ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
Biotechnologia Acta V. 8, No 3, 2015
https://doi.org/10.15407/biotech8.03.009
Р. 9-27, Bibliography 92, English
Universal Decimal Classification: 759.873.088.5:661.185
TECHNOLOGIES OF SYNTHESIS OF ORGANIC SUBSTANCES BY MICROORGANISMS USING WASTE BIODIESEL PRODUCTION
Pirog T. P., Grytsenko N. A., Sofilkanych A. P., Savenko I. V.
National University of Food Technologies, Kyiv, Ukraine
We describe here literature and our experimental data concerning microbial synthesis using waste biodiesel production, mono- and dihydric alcohols (1,3-propanediol, 2,3-butanediol, butanol, ethanol), polyols (mannitol, erythritol, arabitol), organic acids (citric, succinic, lactic, glyceric), polymers and compounds with a complex structure (polysaccharides, polyhydroxyalkanoates, surfactants, cephalosporin, cyanocobalamin). In some mentioned cases recombinant producer strains were used.
It was shown that due to the presence of potential inhibitors in the composition of technical (crude) glycerol (methanol, sodium and potassium salts), the efficiency of synthesis of most microbial products on such a substrate is lower than on the purified glycerol. However, the need of utilization of this toxic waste (storage and processing of crude glycerol is a serious environmental problem due to the high alkalinity and the content of methanol in it), compensates the lower rates of synthesis of the final product. Furthermore, currently considering the volumes of crude glycerol formed during the production of biodiesel, microbial technologies are preferred for its utilization, allowing realizing biosynthesis of practically valuable metabolites in the environment with the highest possible concentration of this waste.
Using of crude glycerol as a substrate will reduce the cost of products of microbial synthesis and increase the profitability of biodiesel production.
Key words: biodiesel, technical (crude) glycerol, products of microbial synthesis.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv? 2015
References
1. Dellomonaco С., Fava F., Gonzalez R. The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb. Cell. Fact. 2010. doi: 10.1186/1475-2859-9-3.
2. Zhu Y., Eiteman M. A., Lee S. A., Altman E. Conversion of glycerol to pyruvate by Escherichia coli using acetate– and acetate/glucose–limited fed–batch processes. J. Ind. Microbiol. Biotechnol. 2010, 37 (3), 307–312.
http://dx.doi.org/10.1007/s10295-009-0675-z
3. Da Silva P. G., Mack M., Contiero J. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 2009, 27 (1), 30–39.
http://dx.doi.org/10.1016/j.biotechadv.2008.07.006
4. Almeida J. R., Favaro L. C., Quirino B. F. Biodisel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol. Biofuels. 2012, 5 (1). doi: 10.1186/1754-6834-5-48.
5. Posada J. A., Cardona C. A., Gonzalez R. Analysis of the production process of optically pure D-lactic acid from raw glycerol using engineered Escherichia coli strains. Appl. Biochem. Biotechnol. 2012, 166 (3), 680–699.
http://dx.doi.org/10.1007/s12010-011-9458-x
6. Yang F., Hanna M. A., Sun R. Value-added uses for crude glycerol – a byproduct of biodiesel production. Biotechnol. Biofuels. 2012, 5:13.
doi: 10.1186/1754-6834-5-13.
7. Samul D., Leja K., Grajek W. Impurities of crude glycerol and their effect on metabolite production. Ann. Microbiol. 2014, V. 64, P. 891–898.
doi 10.1007/s13213-013-0767-x.
8. Ciapina E. M. P., Melo W. C., Santa Anna L. M., Santos A. S., Freire D. M., Pereira N. Jr. Biosurfactant production by Rhodococcus erythropolis grown on glycerol as sole carbon source. Appl. Biochem. Biotechnol. 2006, 131 (1–3), 880–886.
http://dx.doi.org/10.1385/ABAB:131:1:880
9. Siles J. A., Martіn M. L., Chica A. F., Martіn A. Anaerobic co-digestion of glycerol and wastewater derived from biodiesel manu facturing. Bioresour. Technol. 2010, 101 (16), 6315–6321.
