ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
Biotechnologia Acta V. 8, No 3, 2015
https://doi.org/10.15407/biotech8.03.028
Р. 28-44, Bibliography 115, English
Universal Decimal Classification: 579.61/ 571.27
Kyiv Taras Shevchenko National University
Literature data and own author experiments concerning the influence of microbiota on the immune system are summarized. The mechanisms of the diversification of immune response to pathogenic and commensal microorganisms are described. Effect of microorganisms of normal flora on innate and adaptive immunity is characterized. Human inflammatory diseases associated with microbiota disorders are reviewed. Biological properties of probiotic preparations are discussed in context of its modulatory effect on inflammatory response. Prospects of use of immunomodulatory potential of probiotic microorganisms are being analyzed.
Key words: gut microbiota, immunomodulation, immunobiotics, inflammation.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, 2015
References
1. Petschow B., Dor? J., Hibberd P., Dinan T., Reid G., Blaser M., Cani P. D., Degnan F. H., Foster J., Gibson G., Hutton J., Klaenhammer T. R., Ley R., Nieuwdorp M., Pot B., Relman D., Serazin A., Sanders M. E. Probiotics, prebiotics, and the host microbiome: the science of translation. Ann. N. Y. Acad. Sci. 2013, V. 1306, P. 1–17.
http://dx.doi.org/10.1111/nyas.12303
2. King S., Glanville J., Sanders M. E., Fitzgerald A., Varley D. Effectiveness of probiotics on the duration of illness in healthy children and adults who develop common acute respiratory infectious conditions: a systematic review and meta-analysis. Br. J. Nutr. 2014, 112 (1), 41–54.
http://dx.doi.org/10.1017/S0007114514000075
3. Allen S. J., Wareham K., Wang D., Bradley C., Hutchings H., Harris W., Dhar A., Brown H., Foden A., Gravenor M. B., Mack D. Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, doubleblind, placebo-controlled, multicentre trial. Lancet. 2013, 382 (9900), 249–257.
http://dx.doi.org/10.1016/S0140-6736(13)61218-0
4. Vasile N., Ghindea R., Vassu T. Probiotics- an alternative treatment for various diseases. Roum. Arch. Microbiol. Immunol. 2011, 70 (2), 54–59.
5. Lemon K. P., Armitage G. C., Relman D. A., Fischbach M. A. Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med. 2012, 4 (137), 137rv5.
http://dx.doi.org/10.1126/scitranslmed.3004183
6. D?ugo?ska H., Grzybowski M. Personalized vaccination? II. The role of natural microbiota in a vaccine-induced immunity. Wiad. Parazytol. 2011, 57 (2), 71–76.
7. Burcelin R. Regulation of metabolism: a cross talk between gut microbiota and its human host. Physiology (Bethesda). 2012, 27 (5), 300–307.
http://dx.doi.org/10.1152/physiol.00023.2012
8. Cani P. D., Osto M., Geurts L., Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012, 3 (4), 279–288.
http://dx.doi.org/10.4161/gmic.19625
9. Duca F. A., Lam T. K. Gut microbiota, nutrient sensing and energy balance. Diabetes Obes. Metab. 2014, V. 16, Suppl. 1, P. 68–76.
http://dx.doi.org/10.1111/dom.12340
10. Clarke S. F., Murphy E. F., Nilaweera K., Ross P. R., Shanahan F., O’Toole P. W., Cotter P. D. The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes. 2012, 3 (3), 186–202.
http://dx.doi.org/10.4161/gmic.20168
11. Devaraj S., Hemarajata P., Versalovic J. The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin. Chem. 2013, 59 (4), 617–628.
http://dx.doi.org/10.1373/clinchem.2012.187617
12. Tazoe H., Otomo Y., Kaji I., Tanaka R., Karaki S. I., Kuwahara A. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J. Physiol. Pharmacol. 2008, V. 59, Suppl. 2, P. 251–262.
