ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Acta" v. 6, no. 1, 2013
https://doi.org/ 10.15407/biotech6.01.009
Р. 9-21, Bibliography 65, Russian.
Universal Decimal classification: 577.152.311/547.8/548.73
CARBOXYLESTERASES IN ENANTIOSELECTIVE SYNTHESIS OF ORGANIC COMPOUNDS
E. A. Shesterenko, I. I. Romanovska O. V. Sevastyanov,S. A. Andronati
Bogatsky Physico-Сhemical Institute of National Academy of Sciences of Ukraine, Odesa
The classification, structure, and mechanism of catalytic action of carboxylesterase of different origin are presented in the review.
The prospects of carboxylesterases application for metabolism and both several drugs and prodrugs activation investigation in vitro are shown. The enzyme usage as biocatalyst of stereoselective hydrolysis and synthesis of a wide range of acyclic, carbocyclic and heterocyclic compounds — esters are also urgent. It was established that enantiomers obtainable with the help of carboxylesterase are characterized by high chemical yields and optical purity; immobilization on different supports stabilizes the enzyme and allows the repeated usage of obtained biocatalysts. The own studies conducted and the enzymatic hydrolysis features of news 3-acylhydroxy-1,4-benzodiasepin-2-ones — potential anxiolytic and hypnotic means, with a help of pig liver microsomal fraction carboxylesterase have been established. For the first time the enantioselective hydrolysis of 3-acetoxy-7-bromo-1-methyl-5-phenyl-1,2-dihydro-3H-1,4-benzdiazepine-2-one was accomplished using free and immobilized in phyllophorine and alginate, stabilized by Ca2+ microsomal fraction. The S-enantiomer of substrate was isolated, which suggests the increased specificity of pig liver microsomal fraction carboxylesterase to its R-enantiomer.
Key words: carboxylesterase, pig liver microsomal fraction, stereoselective synthesis, 3-acylhydroxy-1,4-benzdiazepine-2-ones, immobi lization.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2008
References
1 . Rentsch K. M. The importance of stereoselective determination of drugs in the clinical laboratory. J. Biochem. Biophys. Methods. 2002. 54(1), 1–9.
http://dx.doi.org/10.1016/S0165-022X(02)00124-0
2. Bielory L., Leonov A. Stereoconfiguration of antiallergic and immunologic drugs. Ann. Allergy Asthma Immunol. 2008. 100(1), 1–9.
http://dx.doi.org/10.1016/S1081-1206(10)60396-1
3. Zhu L.-M., Tedford M. C. Applications of pig liver esterases (PLE) in asymmetric synthesis. Tetrahedron. 1990, 46(13), 6587–6611.
http://dx.doi.org/10.1016/S0040-4020(01)87851-0
4 Lam L. K., Brown C. M., De Jeso B. Enzymes in organic synthesis. 42. Investigation of the effects of the isozymal composition of pig liver esterase on its stereoselectivity in preparative-scale ester hydrolysis of asymmetric synthetic value. Chirality. 1988. 110(13), 4409–4411.
http://dx.doi.org/10.1021/ja00221a049
5. Hosokawa M . Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules. 2008, 13(2), 412–431.
http://dx.doi.org/10.3390/molecules13020412
6. Redinbo M. R., Bencharit S., Potter P. M. Human carboxylesterase 1: from drug metabolism to drug discovery. Biochem. Soc. Trans. 2003, 31(1), 620–624.
http://dx.doi.org/10.1042/bst0310620
7. Satoh T., Hosokawa M. Structure, function and regulation of carboxylesterases. Chem. Biol. Interact. 2006, 162(3), 195–211.
http://dx.doi.org/10.1016/j.cbi.2006.07.001
8. Hosokawa M., Maki T., Satoh T. Characteri zation of molecular species of liver microsomal carboxylesterase of several animal species and humans. Arch. Biochem. Biophys. 1990, 277(3), 219–277.
