ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 6, no. 1, 2013
https://doi.org/ 10.15407/biotech6.01.022
Р. 22-33, Bibliography 67, Ukrainian.
Universal Decimal classification: 577.083.3+612.017.1.08
FLUORESCENT PROTEINS USING FOR LYMPHOCYTE ACTIVATION ASSAYING
G. A. Lubchenko1, R. G. Morev2, L. S. Holodnaya1, L. I. Ostapchenko3
1Kyiv National Taras Shevchenko University
2International Center of Molecular Physiology of National Academy of Sciences of Ukraine, Kyiv
3Institute of Biology of Kyiv National Taras Shevchenko University
Activation of immune cells is a key process in development of the specific immunity. The techniques for monitoring of the movement and the activity of signalling messengers and receptor proteins of lymphocytes in living cells and tissues are the methodological key for understanding the subtle mechanisms of the lymphocyte activation.
The signalling pathways in lymphocytes act as a system of phosphatases, protein kinases and calcium signalling. Signalling molecules change its structures, form complexes and move from one cell compartment to another to provide activation.
Peculiarities of molecular mechanisms of lymphocyte activation and properties of modern genetically encoded fluorescent proteins enable developing new immunological assays. Fluorescent proteins could be used as reporters, markers of the localization and donor-acceptor pairs for fluorescence resonance energy transfer. Multiple genetically encoded fluorescent recombinant proteins simultaneously expressed in one cell, in our opinion, will be widely and routinely used to study the signalling pathways of lymphocytes in vitro in the fields of pharmacy, molecular immunology, biotechnology and biomedicine.
Key words: lymphocytes activation, protein kinase, calcium, assay, fluorescent protein.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2008
References
1. Kholodna L.S. Immunology: Textbook. Kyiv: Vyshcha shkola. 2007, 271 p. (In Ukrainian).
2. Chumak A.A., Kholodna L.S, Liubchenko T.A., Goleva O.H. Radiation immunology. Kyiv: VPTS Kyiv, nats. Un-t im.Tarasa Shevchenka.2002, P. 91. (In Ukrainian).
3. Vershyhora A.Yu., Paster Ye.U., Kolibo D.V. Immunology.Ed. Ye.U.Paster. Kyiv: Vyshcha shkola. 2005. — 599 p. (In Ukrainian).
4. Roit A., Brostoff Dzh., Meil D. Immunology. Moskva: Mir. 2000, 582 p. (In Russian).
5. Meil D., Brostoff Dzh., Rot D.R., Roit A. Immunology: Translation from English. Moskva: Logosfera. 2007, 568 p. (In Russian).
6. Yarilin A.A. Principles of Immunology. Moskva: Medicina, 1999, 607 p. (In Russian).
7. Kholodna L.S, Liubchenko T.A., Goleva O.H. Applied immunology. Training workshop. Kyiv: VPTS Kyiv, nats. Un-t im.Tarasa Shevchenka. 2003, P. 77. (In Ukrainian).
8. Kholodna L.S. Immunomodulators. Kyiv: VPTS Kyiv, nats. Un-t im.Tarasa Shevchenka. 2004. — P. 91. (In Ukrainian).
9. Mustelinand T. K. Tasken Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem. J. 2003, V. 371, P. 15–27.
http://dx.doi.org/10.1042/bj20021637
10. Davis R. J. Signal transduction by the JNK group of MAP kinasesю. Cell. 2000, V. 103. P. 239–246.
http://dx.doi.org/10.1016/S0092-8674(00)00116-1
11. Zhu Q. S., Xia L., Mills G. B. G-CSF induced reactive oxygen species involves Lyn-PI3-kinase-Akt and contributes to myeloid cell growth. Blood. 2006, V. 107, P. 1847–1856.
http://dx.doi.org/10.1182/blood-2005-04-1612
12. Roitt I. M., Delves P. J. Encyclopedia of Immunology. London: Academic Press, 1999, Р. 2323–2329.
13. Dong Ch., Davis R. J., Flavell R. A. MAP Kinases in the immune response. Annu. Rev. Immunol. 2002, V. 20, P. 55–72.
14. Sebzda E., Mariathasan S., Ohteki T. Selection of the T cell repertoire. Annu. Rev. Immunol. 1999, V. 17, P. 829–874.
http://dx.doi.org/10.1146/annurev.immunol.17.1.829
15. Furuno T., Hirashima N., Onizawa Sh. Nuclear Shuttling of Mitogen-Activated Protein (MAP) Kinase (Extracellular Signal–Regulated Kinase ERK2) Was Dynamically Controlled by MAP/ERK Kinase After Antigen Stimulation in RBL–2H3 Cells. J. Immun. 2001,V. 166, P. 4416–4421.