13. Kamada N., Chen G. Y., Inohara N., N??ez G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14 (7), 685–690.
http://dx.doi.org/10.1038/ni.2608
14. Fukata M., Arditi M. The role of pattern recognition receptors in intestinal inflammation. Muc. Immunol. 2013, 6 (3), 451–463.
http://dx.doi.org/10.1038/mi.2013.13
15. Weng M., Walker W. A. The role of gut microbiota in programming the immune phenotype. J. Dev. Orig. Health Dis. 2013, 4 (3), 203–214.
http://dx.doi.org/10.1017/S2040174412000712
16. Boroni Moreira A. P., de C?ssia Gon?alves Alfenas R. The influence of endotoxemia on the molecular mechanisms of insulin resistance. Nutr. Hosp. 2012, 27 (2), 382–390.
17. Chen X., D’Souza R., Hong S. T. The role of gut microbiota in the gut-brain axis: current challenges and perspectives. Prot. Cell. 2013, 4 (6), 403–414.
http://dx.doi.org/10.1007/s13238-013-3017-x
18. Montiel-Castro A. J., Gonz?lez-Cervantes R. M., Bravo-Ruiseco G., Pacheco-L?pez G. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front. Integr. Neurosci. 2013, V. 7, P. 70.
http://dx.doi.org/10.3389/fnint.2013.00070
19. Cerf-Bensussan N., Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes? Nat. Rev. Immunol. 2010, 10 (10), 35–744.
http://dx.doi.org/10.1038/nri2850
20. Chow J., Lee S. M., Shen Y., Khosravi A., Mazmanian S. K. Host-bacterial symbiosis in health and disease. Adv. Immunol. 2010, V. 107, P. 243–274.
http://dx.doi.org/10.1016/B978-0-12-381300-8.00008-3
21. Kuwahara T., Ogura Y., Oshima K., Kurokawa K., Ooka T., Hirakawa H., Itoh T., Nakayama-Imaohji H., Ichimura M., Itoh K., Ishifune C., Maekawa Y., Yasutomo K., Hattori M., Hayashi T. The lifestyle of the segmented filamentous bacterium: a non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing. DNA Res. 2011, 18 (4), 291–303.
http://dx.doi.org/10.1093/dnares/dsr022
22. Yin Y., Wang Y., Zhu L., Liu W., Liao N., Jiang M., Zhu B., Yu H.D., Xiang C., Wang X. Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens. ISME J. 2013, 7 (3), 615–621.
http://dx.doi.org/10.1038/ismej.2012.128
23. Jonsson H. Segmented filamentous bacteria in human ileostomy samples after high-fiber intake. FEMS Microbiol. Lett. 2013, 342 (1), 24–29.
http://dx.doi.org/10.1111/1574-6968.12103
24. O’Flaherty S., Saulnier D. M., Pot B., Versalovic J. How can probiotics and prebiotics impact mucosal immunity? Gut Microbes. 2010, 1 (5), 293–300.
http://dx.doi.org/10.4161/gmic.1.5.12924
25. Di Mauro A., Neu J., Riezzo G., Raimondi F., Martinelli D., Francavilla R., Indrio F. Gastrointestinal function development and microbiota. Ital. J. Pediatr. 2013, V. 39, P. 15.
http://dx.doi.org/10.1186/1824-7288-39-15
26. Matamoros S., Gras-Leguen C., Le Vacon F., Potel G., de La Cochetiere M. F. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol. 2013, 21 (4), 67–173.
http://dx.doi.org/10.1016/j.tim.2012.12.001
27. Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., Magris M., Hidalgo G., Baldassano R. N., Anokhin A. P., Heath A. C., Warner B., Reeder J., Kuczynski J., Caporaso J. G., Lozupone C. A., Lauber C., Clemente J. C., Knights D., Knight R., Gordon J. I. Human gut microbiome viewed across age and geography. Nature. 2012, 486 (7402), 222–227.
http://dx.doi.org/10.1038/nature11053
28. Ursell L. K., Metcalf J. L., Parfrey L. W., Knight R. Defining the human microbiome. Nutr. Rev. 2012, V. 70, Suppl. 1, P. 38–44.
