ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
"Biotechnologia Acta" v. 6, no. 5, 2013
https://doi.org/10.15407/biotech6.05.049
Р.49-61, Bibliography 77, Ukrainian
Universal Decimal classification: 591.146-02
BIOACTIVE PEPTIDES OF THE COW MILK WHEY PROTEINS (Bos taurus)
A. V. Iukalo, K. Ye. Datsyshyn, V. G. Yukalo
Ternopil Pul’uj National Technical University, Ukraine
Data on the biological functions of milk whey proteins, which are implemented at the level of their proteolytic degradation products — bioactive peptides have been reviewed. The main functions of these proteins is to provide the amino acid nutrition of mammals in the early stages of development, as well as the transport of fatty acids, retinol, involved in the synthesis of lactose, ions of calcium and iron, immune protection, antimicrobial action, etc. However, in recent years, it has been found that milk proteins like casein are precursors of biologically active peptides. Аngiotensin — converting enzyme, opioid peptides which are opiate receptor agonists, anti–microbial peptides, peptides with immunomodulatory and hypocholesterolemic action, and peptides affecting motility have been found among the products of proteolytic degradation of β-lactoglobulin, α-laktoalbumin, lactoferrin and milk whey albumin. Also data on the possible participation of peptides from milk whey proteins in the implementation of the biological functions of both the assimilation of calcium, antioxidant effect, the regulation of appetite, anticarcinogenic are provided. The authors assume that the phenomenon of bioactive peptides formation could be considered as an additional function of natural food proteins, which gives advantages to the mammals and has a positive effect on their development in the postnatal period. Ways of bioactive peptides formation, their resistance to action of proteolytic enzymes, the ability to cross into the bloodstream and have biological effects have been also discussed. Up to date, only a few products with bioactive peptides from milk whey proteins are obtained. Further studies of their structure, mechanism of action, ways of formation and methods of isolation are required for their wider use. Formation of functional products based on bioactive peptides from milk whey proteins will allow efficient use of milk whey, which is often a byproduct of the dairy industry.
Key words: milk whey proteins, bioactive peptides, proteolysis, functional dairy products.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Brantl V., Teschmacher H., Henschen A., Lottspeich F. Novel opioid peptides derived from casein (b-Casomorphins)1. Isolation from bovine casein peptone. Hoppe-Seyler’s Z. Phisiol. Chem. 1979, 360 (9), 1211–1216.
https://doi.org/10.1515/bchm2.1979.360.2.1211
2. Maubois J. L., Leonil J. Peptides du lait a activite biologique. Lait. 1989, 69 (4), 245–269.
https://doi.org/10.1515/bchm2.1979.360.2.1211
3. Chandan R. C., Kilara A. Dairy Ingredients for Food Processing. USA: Wiley-Blackwell. 2011, 522 p.
https://doi.org/10.1002/9780470959169
4. Haque E., Chand R., Kapila S. Biofunctional Propeties of Bioactive Peptides of Milk Origin. Food Rev. Intern. 2009, 25 (1), 28–43.
https://doi.org/10.1080/87559120802458198
5. Iukalo A. V., Storozh L. A., Yukalo V. H. Proteins casein complex cows (Bos taurus) as precursors of biologically active peptides. Biotehnolohiia. 2012, 5 (4), 21–33. (In Ukrainian).
6. Farrell H. M., Jimenez-Flores R., Bleck G. T. Nomenklature of the proteins of cows’ milk — sixth revision. J. Dairy Sci. 2004, 87 (6), 1641–1674.
https://doi.org/10.3168/jds.S0022-0302(04)73319-6
7. Yukalo A., Yukalo V., Shynkaryk M. Electrophoretic separation of the milk protein. Proceeding of the International Conference on Bio and Food Electrotechnologies. Compiegne, France. 2009, P. 227–231.