http://dx.doi.org/10.1016/0003-9861(90)90572-G
9. Watanabe K., Matsunaga T., Kimura T. Stereospecific and regioselective hydrolysis of cannabinoid esters by ES46.5K, an esterase from mouse hepatic microsomes, and its differences from carboxylesterases of rabbit and porcine liver. Biol. Pharm. Bull. 2005, 28(9), 1743–1747.
http://dx.doi.org/10.1248/bpb.28.1743
10. Wadkins R., Morton C., Danks M. Structural constraints affect the metabolism of 7–ethyl–10–[4–(1–piperidino)–1–piperidi-no]carbonyloxy– camptothecin (CPT–11) by carboxylesterases. Mol. Pharmacol. 2001,60(2), 355–362.
11. Brzezinski M., Spink B., Dean R. Human liver carboxylesterases hCE–1: binding specificity for cocaine, heroine and their metabolites and analogs. Drag. Metab. Disp. 1997, 25(9), 1089–1096.
12. Bencharit S., Morton C. L., Hyatt J. L. Crystal structure of human carboxylesterase 1 complexed with the Alzheimer’s drug tacrine. Chem. Biol. Interact. 2003, 10(4), 341–349.
http://dx.doi.org/10.1016/s1074-5521(03)00071-1
13. Arpigny J. L., Jaeger K. E. Bacterial lipolytic enzymes: classification and properties. Bio chem. J. 1999, 343(1), 177–183.
http://dx.doi.org/10.1042/bj3430177
14. Bornscheue U. T. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 2002, 26(1), 73–81.
http://dx.doi.org/10.1111/j.1574-6976.2002.tb00599.x
15. Akoh C.-C., Lee G.-C., Liaw Y.-C. GDSL family of serine esterases/lipases. Prog. Li pid Res. 2004, 43(6), 534–552.
http://dx.doi.org/10.1016/j.plipres.2004.09.002
16. Satoh T., Hosakawa M. The mammalian carboxylesterases: from molecules to functions. Ann. Rev. Pharmacol. Toxicol. 1998 38(2), 257–288.
17. Zhang J., Burnell J. C., Dumaual N., Bosron W. F. Binding and hydrolysis of meperidine by human liver carboxylesterase hCE-1. J. Pharmacol. Exp. Ther. 1999, 290(1), 314–318.
18. Micheal W., Mingxing X. Mouse liver and kidney carboxylesterase rapidly hydrolyzes antitumor prodrug irinotecan and the n-terminal three quarter sequence determines substrate selectivity. Drug Metab. 2003, 31(1), 21–27.
http://dx.doi.org/10.1124/dmd.31.1.21
19. Yang S. K., Chen S. J., Huang J. D. En an tioselectivity suggests a cytosolic origin for a commercial pig liver esterase preparation. Chirality. 1995, 7(1), 40–43.
http://dx.doi.org/10.1002/chir.530070108
20. Salmona M., Saronio C., Bianchi R. In vitro hydrolysis of oxazepam succinate halfester by a stereospecific soluble esterase from different animal species. J. Pharm. Sci. 1974, 63(2), 222–225.
http://dx.doi.org/10.1002/jps.2600630209
21. Yang K., Lu X. Racemization kinetics of enantiomeric oxazepams: stereoselective hydrolysis of enantiomeric oxazepam 3-acetate in rat liver microsomes and brain homogenate. J. Pharm. Sci., 1989, 78(10), 789–795.
http://dx.doi.org/10.1002/jps.2600781002
22. Macsay G., Tegyey Z., Otvos L. Stereo specifite. J. Pharm. Sci. 1978,. 67( )9, 1208–1210.
23. Yang S., Liu K., Guengerich P. Enantioselective hydrolysis of oxazepam 3-acetate by esterases in human and rat liver microsomes and rat brain S9 fraction. Chyrality. 1990, 2(3), 150–155.
http://dx.doi.org/10.1002/chir.530020305
24. Liu K., Guengerich F. P., Yang S. K. Enantioselective hydrolysis of lorazepam 3-acetate by esterases in human and rat liver microsomes and rat brain S9 fraction. Drug. Metab. Disposit. 1991 19(3), 609–613.
