428.
http://dx.doi.org/10.2174/138161206775474486
56. Palmer G. C. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies. Curr. Drug. Targets. 2001, V. 2, P. 241–271.
http://dx.doi.org/10.2174/1389450013348335
57. Ostrowski S. M., Wilkinson B. L., Golde T. E., Landreth G. Statins reduce amyloid-beta production through inhibitionof protein isoprenylation. J. Biol. Chem. 2007, V. 282, P. 26832–26844.
http://dx.doi.org/10.1074/jbc.M702640200
58. Gray S. L., Anderson M. L., Crane P. K., Breitner J. C., McCormick W., Bowen J. D., Teri L., Larson E. Antioxidant vitamin supplement use and risk of dementia or Alzheimer’sdisease in older adults. J. Am. Geriatr. Soc. 2008, V. 56, P. 291–295.
http://dx.doi.org/10.1111/j.1532-5415.2007.01531.x
59. Dinarello C. A. Proinflammatory cytokines. Chest 2000, V. 118, P. 503–508.
http://dx.doi.org/10.1378/chest.118.2.503
60. Hunter C. A., Timans J., Pisacane P., Menon S., Cai G., Walker W., Aste-Amezaga M., Chizzonite R., Bazan J. F., Kastelein R. A. Comparison of the effects of interleukin-1a, interleukin-1b and interferon-g inducing factor on the production of interferon-g by natural killer. Eur. J. Immunol. 1997, V. 27, P. 2787–2792.
http://dx.doi.org/10.1002/eji.1830271107
61. Engelmann H., Novick D., Wallach D. Two tumor necrosis factor-binding proteins purified from human urine. Evidence for immunological cross-reactivity with cell surface tumor necrosis factor receptors. J. Biol. Chem.1990, V. 265, P. 1531–1536.
62. Dinarello C. A. Anti-Cytokine Therapies in Response to Systemic Infection J. Invest. Dermatol. Symp. Proc. 2001, V. 6, P. 244–250.
63. Huber T. S., Gaines G. S., Welborn M. B., Roseberg J. J., Seeger J. M., Moldawer L. L. Anticytokine therapies for acute inflammation and the systemic inflammatory response syndrome: IL-10 and ischemia/reperfusion injury as a new paradigm. Shock. 2000, V. 13, P. 425–434.
64. Miners J. S., Baig S., Palmer J., Palmer L. E., Kehoe P. G., Love S. Ab-degrading enzymes in Alzheimer’s disease. Brain Pathol. 2008, V. 18, P. 240–252.
65. Iwata N., Higuchi M., Saido T. C. Metabolism of amyloid-b peptide and Alzheimer’s disease. Pharmacol. Ther. 2005, V. 108, P. 129–148.
66. Erd?s E. G. Handbook of Experimental Pharmacology, 1979, 25 (S5), 438–487.
67. Soffer R. L. Biochemical Regulation of Blood Pressure (R. L. Soffer, ed.). John Wiley & Sons, New York. 1981, Р. 123–164.
68. Hu J., Igarashi A., Kamata M., Nakagawa H. Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (A beta); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J. Biol. Chem.2001, 276 (51), 47863–47868.
69. Kehoe P. G., Russ C., McIlroy S., Williams H., Holmans P., Holmes C.,Liolitsa D., Vahidassr D., Powell J., McGlennon B., Liddell M., Plomin R., Dynan K., Willimas N., Neal J., Cairns N. J., Wilcock G., Passmore P., Lovestone S., Williams J., Owen M. J. Variation in DCP1, incoding ACE, is associated with susceptibility to Alzheimer’s disease. Nat. Gen. 1999, V. 21, P. 71–72.
70. Hemming M. L., Selkoe D. J. Amyloid b-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J. Biol. Chem. 2005, 280 (45), 37644–37650.
http://dx.doi.org/10.1074/jbc.M508460200
71. Vorobjova T. M. Role of limbic andreticular systems in self stimulation. Fed. Amer. Soc. Experim. Biol. 1969, V. 70, P. 95–101.
72. Bures J., Petran M., Zachar J. Electrophysiological methods in biological research. Ed., 2 Publishing House. 1960, 516 p.
