ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
"Biotechnologia Acta" v. 6, no. 5, 2013
https://doi.org/10.15407/biotech6.05.041
Р.41-48, Bibliography 39, English
Universal Decimal classification: 577.181.6+543.544.5.068.7+547
POLYURETHANE COMPOSITES AS DRUG CARRIERS:: RELEASE PATTERNS
Palladian Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv
Biodegradable polyurethanes attract interest of those developing composite materials for biomedical applications. One of their features is their ability to serve as carriers, or matrixes, for medicines and other bioactive compounds to produce a therapeutic effect in body through targeted and/or prolonged delivery of these compounds in the process of their controlled release from matrix. The review presents polyurethane composites as matrices for a number of drugs. The relation between structure of the composites and their degradability both in vitro and in vivo and the dependence of drug release kinetics on physicochemical properties of polyurethane matrix are highlighted. The release of drugs (cefazolin, naltrexone and piroxicam) from the composites based on cross-linked polyurethanes (synthesized from laprols, Mw between 1,500 and 2,000 Da and toluylene diisocyanate) demonstrated more or less the same pattern (about 10 days in vitro and three to five days in vivo). In contrast, the composites with dioxydine based on a linear polyurethanes (synthesized from oligotetramethilene glycol, Mw 1,000 Da, diphenylmethane-4,4’-diisocyanate and 1,4-butanediol) retained their antimicrobial activity at least 30 days. They also showed a significantly higher breaking strength as compared to that of the composites based on cross-linked polyurethanes.
Key words: polyurethane composites, drug carriers, release characteristics.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Calvert K. L., Trumble K. P., Webster T. J., Kirkpatrick L. A. Characterization of commercial rigid polyurethane foams used as bone analogs for implant testing. J. Mater. Sci.: Mater. Med. 2010, 21 (5), 1453–1461.
https://doi.org/10.1007/s10856-010-4024-6
2. Labib M. E., Brumlik C. J., Stoodley P. The long-term release of antibiotics from monolithic nonporous polymer implants for use as tympanostomy tubes. Coll. Surf. A: Physicochem. Engin. Aspects. 2010, 354 (1–3), 331–337.
https://doi.org/10.1016/j.colsurfa.2009.10.028
3. Roohpour N., Wasikiewicz J. M., Paul, D. Synthesis and characterisation of enhanced barrier polyurethane for encapsulation of implantable medical devices. J. Mater. Sci.: Mater. Med. 2009, 20 (9), 1803–1814.
https://doi.org/10.1007/s10856-009-3754-9
4. Guo Q., Knight P. T., Mather P. T. Tailored drug release from biodegradable stent coatings based on hybrid polyurethanes. J. Control. Rel. 2009, 137 (3), 224–233.
https://doi.org/10.1016/j.jconrel.2009.04.016
5. Rangwala H. S., Ionita C. N., Rudin Stephen, Baier R. E. Partially polyurethane-covered stent for cerebral aneurysm treatment. J. Biomed. Mater. Res., Part B: Appl. Biomater. 2009, 89 (2), 415–429.
https://doi.org/10.1002/jbm.b.31229
6. Laschke M. W, Strohe A., Scheuer C. In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering. Acta Biomater. 2009, 5 (6), 1991–2001.
https://doi.org/10.1016/j.actbio.2009.02.006
7. Silva R., Ayres G., Orefice E. Controlled release of dexamethasone acetate from biodegradable and biocompatible polyurethane and polyurethane nanocomposite. J. Drug Target. 2009, 17 (5), 374–383.
https://doi.org/10.1080/10611860902839510
8. Pkhakadze G., Grigorieva M., Gladir I., Momot V. Biodegradable polyurethane. J. Mater. Sci.: Mater. Med. 1996, 7 (5), 265.
https://doi.org/10.1007/BF00058564
9. Grigorieva M., Gladir I., Galatenko N. The Polyurethane-Drug Composites: Synthesis, Properties and Kinetic Models. J. Bioact. Compat. Polym. 2001, 16 (4), 307–314.