http://dx.doi.org/10.4049/jimmunol.166.7.4416
16. Rincon M. MAP-kinase signaling pathways in T cells. Curr. Opin. Immun. 2001, V. 13, P. 339–345.
http://dx.doi.org/10.1016/S0952-7915(00)00224-7
17. Rincon M., Flavell R. A., Davis R. J. Signal transduction by MAP-kinases in T-lymphocytes. Oncogene. 2001, V. 20, P. 2490–2497.
http://dx.doi.org/10.1038/sj.onc.1204382
18. Kane L. P., Lin J., Weiss A. Signal transduction by the ТКР for antigen. Curr. Opin. Immun. 2000, V. 12. P. 242–249.
19. Li W., Whaley C. D., Mondino A. Blocked signal transduction to the ERK and JNK proteinkinases in anergic CD4 +T cells. Science. 1996, V. 271, Р. 1272–1276.
20. Fields P. E., Gajewski T. F., Fitch F. W. Blocked Ras activation in anergic CD4C T cells. Science. 1996, V. 271, P. 1276–1278.
http://dx.doi.org/10.1126/science.271.5253.1276
21. De Silva D. R., Jones E. A., Favata M. F. Inhibition of mitogen-activated proteinkinase kinase blocks T cell proliferation but does not induce or prevent anergy. J. Immun. 1998, V. 160, P. 4175–4181.
22. Pages G., Guerin S., Grall D. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockoutmice. Science. 1999, V. 286, P. 1374–1377.
http://dx.doi.org/10.1126/science.286.5443.1374
23. Yamashita M., Kimura M., Kubo M. Cell antigen receptor mediated activation of the Ras/mitogen–activated proteinkinase pathway controls interleukin 4 receptor function and type–2 helper T cell differen - Tiation. Proc. Nath. Acad. Sci. USA. 1999, V. 96, P. 1024–1029.
http://dx.doi.org/10.1073/pnas.96.3.1024
24. Pearlie E.-B., Fanqi K. B., Sheng W. ERK couples chronic survival of NK cells to constitutively activated Ras in lymphoproliferative disease of granularlymphocytes (LDGL). Oncogene. 2004, 23(57), P. 9220–9229.
25. Richards J. D., Dave Sh. H., Chou Chih-Hao G. Inhibition of the MEK/ERK Signaling Pathway Blocks a Subset of B Cell Responses to Antigen. J. Immun. 2001, V. 166, P. 3855–3864.
http://dx.doi.org/10.4049/jimmunol.166.6.3855
26. Bernatchez Chantale Signalisation du recepteur des lymphocytes T (TCR) dans le thymus. Interaction sentre differentes voies MAPK (mitogen activated proteinkinase) et regulation par l’adenosine: Doctorat en microbiologie–immunologie, doctor (Ph.D.)/Universit? Laval, 2009.
27. Craxton A., Shu G., Graves J. D. p38 MAPK Is Required for CD40–Induced Gene Expression and Proliferation in B Lympho cytes. J. Immun. 1998, V. 161, P. 3225–3236.
28. Zhang J., Salojin K. V., Gao J. X. p38 mitogen–activated protein kinase mediates signal integration of TCR/CD28 costimulation in primary murine T cells. J. Immun. 1999, 162(7), P. 3819 — 3829
29. Weiss L., Whitmarsh A. J., Yang D. D. Regulation of c–Jun NH 2–terminal Kinase (Jnk) Gene xpression during T Cell Activation. J. Exp. Med. 2000, 191(1), P. 139–146.
http://dx.doi.org/10.1084/jem.191.1.139
30. Amato S. F., Nakajima K., Hirano T. Transcriptional regulation of the jun B promoter in mature B lymphocytes. Activation through a cyclic adenosine 3’,5’–monophosphate — like binding site. J. Immun. 1997, 159(10), P. 4676–4685.
31. Lenormand P., Sardet C., Pagиs G. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J. Cell Biol. 2002, 122(5), P. 1079–1085.
http://dx.doi.org/10.1083/jcb.122.5.1079
32. Guo B., Rawlings D. J. Emerging Roles for PKC Isoforms in Immune Cell Function, Mol. Interv. 2002. V. 2. P. 141–144.
http://dx.doi.org/10.1124/mi.2.3.141
33. Mellor H., Parker P. J. The extended protein kinase C superfamily. Biochem. J. 1998, V. 332, P. 281–292.
http://dx.doi.org/10.1042/bj3320281
34. Puente L. G., He J. S., Ostergaard H. L. A novel PKC regulates ERK activation and degranulation of cytotoxic T lymphocytes: Plasticity in PKC regulation of ERK. Europ. J. Immun. 2006. 36(4), P. 1009–1018.
http://dx.doi.org/10.1002/eji.200535277
35. Martin P., Duran A., Minguet S. Role of PKC ? in B–cell signaling and function. EMBO J. 2002, 21(15), P. 4049–4057.
http://dx.doi.org/10.1093/emboj/cdf407
36. Rich T., Lawler S. E., Lord J. M. HLA class II–induced translocation of PKC alpha and PKC beta II isoforms is abrogated following truncation of DR beta cytoplasmic domains. 1997, 159(8), P. 3792–3798.