10. Wilkens E., Ringel A. K., Hortig D., Willke T., Vorlop K. D. High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102а. Appl. Microbiol. Biotechnol. 2012, 93 (3), 1057–1063.
11. Gonzalez-Pajuelo M., Andrade J. C., Vasconcelos I. Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J. Ind. Microbiol. Biotechnol. 2004, 31 (9), 442–446.
12. Szymanowska-Powa?owska D., Bia?as W. Scale-up of anaerobic 1,3-propanediol production by Clostridium butyricum DSP1 from crude glycerol. BMC Microbiol. 2014.
doi: 10.1186/1471-2180-14-45.
13. Szymanowska-Powa?owska D., Leja K. An increasing of the efficiency of microbiological synthesis of 1,3-propanediol from crude glycerol by the concentration of biomass. Electron. J. Biotechnol. 2014, 17 (2). doi:10.1016/j.ejbt.2013.12.010.
14. Jun S. A., Moon C., Kang C. H., Kong S. W., Sang B. I., Um Y. Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumonia. Appl. Biochem. Biotechnol. 2010, 161 (1–8), 491–501.
15. Wong C. L., Huang C. C., Chen W. M., Chang J. S. Converting crude glycerol to 1,3-propandiol using resting and immobilized Klebsiella sp. HE-2 cells. Biochem. Eng. J. 2011, V. 58–59, P. 177–183.
http://dx.doi.org/10.1016/j.bej.2011.09.015
16. Dobson R., Gray V., Rumbold K. Microbial utilization of crude glycerol for the production of value-added products. J. Ind. Microbiol. Biotechnol. 2012, 39 (2), 217–226.
doi: 10.1007/s10295-011-1038-0.
17. D?browski S., Pietrewicz-Kubicz D., Zab?otna E., Dlugolecka A. 1,3-propanediol production by Escherichia coli expressing genes of dha operon from Clostridium butyricum 2CR371.5. Acta Biochim. Pol. 2012, 59 (30), 357–361.
18. Rujananon R.., Prasertsan P., Phongdara A. Biosynthesis of 1,3-propanediol from recombinant E. coli by optimization process using pure and crude glycerol as a sole carbon source under two-phase fermentation system. World J. Microbiol. Biotechnol. 2014, 30 (4), 1359—1368.
http://dx.doi.org/10.1007/s11274-013-1556-1
19. Gonz?lez-Pajuelo M., Meynial-Salles I., Mendes F., Andrade J. C., Vasconcelos I., Soucaille P. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab. Eng. 2005, 7 (5–6), 329–336.
http://dx.doi.org/10.1016/j.ymben.2005.06.001
20. Ferreira T. F., Ribeiro R. R., Ribeiro C. M. S., Freire D. M. G., Coelho M. A. Evaluation of 1,3-propanediol production from crude glycerol by Citrobacter freundii ATCC 8090. Сhem. Eng. Trans. 2012, V. 27, P. 157–162.
21. Pfl?gl S., Marx H., Mattanovich D., Sauer M. Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Bioresour. Technol. 2014, 152 (2), 499–504.
http://dx.doi.org/10.1016/j.biortech.2013.11.041
22. Sattayasamitsathita S., Prasertsana P., Methacanon P. Statistical optimization for simultaneous production of 1,3-propanediol and 2,3-butanediol using crude glycerol by newly bacterial isolate. Proc. Biochem. 2011, 46 (2), 608–614.
http://dx.doi.org/10.1016/j.procbio.2010.10.009
23. Petrov K., Petrova P. High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl. Microbiol. Biotechnol. 2009, 84 (4), 659–665.
http://dx.doi.org/10.1007/s00253-009-2004-x
24. Lee S., Kim B., Park K., Um Y., Lee J. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli. Appl. Biochem. Biotechnol. 2012, 166 (7), 1801–1813.