25. Bj?rkling F., Boutelje J., Gatenbeck S. The effect of dimethyl sulfoxide on the enantioselectivity in the pig liver esterase catalyzed hydrolysis of dialkylated propanedioic acid dimethyl esters. Bioorg. Chem. 1996, 14(2), 176–181.
http://dx.doi.org/10.1016/0045-2068(86)90028-3
26. Chen C.-S., Fujimoto Y., Sih C. J. Bifunctional chiral synthons via microbiological methods. 1. Optically active 2,4-dimethylglutaric acid monomethyl esters. J. Am. Chem. Soc. 1981, 103(12), 3580–3582.
http://dx.doi.org/10.1021/ja00402a059
27. Ushio K., Yamauchi S., Masuda K. Preparation of enantiomerically pure (S)-2-hydroxyheptanoate via bakers’ yeast catalyzed hydrolytic resolution. Biotechnol. Lett. 1991,. 13(7), 495–500.
http://dx.doi.org/10.1007/BF01049206
28. Schlacher A., Stanzer T., Osprian I. Detection of a new enzyme for stereoselective hydrolysis of linalyl acetate using simple plate assays for the characterization of cloned esterases from Burkholderia gladioliresolution. J. Biotechnol. 1998, 62(1), 47–54.
http://dx.doi.org/10.1016/S0168-1656(98)00042-X
29. Gandolfi R., Converti A., Pirozzi D. Efficient and selective microbial esterification with dry mycelium of Rhizopus oryzae. J. Biotechnol. 2001, 92(1), 21–26.
http://dx.doi.org/10.1016/S0168-1656(01)00345-5
30. Gais H. J., Buelow G., Zatorski A. Enzyme-catalyzed asymmetric synthesis. 8. Enantio selectivity of pig liver esterase catalyzed hydrolyses of 4-substituted meso cyclopentane 1,2-diesters. J. Org. Chem. 1989, 54(21), 5115–5122.
http://dx.doi.org/10.1021/jo00282a029
31. Sousa H., Afonso C., Mota J. Enantioelective hydrolysis of a meso-diesters using pig liver esterase in a two–phase stirred tank reactor. Ind. Eng. Chem. Res. 2003, 42(22), 5516–5525.
http://dx.doi.org/10.1021/ie020970q
32. Chartrain M., Maligres P., Cohen D. Porcine liver esterase-catalyzed enantioselective hydrolysis of a prochiral diester into its optically pure (S)-ester acid, a precursor to a growth hormone secretagogue. J. Biosci. Bioengin. 1999,87(3), 386–389.
http://dx.doi.org/10.1016/S1389-1723(99)80051-6
33. Lee E. G., Won H. S., Ro H. S. Preparation of enantiomerically pure (S)-flurbiprofen by an esterase from Pseudomonas sp. KCTC 10122BP. J. Mol. Catal. B. Enzym. 2003, 26(3), 149–156.
http://dx.doi.org/10.1016/j.molcatb.2003.05.004
34. Kim G. J., Lee E. G., Gokul B. Identification, molecular cloning and expres sion of a new esterase from Pseudomonas sp. KCTC 10122BP with enantioselectivity towards racemic ketoprofen ethyl ester. J. Mol. Catal. B. Enzym. 2003, 22(1), 29–35.
http://dx.doi.org/10.1016/S1381-1177(02)00308-9
35. Bezborodov A.M., Zagustina N.A., Popov V.O. Enzymatic processes in biotechnology. Мjskva: Nauka, 2008, 335 p.
36. Ogawa J., Mano J., Hagishita T. Enantioselective ester hydrolase from Sphingobacterium sp. 238C5 useful for chiral resolution of ?-phenylalanine and for its ?-peptide synthesis. J. Mol. Catal. B. Enzym. 2009, 60(3), 138–144.
