- Details
- Hits: 126
ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
"Biotechnologia Acta" v. 8, no 1, 2015;
https://doi.org/10.15407/biotech8.01.082
Р. 82-87, Bibliography 43, English
Universal Decimal classification: 579.222: 547.979.8
BIOTECHNOLOGICAL CONDITIONS OF VALVE PROSTHESES CREATING BY TISSUE ENGINEERING METHOD
A. G. Popandopulo1, M. V. Savchuk1, D. L. Yudickiy2
1SI « Husak Institute of Urgent and Recovery Surgery», Donetsk, Ukraine
2Gorky Donetsk National Medical University, Donetsk, Ukraine
Nowadays, definitive treatment for the end-stage organ failure is transplantation. Tissue engineering is an up to date solution to create the effective substitute of the defective organ. It involves the reconstitution of viable tissue with the use of autologous cells grown on connective tissue matrix, which has been acellularized before. Basis for the prothesis should be morphologically and physically nonmodified, so in case of making vessel-valvular biological prosthesises the decellularized extracellular matrix is the best variant. The xenogeneic extracellular matrix is economically and ethically more useful. The possibility of preservation of the morphological and chemical properties of matrix structure initiates the process of programmed cell death. In contrast to necrosis, which is a form of traumatic cell death that results from acute cellular injury, apoptosis doesn’t cause the tissue damages. One of the ways of realizing the apoptosis is the usage of EDTA — chelate, which binds the Ca2+ ions.
Key words: tissue engineering, extracellular matrix, decellularization, apoptosis, chelate.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2015
References
1. Aleksieva G., Hollweck T., Thierfelder N., Haas U., Koenig F., Fano C., Dauner M., Wintermantel E., Reichart B., Schmitz C., Akra B. Use of a special bioreactor for the cultivation of a new flexible polyurethane scaffold for aortic valve tissue engineering. BioMedical Engin. OnLine. 2012, V. 11, P. 92–103.
2. Rippel R. A., Ghanbari H., Seifalian A. M. Tissue-engineered heart valve: future of cardiac surgery. World J. Surg. 2012, 36 (7), 1581–1591.
http://dx.doi.org/10.1007/s00268-012-1535-y
3. Vesely I. Heart Valve Tissue Engineering. Circul. Res. 2005, V. 97, P. 743–755.
http://dx.doi.org/10.1161/01.RES.0000185326.04010.9f
4. Kasimir M., Rieder E., Seebacher G., Nigisch A., Dekan B., Wolner E., Weigel G., Simon P. Decellularisation does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J. Heart Valve Dis. 2006, 15 (2), 278–286.
5. Dunn D. A., Hodge A. J., Lipke E. A. Biomimetic materials design for cardiac tissue regeneration. Wiley Interdis. Rev. Nanomed. Nanobiotechnol. 2014, 6 (1), 15–39.
http://dx.doi.org/10.1002/wnan.1241
6. Zhou J., Hu S., Ding J., Xu J., Shi J., Dong N. Tissue engineering of heart valves: PEGylation of decellularized porcine aortic valve as a scaffold for in vitro recellularization. BioMed. Eng. Online. 2013, V. 12, P. 87.
http://dx.doi.org/10.1186/1475-925X-12-87
7. Dainese L., Biglioli P. Human or animal homograft: could they have a future as a biological scaffold for engineered heart valves? J. Cardiovasc. Surg. (Torino). 2010, 51 (3), 449–456.
8. Macchiarini P., Jungebluth P., Go T., Asnaghi M. A., Rees L. E., Cogan T. A., Dodson A., Martorell J., Bellini S., Parnigotto P. P., Dickinson S. C., Hollander A. P., Mantero S., Conconi M. T., Birchall M. A. Clinical transplantation of a tissue-engineered airway. Lancet. 2008, 13 (372), 2023–2030.
http://dx.doi.org/10.1016/S0140-6736(08)61598-6
9. Lichtenberg A., Cebotari S., Tudorache I., Hilfiker A., Haverich A. Biological scaffolds for heart valve tissue engineering. Meth. Mol. Med. 2007, V. 140, P. 309–317.
http://dx.doi.org/10.1007/978-1-59745-443-8_17
10. Lam M. T., Wu J. C. Biomaterial applications in cardiovascular tissue repair and regeneration. Exp. Rev. Cardiovasc. Ther. 2012, 10 (8), 1039–1049.
http://dx.doi.org/10.1586/erc.12.99
11. Kalfa D., Bacha E. New technologies for surgery of the congenital cardiac defect. Rambam Maimonides Med. J. 2013, 4 (3), 19–33.