http://dx.doi.org/10.1007/s12010-012-9593-z
25. Shen X., Lin Y., Jain R., Yuan Q., Yan Y. Inhibition of acetate accumulation leads to enhanced production of (R,R)-2,3-butanediol from glycerol in Escherichia coli. J. Ind. Microbiol. Biotechnol. 2012, 39(11), 1725–1729.
http://dx.doi.org/10.1007/s10295-012-1171-4
26. Hong W. K., Kim C. H., Heo S. Y., Luo L., Oh B. R., Seo J. W. Enhanced production of ethanol from glycerol by engineered Hansenula polymorpha expressing pyruvate decarboxylase and aldehyde dehydrogenase genes from Zymomonas mobilis. Biotechnol. Lett. 2010, 32 (8), 1077–1082.
http://dx.doi.org/10.1007/s10529-010-0259-z
27. Liu X., Jensen P. R., Workman M. Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus. Bioresour. Technol. 2012, V. 104, P. 579–586.
doi: 10.1016/j.biortech.2011.10.065.
28. Durnin G., Clomburg J., Yeates Z., Alvarez P. J. J., Zygourakis K., Campbell P., Gonzalez R. Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol. Bioeng. 2009, 103 (1), 148–161.
http://dx.doi.org/10.1002/bit.22246
29. Oh B. R., Seo J. W., Heo S. Y., Hong W. K., Luo L. H., Joe M. H., Park D. H., Kim C. H. Efficient production of ethanol from crude glycerol by a Klebsiella pneumonia mutant strain. Bioresour. Technol. 2011, 102 (4), 3918–3922.
http://dx.doi.org/10.1016/j.biortech.2010.12.007
30. Oh B. R., Seo J. W., Heo S. Y., Hong W. K., Luo L. H., Kim S., Kwon O., Sohn J. H., Joe M., Park D. H., Kim C. H. Enhancement of ethanol production from glycerol in a Klebsiella pneumoniae mutant strain by the inactivation of lactate dehydrogenase. Proc. Biochem. 2012, 47 (1), 156–159.
http://dx.doi.org/10.1016/j.procbio.2011.10.011
31. Choi W. J., Hartono M. R., Chan W. H., Yeo S. S. Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. Appl. Microbiol. Biotechnol. 2011, 89 (4), 1255–1264.
http://dx.doi.org/10.1007/s00253-010-3076-3
32. Lee S. J., Kim S. B., Kang S. W., Han S. O., Park C., Kim S. W. Effect of crude glycerolderived inhibitors on ethanol production by Enterobacter aerogenes. Bioprocess Biosyst. Eng. 2012, 35 (1–2), 85–92.
http://dx.doi.org/10.1007/s00449-011-0607-y
33. Jensen T. O., Kvist T., Mikkelsen M. J., Westermann P. Production of 1,3-PDO and butanol by mutans strain of Clostridium asteurianum with increased tolerance towards crude glycerol. AMB Express. 2012.
doi: 10.1186/2191-0855-2-44.
34. Malaviya A., Jang Y.-S., Lee S. Y. Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl. Microbiol. Biotechnol. 2012, 93 (4), 1485–1494.
http://dx.doi.org/10.1007/s00253-011-3629-0
35. Khanna S., Goyal A., Moholkar V. S. Bioconversion of biodiesel derived crude glycerol by immobilized Clostridium pasteurianum: effect of temperature. Int. J. Chem. Biol. Eng. 2012, V. 6, P. 301–304.
36. Khan A., Bhide A., Gadre R. Mannitol production from glycerol by resting cells of Candida magnoliae. Bioresour. Technol. 2009, 100 (20), 4911–4913.
http://dx.doi.org/10.1016/j.biortech.2009.04.048
37. Andr? A., Chatzifragkou A., Diamantopoulou P., Sarris D., Philippoussis A., Galiotou-Panayotou M., Komaitis M., Papanikolaou S. Biotechnological conversions of biodieselderived crude glycerol by Yarrowia lipolytica strains. Eng. Life Sci. 2009, 9 (6), 468–478.
