ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 6, no. 1, 2013
https://doi.org/10.15407/biotech6.01.086
Р. 86-96, Bibliography 32, Ukrainian.
Universal Decimal classification: 577.112:57.083.3
PRODUCTION AND CHARACTERISTICS OF ANTIBODIES AGAINST K1-3 FRAGMENT OF HUMAN PLASMINOGEN
A. A. Tykhomyrov, E. I. Yusova, S. I. Diordieva, V. V. Corsa, T. V. Grinenko
Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv
Components of plasminogen/plasmin system play crucial role in fibrinolytic rocesses. They are also involved in regulation of cell activity in normalcy and various pathological conditions. In particular, kringle-containing proteolityc plasminogen
fragments, which are denoted as angiostatins, participate in processes during neovascularization, metastasis, tumor growth, inflammation. Angiostatins are considered to be potential markers of diseases associated with vascular pathologies. Therefore, elaboration of specific and sensitive methods for their detection is still important area of inquiry. In the present study, approaches for obtaining of plasminogen fragments through its limited proteolysis by pancreatic elastase and further purification of proteolytic derivates by means of gel filtration and affinity chromatography on Lys-Sepharose are described. Polyclonal antibodies raised to fragment K1-3 have been produced, and their principal immunochemical properties have been studied. It has been found that antibodies purified on immunoaffine sorbent demonstrate different affinity toward plasminogen and its fragment, as follows: Glu-Pg > Lys-Pg > К1-3 > mini-Pg > К4. Based on the data obtained, immunological features of plasminogen kringle domains are discussed. Antibodies against fragment K1-3 could be applied in immunochemical analysis, in particular, Western blot, for detection of angiostatins as markers of tumor growth, metastasis, cardiovascular diseases and inflammation processes, and used as molecular tool for investigation of plasminogen/plasmin system functioning in health and disease.
Key words: plasminogen, kringle domains, plasminogen fragments, angiostatins, polyclonal antibodies.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2008
References
1.Luhovskiy E. M. Molecular mechanisms of fibrin formation and fibrinolysis. Kyiv.:Nauk. Dumka. 2003, 224 p. (In Russian).
2.Zhang L., Seiffert D., Fowler B. J. Plasminogen has a broad extrahepatic distribution. Thromb. Haemost. 2002, 87(3), P. 493–501.
3.Ranson M., Andronicos N. M. Plasminogen binding and cancer: promises and pitfalls. Front. Biosci. 2003, V. 8, P. 294–304.
http://dx.doi.org/10.2741/1044
4.Miles L. A., Hawley S. B., Baik N. Plasminogen receptors: the sine qua non of cell surface plasminogen activation. Front. Biosci. 2005, V. 10, P. 1754–1762.
5. Lijnen H. R. Patophysiology of the plasminogen/plasmin system. Int. J. Clin. Lab. Res. 1996, 26(1), P. 1–6.
http://dx.doi.org/10.1007/BF02644767
6.Sharma M., Ownbey R. T., Sharma M. C. Breast cancer cell surface annexin II induces cell migration and neoangiogenesis via tPA dependent plasmin generatio. Exp. Mol. Pathol. 2010, 88(2), P. 278–286.
http://dx.doi.org/10.1016/j.yexmp.2010.01.001
7.Novokhatnii V. V., Matsuka Yu. V. Plasminogen: structure and physico-chemical properties. Biokhimiya zhivotnykh I cheloveka. 1989, V. 13, P. 36–45. (In Russian).
8.Markus G., Evers J. L., Hobika G. H. Comparison of some properties of native (glu) and
modified (lys) human plasminogen. J. Biol.Chem. 1978, 253(3), P. 733–739.
9. Castellino F. J., McCance S. G. The kringle domains of human plasminogen. Ciba. Found Symp. 1997, V. 212, P. 46–60.
10. Cao Y., Xue L. Angiostatin. Semin. Thromb. Hemost. 2004, 30(1), P. 83–93.
http://dx.doi.org/10.1055/s-2004-822973
11. O’Reilly M. S., Holmgren L., Shing Y. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994, 79(2), P. 315–328.
http://dx.doi.org/10.1016/0092-8674(94)90200-3
12. Doll J. A., Soff A. Angiostatin. Cancer Treat. Res. 2005, V. 126, P. 175–204.
http://dx.doi.org/10.1007/0-387-24361-5_8
13. Wahl M. L., Moser T. L., Pizzo S. V. Angiostatin and anti-angiogenic therapy in human disease. Recent Prog. Horm. Res. 2004, V. 59, P. 73–104.
http://dx.doi.org/10.1210/rp.59.1.73
14. Klys Yu. G., Zaytseva N. V., Kizim A. I., Verevka S. V. Proteolytic plasminogen derivatives and their possible diagnostic value in cancer processes. Lab. diagnostika. 2008, 2(44), P. 52–58. (In Russian).