http://dx.doi.org/10.5041/RMMJ.10119
12. Klopsch C., Steinhoff G. Tissue-engineered devices in cardiovascular surgery. Eur. Surg. Res. 2012, 49 (1), 44–52.
http://dx.doi.org/10.1159/000339606
13. Webera B., Emmerta M. Y., Hoerstrupa S. P. Stem cells for heart valve regeneration. Swiss. Med. Wkly. 2012, V. 142, P. 136–147.
http://dx.doi.org/10.4414/smw.2012.13622
14. Gandaglia A., Bagno A., Naso F., Spina M., Gerosa G. Cells, scaffolds and bioreactors for tissue-engineered heart valves: a journey from basic concepts to contemporary developmental innovations. Eur. J. Cardiothorac. Surg. 2011, V. 39, P. 523–531.
http://dx.doi.org/10.1016/j.ejcts.2010.07.030
15. Weber B., Dijkman P. E., Scherman J., Sanders B., Emmert M. Y., Gr?nenfelder J., Verbeek R., Bracher M., Black M., Franz T., Kortsmit J., Modregger P., Peter S., Stampanoni M., Robert J., Kehl D., van Doeselaar M., Schweiger M., Brokopp C. E., W?lchli T., Falk V., Zilla P., Driessen-Mol A., Baaijens F. P., Hoerstrup S. P. Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials. 2013, 34 (30), 7269–7280.
http://dx.doi.org/10.1016/j.biomaterials.2013.04.059
16. Mendoza-Novelo B., Avila E. E., Cauich-Rodr?guez J. V., Jorge-Herrero E., Rojo F. J., Guinea G. V., Mata-Mata J. L. Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta biomater. 2011, 7 (3), 1241–1248.
http://dx.doi.org/10.1016/j.actbio.2010.11.017
17. Somers P., De Somer F., Cornelissen M., Thierens H., Van Nooten G. Decellularization of heart valve matrices: search for the ideal balance. Artif. Cells Blood Substit. Immobil. Biotechnol. 2012, 40 (1–2), 151–162.
http://dx.doi.org/10.3109/10731199.2011.637925
18. Bauer A., Postrach J., Thormann M., Blanck S., Faber C., Wintersperger B., Michel S., Abicht J. M., Christ F., Schmitz C., Schmoeckel M., Reichart B., Brenner P. First experience with heterotopic thoracic pig-to-baboon cardiac xenotransplantation. Xenotransplantation. 2010, 17 (3), 243–249.
http://dx.doi.org/10.1111/j.1399-3089.2010.00587.x
19. Jarilin A. A., Ignateva G. A., Gushhin I. S. Lihtenshtejn A. V., Shapot V. S., Pshennikova M. G., Reshetnjak V. K., Kukushkin M. L., Makarov V. A. Actual problems of pathophysiology. Moroz B. B. (Ed.). Moskva: Medicina. 2001, P. 13–48. (In Russian).
20. Schmidt D., Stock U. A., Hoerstrup S. P. Tissue engineering of heart valves using decellularized xenogeneic or polymeric starter matrices. Phil. Trans. R. Soc. B. 2007, V. 362, P. 1505–1512.
http://dx.doi.org/10.1098/rstb.2007.2131
21. Dohmen P. M. Tissue engineered aortic valve. HSR Proc. Intensive Care Cardiovasc. Anesth. 2012, 4 (2), 89–93.
22. Tudorache I., Cebotari S., Sturz G., Kirsch L., Hurschler C., Hilfiker A., Haverich A., Lichtenberg A. Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. J. Heart Valve Dis. 2007, 16 (5), 567–573.
23. Zhou J., Fritze O., Schleicher M., Wendel H. P., Schenke-Layland K., Harasztosi C., Hu S., Stock U. A. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials. 2010, 31 (9), 2549–2554.
http://dx.doi.org/10.1016/j.biomaterials.2009.11.088
24. Schmidt C. E. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000, 21 (22), 2215–2231.
http://dx.doi.org/10.1016/S0142-9612(00)00148-4
25. Baraki H., Tudorache I., Braun M., H?ffler K., G?rler A., Lichtenberg A., Bara C., Calistru A., Brandes G., Hewicker-Trautwein M., Hilfiker A., Haverich A., Cebotari S. Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials. 2009, 30 (31), 6240–6426.
http://dx.doi.org/10.1016/j.biomaterials.2009.07.068
26. Schmidt D., Hoerstrup S. P. Tissue engineered heart valves based on human cells. Swiss. Med. Wkly. 2007, 137 (155 Suppl.), 80S–85S.
27. Fil'chenkov O. O. Stojka R. S. Apoptosis and cancer: from the theory to the practice. Ternopil: TDMU. 2006, P. 10–12. (In Ukrainian).