http://dx.doi.org/10.1111/j.1753-4887.2012.00493.x
29. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D. R., Fernandes G. R., Tap J., Bruls T., Batto J. M., Bertalan M., Borruel N., Casellas F., Fernandez L., Gautier L., Hansen T., Hattori M., Hayashi T., Kleerebezem M., Kurokawa K., Leclerc M., Levenez F., Manichanh C., Nielsen H. B., Nielsen T., Pons N., Poulain J., Qin J., Sicheritz-Ponten T., Tims S., Torrents D., Ugarte E., Zoetendal E. G., Wang J., Guarner F., Pedersen O., de Vos W. M., Brunak S., Dor? J., Antol?n M., Artiguenave F., Blottiere H. M., Almeida M., Brechot C., Cara C., Chervaux C., Cultrone A., Delorme C., Denariaz G., Dervyn R., Foerstner K. U., Friss C., van de Guchte M., Guedon E., Haimet F., Huber W., van Hylckama-Vlieg J., Jamet A., Juste C., Kaci G., Knol J., Lakhdari O., Layec S., Le Roux K., Maguin E., M?rieux A., Melo Minardi R., M’rini C., Muller J., Oozeer R., Parkhill J., Renault P., Rescigno M., Sanchez N., Sunagawa S., Torrejon A., Turner K., Vandemeulebrouck G., Varela E., Winogradsky Y., Zeller G., Weissenbach J., Ehrlich S. D., Bork P. Enterotypes of the human gut microbiome. Nature. 2011, 473 (7346), 174–180.
http://dx.doi.org/10.1038/nature09944
30. Siezen R. J., Kleerebezem M. The human gut microbiome: are we our enterotypes? Microbiol. Biotechnol. 2011, 4 (5), 550–553.
http://dx.doi.org/10.1111/j.1751-7915.2011.00290.x
31. Bushman F. D., Lewis J. D., Wu G. D. Diet, gut enterotypes and health: is there a link? Nestle Nutr. Inst. Workshop Ser. 2013, V. 77, P. 65–73.
http://dx.doi.org/10.1159/000351385
32. Tiihonen K., Ouwehand A. C., Rautonen N. Human intestinal microbiota and healthy ageing. Ageing Res. Rev. 2010, 9 (2), 107–116.
http://dx.doi.org/10.1016/j.arr.2009.10.004
33. O’Toole P. W., Claesson M. J. Gut microbiota: Changes throughout the lifespan from infancy to elderly. Int. Dairy J. 2010, 20 (4), 281–291.
http://dx.doi.org/10.1016/j.idairyj.2009.11.010
34. de Kivit S., Tobin M. C., Forsyth C. B., Keshavarzian A., Landay A. L. Regulation of Intestinal Immune Responses through TLR Activation: Implications for Pro- and Prebiotics. Front. Immunol. 2014, V. 5, P. 60.
http://dx.doi.org/10.3389/fimmu.2014.00060
35. Tourneur E., Chassin C. Neonatal immune adaptation of the gut and its role during infections. Clin. Dev. Immunol. 2013, V. 2013, P. 270301.
35. Tourneur E., Chassin C. Neonatal immune adaptation of the gut and its role during infections. Clin. Dev. Immunol. 2013, V. 2013, P. 270301. http://dx.doi.org/10.1155/2013/270301 |
36. Corridoni D., Arseneau K. O., Cifone M. G., Cominelli F. The dual role of nod-like receptors in mucosal innate immunity and chronic intestinal inflammation. Front. Immunol. 2014, V. 5, P. 317.
http://dx.doi.org/10.3389/fimmu.2014.00317
37. Villena J., Kitazawa H. Modulation of Intestinal TLR4-Inflammatory Signaling Pathways by Probiotic Microorganisms: Lessons Learned from Lactobacillus jensenii TL2937. Front. Immunol. 2014, V. 4, P. 512.
http://dx.doi.org/10.3389/fimmu.2013.00512
38. Pearce E. J., Kane C. M., Sun J. Regulation of dendritic cell function by pathogen-derived molecules plays a key role in dictating the outcome of the adaptive immune response. Chem. Immunol. Allergy. 2006, V. 90, P. 82–90.