37. Marquez C., Martinez C., Bosca L. Protein kinase C mobilization in B lymphocytes. Differential isoenzyme translocation upon activation. J. Immun. 1991, 147(2), P. 627–632.
38. Franklin R. A., Atherfolda P. A., McCubreya J. A. Calcium-induced ERK activation in human T lymphocytesoccursvia p56Lck and CaM-kinase. Mol. Immunol. 2000, 37(11), P. 675–683.
http://dx.doi.org/10.1016/S0161-5890(00)00087-0
39. Badou A., Basavappa S., Desai R. Requirement of Voltage–Gated Calcium Channel Я4 Subunitfor T Lymphocyte Functions. Science. 2005, V. 307, P. 117–121.
http://dx.doi.org/10.1126/science.1100582
40. Lyubchenko T., Nielsen J. P., Miller S. M. Holers Role of initial protein phosphorylation events and localized release–activated calcium influx in B cell antigen receptor signaling. J. Leuk. Biol. 2009, 85(2), P. 298–309.
http://dx.doi.org/10.1189/jlb.0308193
41. Kulik L., Marchbank K. J., Lyubchenko T. Intrinsic B cell hypo–responsiveness in mice prematurely expressing human CR2/CD21 during B cell development. Europ. J. Immun. 2007, 37(3), P. 623–633.
http://dx.doi.org/10.1002/eji.200636248
42. Kholodna L.S, Gordiienko V.M., Liubchenko T.A. Morphofunctional characteristics of lymphoid organs of mice after immunization with antigens of Staphylococcus aureus. Vestn. probl. sovr. med. Kharkiv. derzh. med. un-t. 1995, P. 46–49. (In Ukrainian).
43. Afonyn S.E., Ladydovska T.A., Shaturskii O.Ya. The study of membrane protein A of Staphylococcus aureus activity in bimolecular lipid membranes. Visnyk Kyiv. Un-tu. 1996, Vyp. 3–4, P. 30–36. (In Ukrainian).
44. Oleshko G. M., Liubchenko G. A. Biochemical composition and immunological activity of pathogenicity factors. Ukr. biochim. zhurn. 2006, 78(1), 20–28. (In Ukrainian).
45. Oleshko G. M., Liubchenko G. A. Immunobiological properties of surface protein adhesins of Staphylococcus aureus. Ukr. biochim. zhurn. 2007, 79(3), 5–12. (In Ukrainian).
46. Bohdanova O.V., Oleshko G. M., MorgaienkoO.O. Effects of ionizing radiation on the activation tyrozynproteyinfosfataznoyi activity in lymphoid cells after preinkubatsiyi of cell-bound protein A. Fizyka zhyvogo. 2005, 13(1), 86–90. (In Ukrainian).
47. Gagnon J., Ramanathan S., Leblanc C. IL-6, in Synergy with IL-7 or IL–15, Stimulates TCR–Independent Proliferation and Functional Differentiation of CD8+ T Lymphocytes. J. Immun. 2008, V. 180, P. 7958–7968.
http://dx.doi.org/10.4049/jimmunol.180.12.7958
48. Hebenstreit D., Horejs-Hoeck J., Duschl A. JAK/STAT-dependent gene regulation by cytokines. Drug News Persp. 2005, 18(4), 243–249.
http://dx.doi.org/10.1358/dnp.2005.18.4.908658
49. Gately M. K., Renzetti L. M., Magram J. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu. Rev. Immun. 1998, V. 16, P. 495–521.
http://dx.doi.org/10.1146/annurev.immunol.16.1.495
50. Hunter C. A. ?B Family of Transcription Factors: Central Regulators of Innate and Adaptive Immune Functions. Clin. Micro biol. Rev. 2002, 15(3), 414–429.
http://dx.doi.org/10.1128/CMR.15.3.414-429.2002
51. Jelena V., David E. L., Kilk A. Physical Exercise Induces Activation of NF–kB in Human Peripheral Blood Lymphocytes. Antioxid. Redox Signal. 2001. 3(6), 1131–1137.