http://dx.doi.org/10.1002/elsc.200900063
38. Rymowicz W., Rywinska A., Gladkowski W. Simultaneous production of citric acid and erythritol from crude glycerol by Yarrowia lipolytica Wratislavia K1. Chem. Pap. 2008, 62 (3), 239–246.
http://dx.doi.org/10.2478/s11696-008-0018-y
39. Rymowicz W., Rywinska A., Marcinkiewicz M. High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol. Lett. 2009, 31 (3), 377–380.
http://dx.doi.org/10.1007/s10529-008-9884-1
40. Miro?czuk A. M., Furga?a J., Rakicka M., Rymowicz W. Enhanced production of erythritol by Yarrowia lipolytica on glycerol in repeated batch cultures. J. Ind. Microbiol. Biotechnol. 2014, 41 (1), 57–64.
doi: 10.1007/s10295-013-1380-5.
41. Koganti S., Kuo T. M., Kurtzman C. P., Smith N., Ju L. K. Production of arabitol from glycerol: strain screening and study of factors affecting production yield. Appl. Microbiol. Biotechnol. 2011, 90 (1), 257–267.
http://dx.doi.org/10.1007/s00253-010-3015-3
42. Rymowicz W., Fatykhova A. R., Kamzolova S. V., Rywi?ska A., Morgunov I. G. Citric acid production from glycerol–containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Appl. Microbiol. Biotechnol. 2010, 87 (3), 971–979.
http://dx.doi.org/10.1007/s00253-010-2561-z
43. Levinson W. E., Kurtzman C. P., Kuo T. M. Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol. Enzyme Microb. Technol. 2007, 41 (3), 292–295.
http://dx.doi.org/10.1016/j.enzmictec.2007.02.005
44. Da Silva L. V., Tavares C. B., Amaral P. F. F., Coelho M. A. Z. Production of citric acid by Yarrowia lipolytica in different crude glycerol concentrations and in different nitrogen sources. Сhem. Eng. Trans. 2012, V. 27, P. 199–204.
45. Imandi S. B., Bandaru V. R., Somalanka S. R., Garapati H. R. Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design. Enzyme Microb. Technol. 2007, 40 (5), 1367–1372.
46. Mazumdar S., Blankschien M. D., Clomburg J. M., Gonzalez R. Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli. Microb. Cell Fact. 2013.
doi: 10.1186/1475-2859-12-7.
47. Hong A. A., Cheng K. K., Peng F., Zhou S., Sun Y., Liu C. M., Liu D. H. Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid. J. Chem. Technol. Biotechnol. 2009, 84 (10), 1576–1581.
http://dx.doi.org/10.1002/jctb.2209
48. Mazumdar S., Clomburg J. M., Gonzalez R. Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol. Appl. Environ. Microbiol. 2010, 76 (13), 4327–4336.
http://dx.doi.org/10.1128/AEM.00664-10
49. Vodnar D. C., Dulf F. V., Pop O. L., Socaciu C. L(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol. Microb. Cell Fact. 2013.
doi: 10.1186/1475-2859-12-92.
50. Habe H., Shimada Y., Yakushi T., Hattori H., Ano Y., Fukuoka T., Kitamoto D., Itagaki M., Watanabe K., Yanagishita H. Microbial production of glyceric аcid, an organic acid that can be mass produced from glycerol. Appl. Environ. Microb. 2009, 75 (24), 7760–7766.
51. Blankschien M. D., Clomburg J. M., Gonzalez R. Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab. Eng. 2010, 12 (5), 409–419.