https://doi.org/10.1106/FXUM-170B-VHHW-89HX
10. Cao X., Chang P. R., Huneault M. A. Preparation and properties of plasticized starch modified with poly(?-caprolactone) based waterborne polyurethane. Carbohyd. Polym. 2008, 71 (1), 119–125.
https://doi.org/10.1016/j.carbpol.2007.05.023
11. Wischke C., Neffe A. T., Lendlein A. Controlled Drug Release from Biodegradable Shape-Memory Polymers. Adv. Polymer. Sci. 2010, V. 226, P. 177–205.
https://doi.org/10.1007/12_2009_29
12. Lougovskaya G. G., Rudenko A. R., Grigorieva M. V. A study of the kinetics of dioxydine release from polyurethane composite and its antibacterial activity. Dopovidi NANU. 1999, N 3, P. 146–148.
13. Grigorieva M., Rakhlevskii L., Gladir I., Pkhakadze G. The use of biocompatible polyurethanes as the carrier of anticancer drug. Biomat.-Liv. Syst. Interact. 1995, 3 (3–4), 81–87.
14. Labib M. E., Brumlik Ch. J., Stoodley P. The long-term release of antibiotics from monolithic nonporous polymer implants for use as tympanostomy tubes. Coll. Surf. A: Physicochem. Engin. Aspects. 2010, 354 (1–3), 331–337.
https://doi.org/10.1016/j.colsurfa.2009.10.028
15. Grigorieva M., Mazur L., Galatenko N. Polyurethane-Based Polymeric Composite Having a Polymeric Drug Antagonist Effect. Dopovidi NANU. 2004, 26 (4), 146–148.
16. Wang W., Guo Y., Otaigbe J. Synthesis and characterization of novel biodegradable and biocompatible poly(ester-urethane) thin films prepared by homogeneous solution polymerization. Polymer. 2008, V. 49, P. 4393–4398.
https://doi.org/10.1016/j.polymer.2008.07.057
17. Grigorieva M., Zakashun T., Galatenko N. Polyurethane-Based Extended Release Form of Piroxicam. Macromol. Symp. 2007, V. 254, P. 414–417.
https://doi.org/10.1002/masy.200750860
18. Grisser H. J. Degradation of polyurethanes in biomedical applications. Polymer. Degrad. Stabil. 1991, V. 33, P. 329–354.
https://doi.org/10.1016/0141-3910(91)90080-B
19. Thakahara A., Hegenrother R. W., Coury A. J., Cooper S. Effect of soft segment chemistry on the biostability of segmented polyurethanes. II In vitro hydrolyc stability. J. Biomed. Mater. Res. 1992, V. 26, P. 801–818.
https://doi.org/10.1002/jbm.820260609
20. Huang S. L., Lai J. Y. Structure-tensile properties of polyurethanes. Eur. Polym. J. 1997, 33 (10–12), 1563–1567.
https://doi.org/10.1016/S0014-3057(97)00058-X
21. Petrovi? Z., Ferguson J. Polyurethane-elastomers. Progr. Polym. Sci. 1991, 16 (5), 695–836.
https://doi.org/10.1016/0079-6700(91)90011-9
22. Cho H. Y., Srinivasan A., Hong J. Synthesis of biocompatible PEG-based star polymers with cationic and degradable core for siRNA delivery. Biomacromolecules. 2011, 12 (10), 3478–3486.
https://doi.org/10.1021/bm2006455
23. Saad B., Ciardelli G., Mater S. Degradable and highly porous polyestherurethane foam as biomaterials: effect and phagocytosis of degradation products in osteoblasts. J. Biomed. Mater. Res. 1998, V. 39, P. 594–602.