73. Wang Y. J., Panand M. H., Chengetal A. L. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 1997, V. 15, P. 1867–1876.
http://dx.doi.org/10.1016/S0731-7085(96)02024-9
74. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951, V. 193, P. 265–275.
75. Ronca-Testoni S. Direct spectrophotometric assay for angiotensin-converting enzyme. Clin. Chem. 1983, V. 29, P. 1093–1096.
76. Sokolik V. V., Maltsev A. V. Cytokines neuroinflammatory reaction to b-amyloid 1-40 action in homoaggregatic and liposomal forms in rats. Biomed. Chem. 2015, 9 (4), 220–225.
77. Dong Y-F., Kataoka K., Tokutomi Y., Nako H., Nakamura T., Toyama K., Sueta D., Koibuchi N., Yamamoto E., Ogawa H., Kim-Mitsuyama Sh. Perindopril, a centrally active angiotensin-converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer’s disease. FASEB J. 2011, V. 25, P. 2911–2920.
http://dx.doi.org/10.1096/fj.11-182873
78. Arregui A., Perry E. K., Rossor M., Tomlinson B. E. Angiotensin converting enzyme in Alzheimer’s disease increased activity in caudate nucleus and cortical areas. J. Neurochem . 1982, V. 38, P. 1490–1492.
http://dx.doi.org/10.1111/j.1471-4159.1982.tb07930.x
79. Sadigh-Eteghad S., Sabermarouf B., Majdi A., Talebi M., Farhoudi M., Mahmoudi J. Amyloid-Beta: A Crucial Factor in Alzheimer’s Disease. Med. Princ. Pract. 2015, V. 24, P. 1–10.
http://dx.doi.org/10.1159/000369101
80. Ridolfi E., Barone C., Scarpini E., Galimberti D. The role of the innate immune system in Alzheimer’s disease and frontotemporal lobar degeneration: an eye on microglia. Clin. Dev. Immunol. 2013, 939786.
http://dx.doi.org/10.1155/2013/939786
81. Boutajangout A., Wisniewski T. The innate immune system in Alzheimer’s disease. Int. J. Cell. Biol. 2013, 576383.
http://dx.doi.org/10.1155/2013/576383
82. Combs C. K., Karlo J. C., Kao S.-C., Landreth G. E. b-Amyloid stimulation of microglia and monocytes results in TNFa-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 2001, V. 21, P. 1179–1188.
83. Smith J. A., Das A., Ray S. K., Banik N. L. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res. Bull. 2012, V. 87, P. 10–20.
http://dx.doi.org/10.1016/j.brainresbull.2011.10.004
84. Salminen A., Ojala J., Kauppinen A., Kaarniranta K., Suuronen T. Inflammation in Alzheimer’s disease: amyloid-b oligomers trigger innate immunity defence via pattern recognition receptors. Progr. Neurobiol. 2009, V. 87, P. 181–194.
http://dx.doi.org/10.1016/j.pneurobio.2009.01.001
85. Aggarwal B. B., Gupta S. C., Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br. J. Pharmacol. 2013, V. 169, P. 1672–1692.
http://dx.doi.org/10.1111/bph.12131
86. Jobin C. C., Bradham A., Russo M. P., Juma B., Narula A. S., Brenner D. A., Sartor R. B. Curcumin blocks cytokine-mediated NF-kB activation and proinflammatory gene expression by inhibiting inhibitory factor IB kinase activity. J. Immunol. 1999, V. 163, P. 34–74.
87. Pan M. H., Lin-Shiau S. Y., Lin J. K. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IB kinase and NF-kB activation in macrophages. Biochem. Pharmacol. 2000, V. 60, P. 1665.
http://dx.doi.org/10.1016/S0006-2952(00)00489-5
88. Fazal Y., Fatima S. N., Shahid S. M., Mahboob T. Effects of curcumin on angiotensin-converting enzyme gene expression, oxidative stress and anti-oxidant status in thioacetamide-induced hepatotoxicity. J. Renin Angiotensin Aldosterone Syst. 2014, Epub 2014, pii: 1470320314545777.
http://dx.doi.org/10.1177/1470320314545777