52. Carvalho M., Matos M., Roca C., Reis M. A. Succinic acid production from glycerol by Actinobacillus succinogenes using dimethylsulfoxide as electron acceptor. N. Biotechnol. 2014, 31 (1), 133–139.
http://dx.doi.org/10.1016/j.nbt.2013.06.006
53. Vlysidis A., Binns M., Webb C., Theodoropoulos C. Glycerol utilisation for the production of chemicals: Conversion to succinic acid, a combined experimental and computational study. Biochem. Eng. J. 2011, V. 58–59, P. 1–11.
http://dx.doi.org/10.1016/j.bej.2011.07.004
54. Andre A., Diamantopoulou P., Philippoussis A., Sarris D., Komaitis M., Papanikolaou S. Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind. Crop. Prod. 2010, 31 (2), 407–416.
http://dx.doi.org/10.1016/j.indcrop.2009.12.011
55. Musial I., Cibis E., Rymowicz W. Designing a process of kaolin bleaching in an oxalic acid enriched medium by Aspergillus niger cultivated on biodiesel-derived waste composed of glycerol and fatty acids. Appl. Clay. Sci. 2011, 52 (3), 277–284.
http://dx.doi.org/10.1016/j.clay.2011.03.004
56. Freitas F., Alves V. D., Pais J., Carvalheira M., Costa N., Oliveira R., Reis M. A. M. Production of a new exopolysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682 grown on glycerol. Proc. Biochem. 2010, 45 (3), 297–305.
http://dx.doi.org/10.1016/j.procbio.2009.09.020
57. Sarma S. J., Brar S. K. Le Bihan Y., Buelna G. Bio-hydrogen production by biodieselderived crude glycerol bioconversion: a techno-economic evaluation. Bioproc. Biosyst. Eng. 2013, 36 (1), 1–10.
http://dx.doi.org/10.1007/s00449-012-0755-8
58. Pott R. W., Howe C. J., Dennis J. S. The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Bioresour. Technol. 2014, V. 152, P. 464–470.
doi: 10.1016/j.biortech.2013.10.094.
59. Han J., Lee D., Cho J., Lee J., Kim S. Hydrogen production from biodiesel byproduct by immobilized Enterobacter aerogenes. Bioproc. Biosyst. Eng. 2012, 35 (1–2), 151–157.
http://dx.doi.org/10.1007/s00449-011-0593-0
60. Kivist? A., Santala V., Karp M. Hydrogen production from glycerol using halophilic fermentative bacteria. Bioresour. Technol. 2010, 101 (22), 8671–8677.
http://dx.doi.org/10.1016/j.biortech.2010.06.066
61. Rooney A. P., Price N. P., Ray K. J., Kuo T. M. Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol. Lett. 2009, 295 (1), 82–87.
http://dx.doi.org/10.1111/j.1574-6968.2009.01581.x
62. Ashby R. D., Nunez A., Solaiman D. K. Y., Foglia T. A. Sophorolipid biosynthesis from a biodiesel co-product stream. J. Am. Oil Chem. Soc. 2005, 82 (9), 625–630.
http://dx.doi.org/10.1007/s11746-005-1120-3
63. Ashby R. D., Solaiman D. K. The influence of increasing media methanol concentration on sophorolipid biosynthesis from glycerolbased feedstocks. Biotechnol. Lett. 2010, 32 (10), 1429–1437.
http://dx.doi.org/10.1007/s10529-010-0310-0
64. Wadekar S. D., Kale S. B., Lali A. M., Bhowmick D. N., Pratap A. P. Utilization of sweetwater as a cost-effective carbon source for sophorolipids production by Starmerella bombicola (ATCC 22214). Prep. Biochem. Biotechnol. 2012, 42 (2), 125–142.
doi: 10.1080/10826068.2011.577883.
65. De Sousa J. R., Melo V. M. M., Rodrigues S., Sant’ana H. B., Goncalves L. R. B. Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source. Bioproc. Biosyst. Eng. 2012, 35 (6), 897–906.
http://dx.doi.org/10.1007/s00449-011-0674-0
66. Faria A. F., Teodoro-Martinez D. S., Oliveira Barbosa G. N., Vaz B. G., Silva I. S., Garcia J. S., Totola M. R., Eberlin M. N., Grossman M., Alves O. L., Durrant L. R. Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Proc. Biochem. 2011, 46 (10), 1951–1957.
http://dx.doi.org/10.1016/j.procbio.2011.07.001
67. De Faria A. F., St?fani D., Vaz B. G., Silva ?. S., Garcia J. S., Eberlin M. N., Grossman M. J., Alves O. L., Durrant L. R. Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol. J. Ind. Microbiol. Biotechnol. 2011, 38 (7), 863?871.
doi: 10.1007/s10295-011-0980-1.