39. Skivka L. M., Gorbik G. V., Fedorchuk O. G., Pozur V. V. Tumor-Associated Macrophages in the Prospect of Development of Targeted Anticancer Therapy. Cytol. Genet. 2009, 43 (4), 283–292.
http://dx.doi.org/10.3103/S0095452709040094
40. Habil N., Al-Murrani W., Beal J., Foey A. D. Probiotic bacterial strains differentially modulate macrophage cytokine production in a strain-dependent and cell subset-specific manner. Benef. Microbes. 2011, 2 (4), 283–293.
http://dx.doi.org/10.3920/BM2011.0027
41. Zhou L., Braat H., Faber K. N., Dijkstra G., Peppelenbosch M. P. Monocytes and their pathophysiological role in Crohn’s disease. Cell. Mol. Life Sci. 2009, 66 (2), 192–202.
http://dx.doi.org/10.1007/s00018-008-8308-7
42. Littman D. R., Pamer E. G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe. 2011, 10 (4), 311–323.
http://dx.doi.org/10.1016/j.chom.2011.10.004
43. Kamdar K., Nguyen V., DePaolo R. W. Tolllike receptor signaling and regulation of intestinal immunity. Virulence. 2013, 4 (3), 207–212.
http://dx.doi.org/10.4161/viru.23354
44. Shen Y., Giardino Torchia M. L., Lawson G. W., Karp C. L., Ashwell J. D., Mazmanian S. K. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe. 2012, 12 (4), 509–520.
http://dx.doi.org/10.1016/j.chom.2012.08.004
45. Everard A., Cani P. D. Diabetes, obesity and gut microbiota. Best Pract. Res. Clin. Gastroenterol. 2013, 27 (1), 73–83.
http://dx.doi.org/10.1016/j.bpg.2013.03.007
46. Mart?n R., Chain F., Miquel S., Lu J., Gratadoux J. J., Sokol H., Verdu E. F., Bercik P., Berm?dez-Humar?n L. G., Langella P. The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm. Bowel Dis. 2014, 20 (3), 417–430.
http://dx.doi.org/10.1097/01.MIB.0000440815.76627.64
47. Kelly D., Campbell J. I., King T. P., Grant G., Jansson E. A., Coutts A. G., Pettersson S., Conway S. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat. Immunol. 2004, 5 (1), 104–112.
http://dx.doi.org/10.1038/ni1018
48. Ohue R., Hashimoto K., Nakamoto M., Furukawa Y., Masuda T., Kitabatake N., Tani F. Bacterial heat shock protein 60, GroEL, can induce the conversion of na?ve T cells into a CD4 CD25(+) Foxp3-expressing phenotype. J. Innate Immun. 2011, 3 (6), 605–613.
http://dx.doi.org/10.1159/000330786
49. Carvalho B. M., Saad M. J. Influence of gut microbiota on subclinical inflammation and insulin resistance. Mediat. Inflamm. 2013, 986734.
50. Kim S., Kim J. H., Park B. O., Kwak Y. S. Perspectives on the therapeutic potential of short-chain fatty acid receptors. BMB Rep. 2014, 47 (3), 173–178.
http://dx.doi.org/10.5483/BMBRep.2014.47.3.272
51. Vinolo M. A., Rodrigues H. G., Nachbar R. T., Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011, 3 (10), 858–876.
http://dx.doi.org/10.3390/nu3100858
52. Albenberg L. G., Wu G. D. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014, 146 (6), 1564–1572.
http://dx.doi.org/10.1053/j.gastro.2014.01.058
53. Bengmark S. Gut microbiota, immune development and function. Pharmacol. Res. 2013, 69 (1), 87–113.
http://dx.doi.org/10.1016/j.phrs.2012.09.002
54. De Palma G., Collins S. M., Bercik P., Verdu E. F. The microbiota-gut-brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both? J. Physiol. 2014, 592 (Pt 14), 2989–2997.
http://dx.doi.org/10.1113/jphysiol.2014.273995
55. Kverka M., Tlaskalova-Hogenova H. Two faces of microbiota in inflammatory and autoimmune diseases: triggers and drugs. APMIS. 2013, 121 (5), 403–421.
http://dx.doi.org/10.1111/apm.12007
56. Lee K. N., Lee O. Y. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome. World J. Gastroenterol. 2014, 20 (27), 8886–8897.