28. Rosanova I., Michenko B., Zaitsev V. The effect of cells on biomaterials calcification: experiments with diffusion chamber. J. Biomed. Mater. Res. 1991, V. 25, P. 277–280.
http://dx.doi.org/10.1002/jbm.820250213
29. Shirokova A. V. Apoptosis. Signaling pathways and changes in ion and water balance of the cell. Citologiia. 2007, 49 (5), 385–394. (In Russian).
30. Manskih V. N. Morphological methods of verification and quantification of apoptosis. Bjulleten' sibirskoj mediciny. 2004, N 1, P. 63–70. (In Russian).
31. Hannun Y. A., Obeid L. M. Ceramide and the eukaryotic stress response. Biochem. Soc. Trans. 1997, 25 (4), 1171–1175.
32. Weedon D., Searle J., Kerr J. F. Apoptosis. Its nature and implications for dermatopathology. Am. J. Dermatopathol. 1979, 1 (2), 133–144.
http://dx.doi.org/10.1097/00000372-197900120-00003
33. Belushkina N. N., Severin S. E. Molecular basis of the apoptosis’s pathology. Arh. Path. 2001, 63 (1), 51–59. (In Russian).
34. Skibo Ju. V., Abramova Z. I. Methods of study of the programmed cell death. Kazan': FGAOU VPO KFU. 2011. 61 с. (In Russian).
35. Bokerija L. A., Muratov R. M., Skopin I. I., Britikov D. V., Akatov V. I. Cryopreserved allografts in reconstructive surgery of the aortic valve defects. Moskva: NCSSH im. A. N. Bakuleva RAMN. 2007, 282 p. (In Russian).
36. Dohmen P. M. Clinical results of implanted tissue engineered heart valves. HSR Proc. Intensive Care Cardiovasc. Anesth. 2012, 4 (4), 225–231.
37. Robinson K. A., Li J., Mathison M., Redkar A., Cui J., Chronos N. A., Matheny R. G., Badylak S. F. Extracellular matrix scaffold for cardiac repair. Circulation. 2005, 112 (9), 135–143.
38. Zhai W., Zhang H., Wu C., Zhang J., Sun X., Zhang H., Zhu Z., Chang J. Crosslinking of saphenous vein ECM by procyanidins for small diameter blood vessel replacement. J. Biomed. Mater. Res. B. Appl. Biomater. 2014, 45 (1), 102–115.
http://dx.doi.org/10.1002/jbm.b.33102
39. Badylak S. F., Weiss D. J., Caplan A., Macchiarini P. Engineered whole organs and complex tissues. The Lancet. 2012, 379 (9819), 943–952.
http://dx.doi.org/10.1016/S0140-6736(12)60073-7
40. Steinhoff G., Stock U., Karim N. Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits. Circulation. 2000, 102 (III), III-50–III-55.
41. Yannas I. V., Tzeranis D. S., Harley B. A. Biologically active collagen-based scaffolds: advances in processing and characterization. Phil. Trans. R. Soc. A. 2010, V. 368, P. 2123–2139.
http://dx.doi.org/10.1098/rsta.2010.0015
42. Mikhailova I., Sandomirsky B., Gorlenko A. Effect of low temperatures and ionizing irradiation upon physical-mechanical properties and connective – tissue structures of porcine fibrous pericardium and aortic volve leaflets. Periodic. Biologorum. 2014, 116 (1), 105–114.
43. Yacoub M. H., Takkenberg J. J. Will heart valve tissue engineering change the world? Nat. Clin. Pract. Cardiovasc. Med. 2005, 2 (2), 60–61
http://dx.doi.org/10.1038/ncpcardio0112
- Details
- Hits: 134
ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
Biotechnologia Acta, V. 8, No 1, 2015
https://doi.org/10.15407/biotech8.01.071
P. 71-75, Bibliography 15, Ukrainian
Universal Decimal classification: 637.146.34:638.167
THE BIOMASS OF Streptococcus thermophilus
AND Bifidobacterium longum IN DAIRY MEDIUM WITH BEE POLLEN
N. N. Lomova 1, O. O. Snezhko 2, S. A. Narizhnyy 1
1 Bila Tserkva National Agrarian University, Ukrainian
2 Nacionalnyj universitet bioresursov i prirodopolzovanija Ukrainy, Kyiv
The present study was carried out to investigate the effect of adding different concentrations of bee pollen on the biomass of Streprococus thermophilus and B. longum in the dairy environment. Sampling, preparation and conducting of tests were performed by standard methods of analysis. The counts of Str. thermophilus and B. longum were carried out by using M17 and MRS agar media. The phases growth were determined graphically.