68. Liu Y., Koh C. M., Ji L. Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour. Technol. 2011, 102 (4), 3927–3933.
http://dx.doi.org/10.1016/j.biortech.2010.11.115
69. Wei Y. H., Cheng C. L., Chien C. C., Wan H. M. Enhanced di-rhamnolipid production with an indigenous isolate Pseudomonas aeruginosa J16. Proc. Biochem. 2008, 43 (7), 769–774.
http://dx.doi.org/10.1016/j.procbio.2008.03.009
70. Wu J. Y., Yeh K. L., Lu W. B., Lin C. L., Chang J. S. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour. Technol. 2008, 99 (5), 1157–1164.
http://dx.doi.org/10.1016/j.biortech.2007.02.026
71. De Sousa J. R., da Costa Correia J. A., de Almeida J. G. L., Rodrigues S., Pessoa O. D. L., Melo V. M. M., Goncalves L. R. B. Evaluation of a co-product of biodiesel production as carbon source in the production of biosurfactant by P. aeruginosa MSIC02. Proc. Biochem. 2011, 46 (9), 1831–1839.
http://dx.doi.org/10.1016/j.procbio.2011.06.016
72. Pirog T., Shulyakova M., Sofilkanych A., Shevchuk T., Maschenko O. Biosurfactant synthesis by Rhodococcus erytropolis ІМV Ас-5017, Acinetibacter calcoaceticus ІМV В-7241, Nocardia vaccinii ІМV В-7405 on byproduct of biodiesel product. Food Bioprod. Proc. 2013.
doi 10.1016/j.fbp.2013.09.003.
73. Pirog T. P., Shevchuk T. A., Maschenko O. Yu. The ways to enhance the bioconversion of glycerol in technical surfactants Rhodococcus erythropolis IMВ Aс-5017, Aсinetobacter calcoaceticus IMВ B-7241 and Nocardia vaccinii IMВ B-7405. Mikrobiol. zh. 2015, 77 (1), 8–14. (In Russian).
74. Shin H. Y., Lee J. Y., Choi H. S., Lee J. H., Kim S. W. Production of cephalosporin C using crude glycerol in fed-batch culture of Acremonium chrysogenum M35. J. Microbiol. 2011, 49 (5), 753–758.
http://dx.doi.org/10.1007/s12275-011-1155-5
75. Ruhal R., Choudhury B. Improved trehalose production from biodiesel waste using parent and osmotically sensitive mutant of Propionibacterium freudenreichii subsp. shermanii under aerobic conditions. J.Ind. Microbiol. Biotechnol. 2012, 39 (8), 1153–1160.
http://dx.doi.org/10.1007/s10295-012-1124-y
76. Saenge C., Cheirsilp B., Suksaroge T. T., Bourtoom T. Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversionof crude glycerol from biodiesel plant to lipids and carotenoids. Proc. Biochem. 2011, 46 (1), 210–218.
http://dx.doi.org/10.1016/j.procbio.2010.08.009
77. Liang Y. N., Cui Y., Trushenski J., Blackburn J. W. Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresour. Technol. 2010, 101 (19), 7581–7586.
http://dx.doi.org/10.1016/j.biortech.2010.04.061
78. Liang Y., Sarkany N., Cui Y., Blackburn J. W. Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Bioresour. Technol. 2010, 101 (17), 6745–6750.
http://dx.doi.org/10.1016/j.biortech.2010.03.087
79. Chen Y. H., Walker T. H. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoide by using biodieselderived crude glycerol. Biotechnol. Lett. 2011, 33 (10), 1973–1983.
http://dx.doi.org/10.1007/s10529-011-0672-y
80. Souza K. S., Schwan R. F., Dias D. R. Lipid and citric acid production by wild yeasts grown in glycerol. J. Microbiol. Biotechnol. 2014, 24 (4), 497–506.
http://dx.doi.org/10.4014/jmb.1310.10084
81. Yu K. O., Jung J., Kim S. W., Park C. H., Han S. O. Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnol. Bioeng. 2012, 109 (1), 110–115. doi: 10.1002/bit.23311.