57. Kostic A. D., Xavier R. J., Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014, 146 (6), 1489–1499.
http://dx.doi.org/10.1053/j.gastro.2014.02.009
58. Musso G., Gambino R., Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care. 2010, 33 (10), 2277–2284.
http://dx.doi.org/10.2337/dc10-0556
59. Shen J., Obin M.S., Zhao L. The gut microbiota, obesity and insulin resistance. Mol. Aspects Med. 2013, 34 (1), 39–58.
http://dx.doi.org/10.1016/j.mam.2012.11.001
60. Da Silva S. T., dos Santos C. A., Bressan J. Intestinal microbiota; relevance to obesity and modulation by prebiotics and probiotics. Nutr. Hosp. 2013, 28 (4), 1039–1048.
61. Winter S. E., Lopez C. A., B?umler A. J. The dynamics of gut-associated microbial communities during inflammation. EMBO Rep. 2013, 14 (4), 319–327.
http://dx.doi.org/10.1038/embor.2013.27
62. Silvestri C., Di Marzo V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell. Metab. 2013, 17 (4), 475–490.
http://dx.doi.org/10.1016/j.cmet.2013.03.001
63. Cani P. D., Everard A., Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr. Opin. Pharmacol. 2013, 13 (6), 935–940.
http://dx.doi.org/10.1016/j.coph.2013.09.008
64. Tanasescu R., Gran B., Constantinescu C. S. The endocannabinoid system: a revolving plate in neuro-immune interaction in health and disease. Amino Acids. 2013, 45 (1), 95–112.
http://dx.doi.org/10.1007/s00726-012-1252-8
65. Kelder T., Stroeve J. H., Bijlsma S., Radonjic M., Roeselers G. Correlation network analysis reveals relationships between diet-induced changes in human gut microbiota and metabolic health. Nutr. Diabetes. 2014, V. 4, P. 122.
http://dx.doi.org/10.1038/nutd.2014.18
66. Cani P. D., Neyrinck A. M., Fava F., Knauf C., Burcelin R. G., Tuohy K. M., Gibson G. R., Delzenne N. M. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007, 50 (11), 2374–2383.
http://dx.doi.org/10.1007/s00125-007-0791-0
67. Yokota A., Fukiya S., Islam K. B., Ooka T., Ogura Y., Hayashi T., Hagio M., Ishizuka S. Is bile acid a determinant of the gut microbiota on a high-fat diet? Gut Microbes. 2012, 3 (5), 455–459.
http://dx.doi.org/10.4161/gmic.21216
68. Cani P. D., Amar J., Iglesias M. A., Poggi M., Knauf C., Bastelica D., Neyrinck A. M., Fava F., Tuohy K. M., Chabo C., Waget A., Delm?e E., Cousin B., Sulpice T., Chamontin B., Ferri?res J., Tanti J. F., Gibson G. R., Casteilla L., Delzenne N. M., Alessi M. C., Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007, 56 (7), 1761–1772.
http://dx.doi.org/10.2337/db06-1491
69. Schnabl B., Brenner D. A. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014, 146 (6), 1513–1524.
http://dx.doi.org/10.1053/j.gastro.2014.01.020
70. Piya M. K., McTernan P. G., Kumar S. Adipokine inflammation and insulin resistance: the role of glucose, lipids and endotoxin. J. Endocrinol. 2013, 216 (1), T1–T15.
http://dx.doi.org/10.1530/JOE-12-0498
71. Zhu Y., Michelle Luo T., Jobin C., Young H. A. Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett. 2011, 309 (2), 119–127.
http://dx.doi.org/10.1016/j.canlet.2011.06.004
72. Noval Rivas M., Burton O. T., Wise P., Zhang Y. Q., Hobson S. A., Garcia Lloret M., Chehoud C., Kuczynski J., DeSantis T., Warrington J., Hyde E. R., Petrosino J. F., Gerber G. K., Bry L., Oettgen H. C., Mazmanian S. K., Chatila T. A. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J. llergy Clin. Immunol. 2013, 131 (1), 201–212.