http://dx.doi.org/10.1016/j.molcatb.2009.04.011
37. Yu L., Xu L., Yu X. Purification and properties of a highly enantioselective l-menthyl acetate hydrolase from Burkholderia cepacia. J. Mol. Catal. B. Enzym. 2009, 57(1), 27–33.
http://dx.doi.org/10.1016/j.molcatb.2008.06.011
38. Wang P. Y., Tsai S. W. Enzymatic hydrolytic resolution of (R,S)-tropic acid esters and (R,S)-ethyl ?-methoxyphenyl acetate in biphasic media. J. Mol. Catal. B. Enzym. 2009, 57(1), 158–163.
http://dx.doi.org/10.1016/j.molcatb.2008.08.008
39. Asakawa K., Noguchi N., Takashima S. Preparation of a new chiral building block containing a benzylic quaternary stereogenic center and a formal total synthesis of (–)-physostigmine. Tetrahedron: Asymmetry. 2008, 19(19), 2304–2309.
http://dx.doi.org/10.1016/j.tetasy.2008.09.021
40. Monti D., Ferrandi E. E., Righi M. Purification and characterization of the enantioselective esterase from Kluyveromyces marxianus CBS 1553. J. Biotechnol. 2008, 133(1), 65–72.
http://dx.doi.org/10.1016/j.jbiotec.2007.09.004
41. Bloch R., Guibe-Jampel E., Girard C. Stereoselec tive pig liver esterase-catalyzed hydrolysis of rigid bicyclic meso-diesters: Preparation of optically pure 4,7-epoxytetra- and hexa-hydrophthalides. Tetrahedron Lett. 1985, 26(34), 4087–4090.
http://dx.doi.org/10.1016/S0040-4039(00)89299-0
42. Guanti G., Banfi L., Narisano E. Enzymes in asymmetric synthesis: effect of reaction media on the PLE catalysed hydrolysis of diesters. Tetrahedron Lett. 1986, 27(38), 4639–4642.
http://dx.doi.org/10.1016/S0040-4039(00)85026-1
43. Hultin P. G., Mueseler F. J., Jones J. B. Enzymes in organic synthesis. Pig liver esterase and porcine pancreatic lipase catalyzed hydrolyses of 3,4-(isopropylidenedioxy)-2,5-tetrahydrofuranyl diesters. J. Org. Chem. 1991, 56(18), 5375–5380.
http://dx.doi.org/10.1021/jo00018a033
44. Kima H. K., Nab H. S., Parkb M. S. Occurrence of ofloxacin ester-hydrolyzing esterase from Bacillus niacini EM001. J. Mol. Catal. B. Enzym. 2004, 27(4–6), 237–241.
http://dx.doi.org/10.1016/j.molcatb.2003.11.007
45. Curzons A., Powell L., Keay A. Process for stereospecific hydrolysis of piperidinedione derivatives. WO/1933/022284. Application number PTG/GB93/00721 Publication Date 11/11/1993 Filing Date: 6/04/1993.
46. Yevtushenkov A.N., Fomichev Yu.K. Introduction to biotechnology. Minsk: BGU, 2004, 104 p. (In Russian).
47. Volova T.H. Biotechnology. Novosibirsk: Izd-vo Sib. Otdeleniia RAN. 1999. — 252 p. (In Russian).
48. Vudvord Dzh. Immobilized cells and enzymes. Methods. Moskva: Mir. 1988, 378 p. (In Russian).
49. Yegorov N.S., Samuilov B.D. Biotechnology. Moskva: Vysshaia shkola. 1987, 159 p. (In Russian).
50. Berezin I.V., Martynek K. Introduction to applied enzymology. Moskva.: Izd-vo MGU. 1982, 384 p. (In Russian).
51. Triven M. Immobilized enzymes. Moskva: Mir. 1983, 213 p. (In Russian).
52. Shimazaki Y., Kuroda T. Production of enzy me reactors after separation by non-denaturing two-dimensional electrophoresis and immobilization on membrane. Biotechnol. Lett. 2009, 31(10), 1545–1549.