8. Madureira A. R., Tavares T., Gomes A. M. P. Phisiological properties of bioactive peptides obtained from whey proteins. J. Dairy Sci. 2010, 93 (2), 437–455.
https://doi.org/10.3168/jds.2009-2566
9. Nagpal R., Behare P., Rana R. Bioactive peptides derived fron milk proteins and their health beneficial potentials: an update. Food Funct. 2011, 2 (1), 18–27.
https://doi.org/10.1039/C0FO00016G
10. Szwajkowska M., Wolanciuk A., Barlowska J. Bovine milk proteins as the source of bioactive peptides influencing the consumers’ immune system — a review. Anim. Sci. Papers Rep. 2011, 29 (4), 269–280.
11. Korhonen H., Pihlanto A. Bioactive peptides: Novel applications for milk proteins. Appl. Biotechnol. Food Sci. Policy. 2003, V. 1, P. 133–144.
12. FitzGerald R. J., Meisel H. Lactokinins: Whey protein — derived ACE inhibitory peptides. Nahrung. 1999, 43 (3), 165–167.
https://doi.org/10.1002/(SICI)1521-3803(19990601)43:3<165::AID-FOOD165>3.0.CO;2-2
13. Hanonh V. F. Human Physiology: Transl. from English. Lviv, BaK. 2002, 784 p. (In Ukrainian).
14. Lopes-Fandino R., Otte J., van Camp J. Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. Int. Dairy J. 2006, 16 (11), 1277–1293.
https://doi.org/10.1016/j.idairyj.2006.06.004
15. Hall J. E., Gayton A. C., Brands M. W. Control of sodium excretion and arterial pressure by intrarenal mechanisms and the rennin-angiotensin system. Hypertension: Pathophysiology, Diagnosis and Management. New York: Raven Press Ltd. 1995, P. 1451–1475.
16. Zharinov O. Y. Protecting of heart and blood vessels - the future vocation inhibitors angiotensin-converting enzyme. Med. svitu. 2000, 8, № 2, 80–85. (In Ukrainian).
17. Meisel H. Multifunctional peptides encrypted in milk proteins. Bio Factors. 2004, 21 (1–4), 55–61.
https://doi.org/10.1002/biof.552210111
18. Robert M. C., Razaname A., Mutter M., Juillerat M. A. Identification of angiotensin-I-converting enzyme inhibitory peptides derived from sodium caseinate hydrolysates produced by Lactobacillus helveticus NCC 2765. Agric. Food Chem. 2004, 52 (23), 6923–6931.
https://doi.org/10.1021/jf049510t
19. Pripp A. H., Asaksson T., Stepaniak L., Sorhaug T. Quantitative structure–activity relationship modelling of ACE-inhibitory peptides derived from milk proteins. Europ. Food Res. Technol. 2004, 219 (6), 579–583.
https://doi.org/10.1007/s00217-004-1004-4
20. Gobbetti M., Stepaniak L. De Angelis M. Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit. Rev. Food Sci. Nutr. 2002, 42 (3), 223–239.
https://doi.org/10.1080/10408690290825538
21. Pihlanto-Leppдlд A., Koskinen P., Pьlola K. Angiotensin-I-converting enzyme inhibitory properties of whey proteins digests: Concentration and characterization of active peptides. J. Dairy Res. 2000, 67 (1), 53–64.
https://doi.org/10.1017/S0022029999003982
22. Vermeirssen V., Van Camp J., Decroos K. The impact of fermentation and in vitro digestion on the formation of angiotensin-I-converting enzyme inhibitory activity from pea and whey protein. J. Dairy Sci. 2003, 86 (2), 429–438.
https://doi.org/10.3168/jds.S0022-0302(03)73621-2
23. Mullally M. M., Meisel H., FitzGerald R. J. Identification of novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine b-lactoglobulin. FEBS Lett. 1997, 402 (2–3), 99–101.
https://doi.org/10.1016/S0014-5793(96)01503-7
24. Abubakar A., Saito T., Kitazawa H. Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. J. Dairy Sci. 1998, 81 (12), 3131–3138.
https://doi.org/10.3168/jds.S0022-0302(98)75878-3
25. Ortiz-Chao P. J. A., Gomez-Ruiz R. A., Rastall D. Production of novel ACE inhibitory peptides from b-lactoglobulin using Protease N Amano. Int. Dairy J. 2009, 19 (2), P. 69–76.
https://doi.org/10.1016/j.idairyj.2008.07.011
26. Sieber R., Butikofer U., Egger Ch. ACE-inhibitory activity and ACE-inhibiting peptides in different cheese varieties. Dairy Sci. Technol. 2010, 90 (1), 47–73.
https://doi.org/10.1051/dst/2009049
27. Yukalo V. H. Formation of antihypertensive peptides during proteolysis protein cheese. Med. khimiia. 2004, 6 (2), 26–29. (In Ukrainian).