73. Russell S. L., Finlay B. B. The impact of gut microbes in allergic diseases. Curr. Opin. Gastroenterol. 2012, 28 (6), 563–569.
http://dx.doi.org/10.1097/MOG.0b013e3283573017
74. Giongo A., Gano K. A., Crabb D. B., Mukherjee N., Novelo L. L., Casella G., Drew J. C., Ilonen J., Knip M., Hy?ty H., Veijola R., Simell T., Simell O., Neu J., Wasserfall C. H., Schatz D., Atkinson M. A., Triplett E. W. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011, 5 (1), 82–91.
http://dx.doi.org/10.1038/ismej.2010.92
75. Binnendijk K. H., Rijkers G. T. What is a health benefit? An evaluation of EFSA opinions on health benefits with reference to probiotics. Benef. Microbes. 2013, 4 (3), 223–230.
http://dx.doi.org/10.3920/BM2013.0019
76. Bermudez-Brito M., Plaza-D?az J., Mu?oz-Quezada S., G?mez-Llorente C., Gil A. Probiotic mechanisms of action. Ann. Nutr. Metab. 2012, 61 (2), 160–174.
http://dx.doi.org/10.1159/000342079
77. Ramakrishna B. S. Probiotic-induced changes in the intestinal epithelium: implications in gastrointestinal disease. Trop. Gastroenterol. 2009, 30 (2), 76–85.
78. Kramarov S. A., Vygovskaya O. V., Yankovskiy D. S., Diment G. S. Experience of application multyprobyotyka SIMBITER® childish in clinical infections. Modern pediatrics. 2013, 4 (52), 114–120. (In Russian).
79. Yankovskiy D. S., Diment G. S. Microorganisms and human health. Kyiv: Ekspert LTD. 2008, 552 p. (In Russian).
80. Bondarenko V. M. New approach to the classification of medicinal pharmacopoeial probiotics, dietary supplements and functional foods. Farmateka. 2007, 2 (137), 62–64. (In Russian).
81. Probiotics: Immunobiotics and Immunogenics. Ed. by Haruki Kitazawa, Julio Villena, Susana Alvarez. CRC Press. 2013, 412 p. (In Russian).
82. Marranzino G., Villena J., Salva S., Alvarez S. Stimulation of macrophages by immunobiotic Lactobacillus strains: influence beyond the intestinal tract. Microbiol. Immunol. 2012, 56 (11), 771–781.
http://dx.doi.org/10.1111/j.1348-0421.2012.00495.x
83. Evrard B., Coudeyras S., Dosgilbert A., Charbonnel N., Alam? J., Tridon A., Forestier C. Dose-dependent immunomodulation of human dendritic cells by the probiotic Lactobacillus rhamnosus Lcr35. PLoS One. 2011, 6 (4), e18735.
http://dx.doi.org/10.1371/journal.pone.0018735
84. Shida K., Kiyoshima-Shibata J., Nagaoka M., Watanabe K., Nanno M. Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion. J. Dairy Sci. 2006, 89 (9), 3306–3317.
http://dx.doi.org/10.3168/jds.S0022-0302(06)72367-0
85. Villena J., Chiba E., Tomosada Y., Salva S., Marranzino G., Kitazawa H., Alvarez S. Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C). BMC Immunol. 2012, V. 13, P. 53.
http://dx.doi.org/10.1186/1471-2172-13-53
86. Rose M. A., Stieglitz F., K?ksal A., Schubert R., Schulze J., Zielen S. Efficacy of probiotic Lactobacillus GG on allergic sensitization and asthma in infants at risk. Clin. Exp. Allergy. 2010, 40 (9), 1398–1405.
http://dx.doi.org/10.1111/j.1365-2222.2010.03560.x
87. Foligne B., Zoumpopoulou G., Dewulf J., Ben Younes A., Chareyre F., Sirard J. C., Pot B., Grangette C. A key role of dendritic cells in probiotic functionality. PLoS One. 2007, 2(3), e313.
http://dx.doi.org/10.1371/journal.pone.0000313
88. Yeganegi M., Leung C. G., Martins A., Kim S. O., Reid G., Challis J. R., Bocking A. D. Lactobacillus rhamnosus GR-1-induced IL-10 production in human placental trophoblast cells involves activation of JAK/STAT and MAPK pathways. Reprod. Sci. 2010, 17 (11), 1043–1051.