http://dx.doi.org/10.1007/s10529-009-0041-2
53. Almeida R. V., Branco R. V., Peixoto B. Immobilization of a recombinant thermostable esterase (Pf2001) from Pyrococcus furiosus on microporous polypropylene: Isotherms, hyperactivation and purification . Biochem. Eng. J. 2008, 39(3), 531–537.
http://dx.doi.org/10.1016/j.bej.2007.09.019
54. Shimazaki Y., Sakikawa T., Kimura A. Analysis of activity of esterase captured onto an immunoaffinity membrane. Clin. Chim. Acta. 2012, 413(1–2), 269–272.
http://dx.doi.org/10.1016/j.cca.2011.10.015
55. Laumen K., Reimerdes E. H., Schneider M. Immobilized porcine liver esterase: a conenient reagent for the preparation of chiral building blocks. Tetrahedron Lett. 1985, 26(4), 407–410.
http://dx.doi.org/10.1016/S0040-4039(00)61896-8
56. Desai P. D., Dave A. M., Devi S. Chemoselective hydrolysis of methyl 2-acetoxybenzoate using free and entrapped esterase in K-carrageenan beads. J. Appl. Polymer Sci. 2008, 108(4), 2617–2622.
http://dx.doi.org/10.1002/app.27298
57. Barbara S., Robert W., Steven W. Carrageenan-immobilized esterase. United States Patent 5262313. Application Number: 07/715829 Publication Date: 11/16/1993 Filing Date: 06/14/1991.
58. Sousa H. A., Rodrigues C., Klein E. Immobilisation of pig liver esterase in hollow fiber membranes. Enz. Microbial Technol. 2001, 29(10), 625–634.
http://dx.doi.org/10.1016/S0141-0229(01)00443-4
59. Herdan J.-M., Balulescu M., Cira O. Enantioselective hydrolysis of racemic esters using pig liver esterase. J. Mol. Catalysis A: Chemical. 1996, 107(1), 409–414.
http://dx.doi.org/10.1016/1381-1169(95)00241-3
60. Ruppert S., Gais H-J. Activity enhancement of pig liver esterase in organic solvents by colyophilization with methoxypolyethylene glycol: kinetic resolution of alcohols. Tetrahedron: Asymmetry. 1997, 8(21), 3657–3664.
http://dx.doi.org/10.1016/S0957-4166(97)00469-2
61. Gais H-J., Jungen M., Jadhav V. Activation of pig liver esterase in organic media with organic polymers. Application to the enantioselective acylation of racemic functionalized secondary alcohols. J. Org. Chem. 2001, 66(10), 3384–3396.
http://dx.doi.org/10.1021/jo0016881
62. Krebsf?nger N., Schierholz K., Bornscheuer U. T. Enantioselectivity of a recombinant esterase from Pseudomonas fluorescens towards alcohols and carboxylic acids. J.Biotechnol., 1998,. 60(1), 105–111.
http://dx.doi.org/10.1016/S0168-1656(97)00192-2
63. Zheng G.-W., Yu H.-L., Li C.-X. Immobilization of Bacillus subtilis esterase by simple cross-linking for enzymatic resolution of DL-menthyl acetate. J. Mol. Catal. B. Enzym. 2011, 70(3–4), 138–143.
http://dx.doi.org/10.1016/j.molcatb.2011.02.018
64. Andronati S.A., Shesterenko E.A., Sevastianov O.V. Hydrolysis of esters7-бром-3-гидрокси-5-фенил-1,2-дигидро-3Н-1,4-бенздиазепин-2-она pig liver microsomal fraction. Visn. ONU, ser. Chimiia. 2008, 13(11). P. 37–45. (In Ukrainian).
65. Shesterenko E.A., Romanovskaia I.I., Andronati S.A. Stereoselective hydrolysis of1-метил-5-фенил-3-ацетокси-7-бром-1,2-дигидро-3Н-1,4-бенздиазепин-2-она using free and immobilized pig liver microsomal fraction. Dop. NANU. 2011, No 2, P. 166–172. (In Russian).