28. Vermeirssen V., Deplacke B., Tappenden K. A. Intestinal transport of the lactokinin Ala-Leu-Pro-Met-His-Ile-Arg through a Caco-2 Bbe monolayer. J. Pept. Sci. 2002, 8 (3), 95–100.
https://doi.org/10.1002/psc.371
29. Satake M., Enjoh M., Nakamura Y. Transepithelial transport of the bioactive tripeptide Val-Pro-Pro in human intestinal Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 2002, 66 (2), 378–384.
https://doi.org/10.1271/bbb.66.378
30. Walsh D. J., Bernard H., Murray B. A. In vitro generation and stability of the lactokinin b-lactoglobulin fragment (142–148). J. Dairy Sci. 2004, 87 (11), 3845–3857.
https://doi.org/10.3168/jds.S0022-0302(04)73524-9
31. Roufik S., Gauthier S. F., Turgeon S. L. In vitro digestibility of bioactive peptides derived from bovine b-lactoglobulin. Int. Dairy J. 2006, 16 (4), 294–302.
https://doi.org/10.1016/j.idairyj.2005.03.010
32. Murakami M., Tonouchi H., Takahashi R. Structural analysis of a new anti-hypertensive peptide (b-lactosin B) isolated from a commercial whey product. J. Dairy Sci. 2004, 87 (7), 1967–1974.
33. Yamamoto M. M., Maeno M., Takano T. Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4. J. Dairy Sci. 1999, 82 (7), 1388–1393.
34. Nurminen M. L., Sipola M., Kaarto H. a-Lactorphin lowers blood pressure measured by radiotelemetry in normotensive and in spontaneously hypertensive rats. Life Sci. 2000, 66 (16), 1535–1543.
35. FitzGerald R. J., Murray B. A., Walsh G. J. Hypotensive peptides from milk proteins. J. Nutr. 2004, V. 134, Р. 980–988.
36. Maes W., Van Camp J., Vermeirssen V. Influence of the lactokinin, Ala-Leu-Pro-Met-His-Ile-Arg (ALPMHIR) on the release of endothelin-1 by endothelial cells. Reg. Pept. 2004, 118 (1–2), 105–109.
https://doi.org/10.1016/j.regpep.2003.11.005
37. Sipola M., Finckenberg P. Vapaatalo H. a-Lactorphin and b-lactorphin improve arterial function in spontaneously hypertensive rats. Life Sci. 2002, 71 (11), 1245–1253.
https://doi.org/10.1016/S0024-3205(02)01793-9
38. Yamada Y., Matoba N., Usui H. Design of a highly potent anti-hypertensive peptide based on ovokinin (2–7). Biosci. Biotechnol. Biochem. 2002, 66 (6), 1213–1217.
https://doi.org/10.1271/bbb.66.1213
39. Pins J. J., Keenan J. M. Effects of whey peptides on cardiovascular disease risk factors. J. Clin. Hypertens. 2006, 8 (11), 775–782.
https://doi.org/10.1111/j.1524-6175.2006.05667.x
40. Pellegrini A. Antimicrobial peptides from food proteins. Curr. Phamaceut. Design. 2003, 9 (16), 1225–1238.
https://doi.org/10.2174/1381612033454865
41. Hartmann R., Meisel H. Food-derived peptides with biological activity: from research to food applications. Curr. Opin. Biotechnol. 2007,18 (2), 163–169.
https://doi.org/10.1016/j.copbio.2007.01.013
42. Gobetti M., Minervini F., Grizzello C. Angiotensin I-converting-enzyme- inhibitory and antimicrobial bioactive peptides. Int. Dairy J. 2004, 57 (2/3), 173–188.
https://doi.org/10.1111/j.1471-0307.2004.00139.x
43. Pan Y., Rowney M., Guo P., Hobman P. Biological properties of lactoferrin: an overview. Austral. J. Dairy Technol. 2007, 62 (1), 31–42.