http://dx.doi.org/10.1177/1933719110377237
89. Shida K., Nanno M., Nagata S. Flexible cytokine production by macrophages and T cells in response to probiotic bacteria: a possible mechanism by which probiotics exert multifunctional immune regulatory activities. Gut Microbes. 2011, 2 (2), 109–114.
http://dx.doi.org/10.4161/gmic.2.2.15661
90. Nanno M., Kato I., Kobayashi T., Shida K. Biological effects of probiotics: what impact does Lactobacillus casei shirota have on us? Int. J. Immunopathol. Pharmacol. 2011, 24 (1 Suppl), 45S–50S.
91. Vieira A. T., Teixeira M. M., Martins F. S. The role of probiotics and prebiotics in inducing gut immunity. Front. Immunol. 2013, V. 4, P. 445.
http://dx.doi.org/10.3389/fimmu.2013.00445
92. Smecuol E., Hwang H. J., Sugai E., Corso L., Cher?avsky A. C., Bellavite F. P., Gonz?lez A., Vod?novich F., Moreno M. L., V?zquez H., Lozano G., Niveloni S., Mazure R., Meddings J., Mauri?o E., Bai J. C. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J. Clin. Gastroenterol. 2013, 47 (2), 139–147.
http://dx.doi.org/10.1097/MCG.0b013e31827759ac
93. Groeger D., O’Mahony L., Murphy E. F., Bourke J. F., Dinan T. G., Kiely B., Shanahan F., Quigley E. M. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes. 2013, 4 (4), 325–339.
http://dx.doi.org/10.4161/gmic.25487
94. Konieczna P., Akdis C. A., Quigley E. M., Shanahan F., O’Mahony L. Portrait of an immunoregulatory Bifidobacterium. Gut Microbes. 2012, 3 (3), 261–266.
http://dx.doi.org/10.4161/gmic.20358
95. Eeckhaut V., Machiels K., Perrier C., Romero C., Maes S., Flahou B., Steppe M., Haesebrouck F., Sas B., Ducatelle R., Vermeire S., Van Immerseel F. Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut. 2013, 62 (12), 1745–1752.
http://dx.doi.org/10.1136/gutjnl-2012-303611
96. Scott K. P., Martin J. C., Duncan S. H., Flint H. J. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol. Ecol. 2014, 87 (1), 30–40.
http://dx.doi.org/10.1111/1574-6941.12186
97. Roelofsen H., Priebe M. G., Vonk R. J. The interaction of short-chain fatty acids with adipose tissue: relevance for prevention of type 2 diabetes. Benef. Microbes. 2010, 1 (4), 433–437.
http://dx.doi.org/10.3920/BM2010.0028
98. Bassaganya-Riera J., Viladomiu M., Pedragosa M., De Simone C., Carbo A., Shaykhutdinov R., Jobin C., Arthur J. C., Corl B. A., Vogel H., Storr M., Hontecillas R. Probiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPAR ? to suppress colitis. PLoS One. 2012, 7 (2), 31238.
http://dx.doi.org/10.1371/journal.pone.0031238
99. Lebeer S., Vanderleyden J., De Keers-maecker S. C. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat. Rev. Microbiol. 2010, 8 (3), 171–184.
http://dx.doi.org/10.1038/nrmicro2297
100. Thomas C. M., Hong T., van Pijkeren J. P., Hemarajata P., Trinh D. V., Hu W., Britton R. A., Kalkum M., Versalovic J. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One. 2012, 7 (2), 31951.
http://dx.doi.org/10.1371/journal.pone.0031951
101. Weill F. S., Cela E. M., Paz M. L., Ferrari A., Leoni J., Gonz?lez Maglio D. H. Lipoteichoic acid from Lactobacillus rhamnosus GG as an oral photoprotective agent against UV-induced carcinogenesis. Br. J. Nutr. 2013, 109 (3), 457–466.
http://dx.doi.org/10.1017/S0007114512001225
102. Theodorakopoulou M., Perros E., Giamarellos-Bourboulis E. J., Dimopoulos G. Controversies in the management of the critically ill: the role of probiotics. Int. J. Antimicrob Agents. 2013, 42 Suppl, S41–44.