82. Nikel P. I., Pettinari M. J., Galvagno M. A., Mendez B. S. Poly(3-hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fed-batch microaerobic cultures. Appl. Microbiol. Biotechnol. 2008, 77 (6), 1337–1343.
http://dx.doi.org/10.1007/s00253-007-1255-7
83. Ibrahim M. H., Steinbuchel A. Poly(3-Hydroxybutyrate) Production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl. Environ. Microbiol. 2009, 75 (19), 6222–6231.
http://dx.doi.org/10.1128/AEM.01162-09
84. Posada J. A., Naranjo J. M., L?pez J. A., Higuita J. C., Cardon C. A. Designand analysis of poly-3-hydroxybutyrate production processes from crude glycerol. Proc. Biochem. 2011, 46 (1), 310–317.
http://dx.doi.org/10.1016/j.procbio.2010.09.003
85. Teeka J., Imai T., Reungsang A., Cheng X., Yuliani E., Thiantanankul J., Poomipuk N., Yamaguchi J., Jeenanong A., Higuchi T., Yamamoto K., Sekine M. Characterization of polyhydroxyalkanoates (PHAs) biosynthesis by isolated Novosphingobium sp. THA_AIK7 using crude glycerol. J. Ind. Microbiol. Biotechnol. 2012, 39 (5), 749–758.
http://dx.doi.org/10.1007/s10295-012-1084-2
86. Hermann-Krauss C., Koller M., Muhr A., Fasl H., Stelzer F., Braunegg G. Archaeal production of polyhydroxyalkanoate (PHA) co- and terpolyesters from biodiesel industryderived by-products. Archaea. 2013, 2013:129268.
doi: 10.1155/2013/129268.
87. Andreessen B., Lange A. B., Robenek H., Steinb?chel A. Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl. Environ. Microbiol. 2010, 76 (2), 622–626.
http://dx.doi.org/10.1128/AEM.02097-09
88. Heinrich D., Andreessen B., Madkour M. H., Al-Ghamdi M. A., Shabbaj I. I., Steinb?chel A. From waste to plastic: synthesis of poly(3-hydroxypropionate) in Shimwellia blattae. Appl. Environ. Microbiol. 2013. 79 (12), 3582–3589.
doi: 10.1128/AEM.00161-13.
89. Ko?mider A., Bia?as W., Kubiak P., Dro?d?y?ska A., Czaczyk K. Vitamin B12 production from crude glycerol by Propionibacterium freudenreichii ssp. shermanii: optimization of medium composition through statistical experimental designs. Bioresour. Technol. 2012, 105 (1), 128–133. doi: 10.1016/j.biortech.2011.11.074.
90. Rehman A. U., Matsumura M., Nomura N., Sato S. Growth and 1,3-propanediol production on pre-treated sunflower oil biodiesel raw glycerol using a strict anaerobe. Clostridium butyricum. Curr. Res. Bacteriol. 2008, 1 (1), 7–16.
http://dx.doi.org/10.3923/crb.2008.7.16
91. Chatzifragkou A., Papanikolaou S., Dietz D., Doulgeraki A. I., Nychas G. J. E., Zeng A. P. Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl. Microbiol. Biotechnol. 2011, 91 (1), 101–112.
http://dx.doi.org/10.1007/s00253-011-3247-x
92. Otte B., Grunwaldt E., Mahmoud O., Jenne wein S. Genome shuffling in Clostridium diolis DSM 15410 for improved 1,3-propanediol production. Appl. Environ. Microbiol. 2009, 75 (24), 7610–7616.
http://dx.doi.org/10.1128/AEM.01774-09