https://doi.org/10.1002/(SICI)1097-4636(19980315)39:4<594::AID-JBM14>3.0.CO;2-7
24. Guelcher S., Srinivasan A., Hafeman A. Synthesis, in vitro degradation, and mechanical properties of two-component poly(ester urethane)urea scaffolds: effects of water and polyol composition. Tissue Eng. 2007, 13 (9), 2321–2333.
https://doi.org/10.1089/ten.2006.0395
25. Subrata M., Darren M. Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications. Polymer. Degrad. Stabil. 2012, 97 (8), 1553–1561.
https://doi.org/0.1016/j.polymdegradstab.2012.04.008
26. Mathur A. B., Collier T. O., Kao W. J. In vivo biocompatibility and biostability of modified polyurethanes. J. Biomed. Mater. Res. 997, V. 36, P. 246–257.
27. Zhang C., Zhao K., Hu T. Loading dependent swelling and release properties of novel biodegradable, elastic and environmental stimuli-sensitive polyurethanes. J. Control. Rel. 131 (2), 128–136.
28. Gisele R., Elaine A, Lambert O. Controlled release of dexamethasone acetate from biodegradable and biocompatible polyurethane and polyurethane nanocomposite. J. Drug Target. 2009, 17 (5), 374–383.
https://doi.org/10.1080/10611860902839510
29. Basak P., Adhikari B., Banerjee I., Maiti T. K. Sustained release of antibiotic from polyurethane coated implant materials. J. Mater. Sci.: Mater. Med. 2009, V. 20, P. 213–221.
https://doi.org/10.1007/s10856-008-3521-3
30. Rowlands A. S., Lim S. A., Martin D., Cooper-White J. J. Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials. 2007, V. 1, P. 2109–2121.
https://doi.org/10.1016/j.biomaterials.2006.12.032
31. Zia K. M., Barikani M., Bhatti I. A. Synthesis and characterization of novel, biodegradable, thermally stable chitin-based polyurethane elastomers. J. Appl. Polymer. Sci. 2008, 110 (2),769–776.
https://doi.org/10.1002/app.28533
32. Gorna K., Gogolewski S. The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polymer. Degrad. Stabil. 2003, 79 (3), 465–474.
https://doi.org/10.1016/S0141-3910(02)00362-2
33. Gu X., Mather P. T. Entanglement-based shape memory polyurethanes: Synthesis and characterization. Polymer. 2012, 53 (25), 5924–5934.
https://doi.org/10.1016/j.polymer.2012.09.056
34. Li B., Brown K. V., Wenke J. C., Guelcher S. A. Sustained release of vancomycin from polyurethane scaffolds inhibits infection of bone wounds in a rat femoral segmental defect model. J. Control. Rel. 2010, 145 (3), 221–230.
https://doi.org/10.1016/j.jconrel.2010.04.002
35. Rojas I. A., Slunt J. B., Grainger D. W. Polyurethane coatings release bioactive antibodies to reduce bacterial adhesion. J. Control. Rel. 2000, 63 (1–2), 175–189.
https://doi.org/10.1016/S0168-3659(99)00195-9
36. Hersel U., Dahmen C., Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003, 24 (24), 4385–4415.
https://doi.org/10.1016/S0142-9612(03)00343-0
37. Guelcher S. A., Srinivasan A., Dumas J. E. Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates. Biomaterials. 2008, 29 (12), 1762–1775.
https://doi.org/10.1016/j.biomaterials.2007.12.046
38. Zhang J. Y., Beckman E. J., Hu J. A new peptide-based urethane polymer: synthesis, degradation and potential to support cell growth in vitro. Biomaterials. 2000, 21 (12), 1247–1258.
https://doi.org/10.1016/S0142-9612(00)00005-3
39. Guan J. J., Sacks M. S., Beckman E. J., Wagner W. R. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane) ureas based on poly(caprolactone) and putrescine. J. Biomed. Mater. Res. 2002, 61 (3), 493–503.
https://doi.org/10.1002/jbm.10204