44. Jones F. S., Simms H. S. The bacterial growth inhibitor (lactenin) of milk. J. Experim. Med. 1930, V. 51, P. 327–339.
https://doi.org/10.1084/jem.51.2.327
45. Bellamy W., Takase M., Yamauchi K. Identification of the bactericidal domain of lactoferrin. Biochem. Biophis. Acta. Prot. Struct. Mol. Enzymol. 1992, 1121 (1–2), 130–136.
https://doi.org/10.1016/0167-4838(92)90346-F
46. Oo T. Z., Cole N., Garthwaite L., Mark D. Evaluation of synergistic activity of bovine lactoferricin with antibiotics in corneal infection. J. Antimicrob. Chemother. 2010, 65 (6), 1243–1251.
https://doi.org/10.1093/jac/dkq106
47. Korhonen H. Antibacterial and antiviral activities of whey proteins, the impotence of whey and whey components in food and nutrition. Proc. 3 rd Int. Whey Conf. Munich, Germany. 2001, P. 303–321.
48. Van der Kraan M. I. A., Groenink K., Nazmi K. Lactoferrampin: A novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides. 2004, 25 (2), 177–183.
https://doi.org/10.1016/j.peptides.2003.12.006
49. Van der Kraan M. I. A., Nazmi K., Teeken A. Lactoferrampin an antimicrobial of bovine lactoferrin exhibits its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix facilitating N-terminal part. J. Biol. Chem. 2005, 386 (1), 137–142.
50. Gifford J. L., Hunter H. N., Vogel H. J. Lactoferricin: a lactoferrin–derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci. 2005, 62 (22), 2588–2598.
https://doi.org/10.1007/s00018-005-5373-z
51. Pellegrini A., Thomas U., Bramaz N. Isolation and identification of three bactericidal domains in the bovine alpha-lactalbumin molecule. Biochem. Biophys. Acta. Gen. Subj. 1999, 1426 (3), 439–448.
https://doi.org/10.1016/S0304-4165(98)00165-2
52. Pellegrini A., Dettling C., Thomas H., Hunziker P. Izolation and characterization of four bactericidal domains in the bovine beta-lactoglobulin. Biochem. Biophys. Acta. Gen. Subj. 2001, 1526 (2), 131–140.
https://doi.org/10.1016/S0304-4165(01)00116-7
53. Gauthier S. F., Pouliot Y., Saint-Sauveur D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J. 2006, 16 (11), 1315–1323.
https://doi.org/10.1016/j.idairyj.2006.06.014
54. Korhonen H., Pihlanto A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006, 16 (9), 945–960.
https://doi.org/10.1016/j.idairyj.2005.10.012
55. Taha S., Mehrez M., Sitohy M. Effectiveness of esterified whey proteins fractions against Egyptian Avian Influenza A (H5N1). Virol. J. 2010, 7 (1), 330–334.
https://doi.org/10.1186/1743-422X-7-330
56. Kamau S. M., Cheison S. Ch., Chen W. Alpha-Lactalbumin: its production technologies and bioactive peptides. Compreh. Rev. Food Sci. Food Safety. 2010, V. 9, P. 197–212.
https://doi.org/10.1111/j.1541-4337.2009.00100.x
57. Madureira A. R., Pereira C. I., Gomes A. M. P. Bovine whey proteins — Overview on the main biological properties. Food Res. Int. 2007, 40 (10), 1197–1211.
https://doi.org/0.1016/j.foodres.2007.07.005
58. Moller N. P., Scholz-Ahrens K. E., Roos N., Schrezenmeir J. Bioactive peptides and proteins from foods: indication for health effects. Europ. J. Nutr. 2008, 47 (4), 171–182.
https://doi.org/10.1007/s00394-008-0710-2
59. Mahmud R., Matn M. A., Otani H. Mitogenic effect of bovine b-lactoglobulin and its proteolytic digests on mouse spleen resting cells. Pakist. J. Biol. Sci. 2004, 7 (12), 2047–2050.