http://dx.doi.org/10.1016/j.ijantimicag.2013.04.010
103. Eberl G., Boneca I. G. Bacteria and MAMP-induced morphogenesis of the immune system. Curr. Opin. Immunol. 2010, 22 (4), 448–454.
http://dx.doi.org/10.1016/j.coi.2010.06.002
104. Vandenplas Y., Veereman-Wauters G., De Greef E., Peeters S., Casteels A., Mahler T., Devreker T., Hauser B. Probiotics and prebiotics in prevention and treatment of diseases in infants and children. J. Pediatr. (Rio J). 2011, 87 (4), 292–300.
http://dx.doi.org/10.2223/JPED.2103
105. Corr?a N. B., P?ret Filho L. A., Penna F. J., Lima F. M., Nicoli J. R. A randomized formula controlled trial of Bifidobacterium lactis and Streptococcus thermophilus for prevention of antibiotic-associated diarrhea in infants. J. Clin. Gastroenterol. 2005, 39 (5), 385–389.
http://dx.doi.org/10.1097/01.mcg.0000159217.47419.5b
106. Smolensky M. H., Lemmer B., Reinberg A. E. Chronobiology and chronotherapy of allergic rhinitis and bronchial asthma. Adv. Drug. Deliv. Rev. 2007, 59 (9–10), 852–882.
http://dx.doi.org/10.1016/j.addr.2007.08.016
107. Takagi T., Inada Y., Naito Y. Circadian rhythm and inflammatory bowel disease. Nihon. Rinsho. 2013, 71 (12), 2165–2170.
108. Froy O., Chapnik N. Circadian oscillation of innate immunity components in mouse small intestine. Mol. Immunol. 2007, 44 (8), 1954–1960.
http://dx.doi.org/10.1016/j.molimm.2006.09.026
109. Isidro R. A., Bonilla F. J., Pagan H., Cruz M. L., Lopez P., Godoy L., Hernandez S., Loucil-Alicea R. Y., Rivera-Amill V., Yamamura Y., Isidro A. A., Appleyard C. B. The Probiotic Mixture VSL#3 Alters the Morphology and Secretion Profile of Both Polarized and Unpolarized Human Macrophages in a Polarization-Dependent Manner. J. Clin. Cell. Immunol. 2014, 5 (3), 10002–10027.
110. Gazouli M., Mantzaris G., Kotsinas A., Zacharatos P., Papalambros E., Archimandritis A., Ikonomopoulos J., Gorgoulis V. G. Association between polymorphisms in the Toll-like receptor 4, CD14, and CARD15/NOD2 and inflammatory bowel disease in the Greek population. World. J. Gastroenterol. 2005, 11 (5), 681–685.
http://dx.doi.org/10.3748/wjg.v11.i5.681
111. Ly N. P., Litonjua A., Gold D. R., Celed?n J. C. Gut microbiota, probiotics, and vitamin D: interrelated exposures influencing allergy, asthma, and obesity. J. Allergy Clin. Immunol. 2011, 127 (5), 1087–1094.
http://dx.doi.org/10.1016/j.jaci.2011.02.015
112. Kawai T., Akira S. TLR signaling. Cell. Death. Differ. 2006, 13 (5), 816–825.
http://dx.doi.org/10.1038/sj.cdd.4401850
113. Reuven E. M., Fink A., Shai Y. Regulation of innate immune responses by transmembrane interactions: lessons from the TLR family. Biochim. Biophys. Acta. 2014, 1838 (6), 1586–1593.
http://dx.doi.org/10.1016/j.bbamem.2014.01.020
114. Kant R., de Vos W. M., Palva A., Satokari R. Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and disease. J. Med. Microbiol. 2014, 63 (Pt 2), 293–308.
http://dx.doi.org/10.1099/jmm.0.064220-0
115. Shenderov B. A. Probiotic (symbiotic) bacterial languages. Anaerobe. 2011, 17 (6), 490–495.
http://dx.doi.org/10.1016/j.anaerobe.2011.05.009