http://dx.doi.org/10.1089/152308601317203639
52. Ryazantseva N. V., Novitskii V. V., Zhukova O. B. Role of NF–kB, p53, and p21 in the Regulation of TNF–? Mediated Apoptosis of Lymphocytes. Bull. Exp. Biol. Med. 2010, 149(1), 50–53.
http://dx.doi.org/10.1007/s10517-010-0873-8
53. Huang W.-Ch., Chen J.-J. Chen Ch.-Ch. Src-dependent Tyrosine Phosphorylation of IKK Is Involved in Tumor Necrosis Factor-?-induced Intercellular Adhesion Molecule-1 Expression. J. Biol. Chem. 2003, V. 278, P. 9944–9952.
http://dx.doi.org/10.1074/jbc.M208521200
54. Stepanenko O. V., Kuznetsova I. M., Kuznetsova I. M. Denaturation of proteins with beta-barrel topology induced by guanidine hydrochloride. Spectroscopy: Intern. J. 2010, V. 24, P. 367–373.
http://dx.doi.org/10.1155/2010/935656
55. Piatkevich K. D., Malashkevich V. N., Almo S. C. Engineering ESPT pathways based on
structural analysis of LSSm Kate red fluorescent proteins with large Stokes shift. J. Amer. Chem. Soc. 2010, V. 132. P. 10762–10770.
http://dx.doi.org/10.1021/ja101974k
56. Subach F. V., Zhang L., Gadella T. W. J. Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. Chem. Biol. (Cell press). 2010. V. 17, P. 745–755.
http://dx.doi.org/10.1016/j.chembiol.2010.05.022
57. Morozova K. S., Piatkevich K. D., Gould T. G. Far-Red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys. J. 2010, V. 99, P. 13–15.
http://dx.doi.org/10.1016/j.bpj.2010.04.025
58. Wu B., Piatkevich K. D., Lionnet T. Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Curr. Opin. Cell Biol. 2011, V. 23,
P. 310–317.
http://dx.doi.org/10.1016/j.ceb.2010.12.004
59. Chudakov M., Lukyanov K. A. Hetero Development of ERK Activity Sensor, oligomeric tagging diminishes nonspecific aggregation of targetproteins fused with Anthozoa fluorescent proteins. Biochem. J. 2003, V. 371, P. 109 — 114.
http://dx.doi.org/10.1042/bj20021796
60. Kyttaris V. C., Tsokos G. C. Syk kinase as a treatment target for therapy in autoimmune diseases. Clin. Immun. 2007, 124(3), P. 235–237.
http://dx.doi.org/10.1016/j.clim.2007.06.005
61. Zhu Q. S., Xia L., Mills G. B. G-CSF induction of reactive oxygen species involves the Lyn-PI 3-kinase-Akt pathway and is increased in cells expressing a truncated G–CSF Receptor associated with acute myeloid leukemia. Blood, 2006, V. 107, P. 1847–1856.
http://dx.doi.org/10.1182/blood-2005-04-1612
62. Yuta Kochi, Akari Suzuki, RyoYamada Ethnogenetic heterogeneity of rheumatoid arthritis-implications for pathogenesis. Nat. Rev. Rheumatol. 2010, V. 6, P. 290–295.
http://dx.doi.org/10.1038/nrrheum.2010.23
63. Demaurex N., Frieden M. Measurements of the free luminal ER calcium concentration with targeted «chameleon» fluorescent proteins. Cell Calcium. 2003, V. 34, P. 109–119.
http://dx.doi.org/10.1016/S0143-4160(03)00081-2
64. Glik B., Pasternak Dzh. Molecular biotechnology. Moskva: Myr. 2002, 585 p. 65. (In Ukrainian).
65. Andersen J. S., Mann M. Organellar proteomics: turning inventories into insights. EMBO Reports. 2006, 7(9), P. 874–879.
http://dx.doi.org/10.1038/sj.embor.7400780
66. Berezin M. Y., Achilefu S. Fluorescence Lifetime Measurements and Biological Imaging. Chem. Rev. 2010, 110(5), 2641–2684.
http://dx.doi.org/10.1021/cr900343z
67. Margineanu A., Warren S., Alexandrov Y. Fluorescence lifetime imaging microscopy in a high content screening context [Electronic source]. MipTec — The Leading European Event for Drug Discovery: [web–site] — Excess: http://registration.akm.ch/einsicht.php?XNABSTRACT_ID=139575&XNSPRACHE_ID=2&XNKONGRESS_ID=149&XNMASKEN_ID=900 (21.09.2011). — Title from screen.