60. Miyauchi H., Kaino A., Shinoda I. Immunomodulatory effect of bovine lactoferrin pepsin hydrolyzate on murine splenocytes and Peyer’s patch cells. J. Dairy Sci. 1997, 8 (10), 2330–2339.
https://doi.org/10.3168/jds.S0022-0302(97)76184-8
61. Kayser H., Meisel H. Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins. FEBS Lett. 1996, 383 (1–2), 18–20.
https://doi.org/10.1016/0014-5793(96)00207-4
62. Gill H. S., Doull F, Ruterfurd K. J., Cross M. L. Immunoregulatory peptides in bovine milk. Brit. J. Nutr. 2000, 84 (1), 111–117.
https://doi.org/10.1017/s0007114500002336
63. Pihlanto-Leppala A. Bioactive peptides derived from bovine whey proteins: Opioid and ACE-inhibitory peptides. Trend. Food Sci. Technol. 2001, 11 (9–10), 347–356.
64. Shimizu M. Food-derived peptides and intestinal functions. Bio Fact. 2001, V. 21, P. 43–47.
65. Nagaoka S. Y., Futamura K., Miwa T. Identification of novel hypoholesterolemic peptides derived from bovine milk beta-lactoglobulin. Biochem. Byophys. Res. Commun. 2001, 281 (1), 11–17.
https://doi.org/10.1006/bbrc.2001.4298
66. Luhovyy B., Akhavan T., Anderson G. H. Whey Proteins in Regulation of Food Intake and Satiety. J. Amer. Coll. Nutr. 2007, 26 (6), 704S–712S.
https://doi.org/10.1080/07315724.2007.10719651
67. Zemel M. B. Mechanisms of dairy modulation of adipocity. J. Nutr. 2003, V. 133, P. 252S–256S.
68. Anderson G. H., Moore S. E. Dietary proteins in the regulation of food intake and body weight in humans. J. Nutr. 2004, V. 134, S. 974–979.
69. Aziz A., Anderson G. H. The effect of dairy components on food intake and satiety: mechanisms of actions and implications for the development of functional foods. Func. Dairy Prod. Cambridge, UK: Woodhead Publishing Limited. 2007, V. 2, 709 p.
https://doi.org/10.1533/9781845693107.1.19
70. Matar C., Le Blanc J. G., Martin L., Perdigon G. Biologically active peptides released in fermented milk: Role and functions. Handbook of fermented functional foods. Functional foods and nutracenticals series. CRC Press: Boca Raton, FL. 2003, P. 177–201.
71. Lenindzher A. Biochemistry. Molecular basis of cell structure and function. Мoskva, Mir. 1974, P. 12.
72. Migliore-Samour D., Jolles P. Casein, a prohormone with an immunomodulating role for the newborn. Experientia. 1988, V. 44, P. 188–193.
https://doi.org/10.1007/BF01941703
73. Korhonen H., Pihlanto A. A food-derived bioactive peptides-opportunities for designing future foods. Curr. Farmaceut. Design. 2003, V. 9, P. 1297–1308.
https://doi.org/10.2174/1381612033454892
74. Park Y. W. Bioactive components in milk and dairy products. USA: Wiley–Blackwell. 2009, 426 p.
https://doi.org/10.1002/9780813821504
75. Corredig M. Dairy–derived ingredients: food and nutracentical uses. USA: CRC Press. 2010, 690 p.
76. Chandan R. C., Kilara A. Dairy ingredients for food processing. USA: Wiley–Blackwell. 2011, 522 p.
https://doi.org/10.1002/9780470959169
77. Hurley W. L. Milk protein. Croatia: In Tech. 2012, 340 p.
https://doi.org/10.5772/2933