15. Drenberg C. D., Saunders B. O., Wilbanks G. D. Urinary angiostatin levels are elevated in patients with epithelial ovarian cancer. Gynecol. Oncol. 2010, 117(1), P. 117–124.
http://dx.doi.org/10.1016/j.ygyno.2009.12.011
16. Pour L., Svachova H., Adam Z. et al. Levels of angiogenic factors in patients with multiple myeloma correlate with treatment response. Ann. Hematol. 2010, 89(4), P. 385–389.
http://dx.doi.org/10.1007/s00277-009-0834-3
17. Sodha N. R., Clements R. T., Boodhwani M. Endostatin and angiostatin are increased in
diabetic patients with coronary artery disease and associated with impaired coronary collateral formation. Am. J. Physiol. Heart. Circ.Physiol. 2009, 296(2), P. 428–434.
http://dx.doi.org/10.1152/ajpheart.00283.2008
18. Szekanecz Z., Besenyei T., Paragh G., Koch A. E. Angio genesis in rheumatoid arthritis. Autoimmunity. 2009, 42(7), P. 563–573.
http://dx.doi.org/10.1080/08916930903143083
19. Chang P. C., Wu H. L., Lin H. C. Human plasminogen kringle 1-5 reduces atherosclerosis and neointima formation in mice by suppressing the inflammatory signaling pathway. J. Thromb. Haemost. 2010, 8(1), P. 194–201.
http://dx.doi.org/10.1111/j.1538-7836.2009.03671.x
20. Chavakis T., Athanasopoulos A., Rhee J. S. Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood. 2005, 105(3), P. 1036–1043.
http://dx.doi.org/10.1182/blood-2004-01-0166
21. Xu Z., Shi H., Li Q. Mouse macrophage metalloelastase generates angiostatin from plasminogen and suppresses tumor angiogenesis in murine colon cancer. Oncol. Rep. 2008. 20(1) P. 81–88.
http://dx.doi.org/10.3892/or.20.1.81
22. Jurasz P., Santos-Martinez M. J., Radomska A., Radomski M. W. Generation of platelet angio-
statin mediated by urokinase plasminogen activator: effects on angiogenesis. J. Thromb. Haemost.
2006, 4(5), P. 1095–1106.
http://dx.doi.org/10.1111/j.1538-7836.2006.01878.x
23. Shantha Kumara H. M., Tohme S. T. Plasma levels of angiostatin and endostatin remain unchanged for the first 3 weeks after colorectal cancer surgery. Surg. Endosc. 2011, 25(6), P. 1939–1944.
http://dx.doi.org/10.1007/s00464-010-1491-2
24. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970, 170(3962), P. 1095?1096.
http://dx.doi.org/10.1126/science.170.3962.1095
25.Nesheim M., Fredenburgh J. C., Larsen G. R. The dissociation constants and stoichiometries of the interactions of Lys-plasminogen and chloromethyl ketone derivatives of tissue plasminogen activator and the variant delta FEIX with intact fibrin. J. Biol. Chem. 1990, 265(35), P. 21541–21548.
26.Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch. Biochem. Biophys. 1969, 130(1), P. 337–346.
27.Sottrup-Jensen L., Claeys H., Zajdel M. The primary structure of human plasminogen: isolation of two lysine-binding fragments and one mini-plasminogen (M.W.38000) by elastase catalyzed specific limited proteolysis. — Progress in Chemical Fibrinolysis and Thrombolysis. New York: Raven Press, 1978, V. 3, P. 191–209.
28.Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227(5259), P. 680?685.
29.Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 1979, 76(9), P. 4350–4354.
30.Bobrovnik S. A. Analysis of serum antibody titration curves obtained by ELISA. Ukr. Biokhim.zh. 2012, 84(2), P. 105–110. (In Russian).
31. Tarui T., Majumdar M., Miles L. A. Plasmin-induced migration of endothelial cells. A potential target for the anti-angiogenic action of angiostatin. J. Biol. Chem. 2002, 277(37), P. 33564?33570.
http://dx.doi.org/10.1074/jbc.M205514200
32.Wang H., Schultz R., Hong J. Cell surfacedependent generation of angiostatin4.5. Cancer
Res. 2004, 64(1), P. 162–168.
http://dx.doi.org/10.1158/0008-5472.CAN-03-1862