Established, that bee pollen stimulates the accumulation of biomass Str. thermophilus on 9–15%, and B. longum – on 2,3–12,7% in an amount of up to 0.2–1.0%. Bee pollen reduces the duration of the lag phase for both types of microorganisms almost to its complete disappearance (1.0%). Pollen (1%) prolong stationary phase for streptococci and bifidobacteria to 30% and 20%, respectively. And also, will provide the biomass in the amount of 6 ± 0,1×109 CFU/cm3 (Str. Thermophilus) and 2,8 ± 0,1×108 CFU/cm3 (B. longum).
Str. thermophilus and B. longum readily assimilate essential micronutrients pollen. Components of bee pollen can act growth stimulants (bifidogenic factor) for the studied strains. The data obtained will form the basis of biotechnology dairy drink with bee products.
Key words: biomass, bee pollen, streptococci, bifidobacteria.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008
References
1. Gubyna Y. V. The fibers «Cytry-Faj» in the products functional purposes. Molochnaya promyshlennost. 2014, V. 2, P. 74. (In Russian).
2. Gavrilova N. B. Biotechnology of combined dairy products. Omsk: Variant-Sibir. 2004. 224 p. (In Russian).
3. Ejtahed H. S. Mohtadi-Nia J., Homayouni-Rad A., Niafar M., Asghari-Jafarabadi M., Mofid V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition. 2012, V. 28, P. 539–543.
http://dx.doi.org/10.1016/j.nut.2011.08.013
4. Sheu B. S., Cheng H. C., Kao A. W., Wang S. T., Yang Y. J., Yang H. B., Wu J. J. Pretreatment with Lactobacillus and Bifidobacterium containing yogurt can improve the efficacy of quadruple therapy in eradicating residual Helicobacter pylori infection after failed triple therapy. Am. J. Clin. Nutr. 2006, 83 (4), 864–869.
5. Torgalo Je. O. Alanine aminotransferase activity in rets of different and in conditions of periodical injection of multiprobiotic «Symbiter acidophilic». Svit medytsyny ta biolohii. 2012, V. 2, P. 163–166. (In Ukrainian).
6. Pylypenko S. V., Korotkyy O. G., Karpovych T. P., Ostapchenko L. I. Cytomorphological state of lymphoid organs of rats with long-term gastric hypoacidity and at introduction of multiprobiotic “Apibact”. Problemy ekolohichnoi ta medytsynskoi henetyky i klinichnoi immunolohii. 2014, V. 3, P. 36–44. (In Ukrainian).
7. Sanders M. E., Tompkins T., Heimbach J. T., Kolida S. Weight of evidence needed to substantiatea health effect for probiotics and prebiotics. Eur. J. Nutr. 2005, V. 44, P. 303–310.
http://dx.doi.org/10.1007/s00394-004-0527-6
8. Heller K. J. Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am. J. Clin. Nutr. 2001, V. 73, 374S–379S.
9. Semjonova N. A. The research of technological features production of fermented milk drinks with natural bee honey (Ph. D. dissertation). Kemerovo: 2008, 140 s. (In Russian).
10. Lu?an M., Sla?anac V., Hardi J., Mastanjevi? K., Babi?J., Krstanovi?V., Juki? M. Inhibitory effect of honey-sweetened goat milk. Mljekarstvo. 2009, 59 (2), 96–106.
11. Chick H., Shin H. S., Ustunol Z. Growth and acid production by lactic acid bacteria and bifidobacteria grown in skim milk containing honey. J. Food Sci. 2001, V. 66, P. 478–481
http://dx.doi.org/10.1111/j.1365-2621.2001.tb16134.x
12. Metry W. A., Owayss A. A. Influence of incorporating honey and royal jelly on the quality of yoghurt during storage. Egypt. J. Food Sci. 2009, V. 37, P. 115–131.
13. Lomova N. M., Narizhnyy S., Snizhko O. Influence of incorporating honey, royal jelly and pollen on the biotechnological processes of dairy drink. Vostochno-evropeiskii zhurnal peredovykh tehnologii. 2014, 2/12 (68), 62–65. (In Ukrainian).
14. Lomova N., Narizhnyy S., Snezhko O. Yoghurt enrichment with natural bee farming products. Ukrainian Food J. 2014, 3 (3), 405–411.
15. Pirt S. J., Walach M. Biomass yields of Chlorella from iron (Yx/Fe) in iron-limited batch cultures. Arch. Microbiol. 1978, 116 (3), 293–296.
http://dx.doi.org/10.1007/BF00417854
- Details
- Hits: 516
ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
Biotechnologia Acta, V. 8, No 1, 2015;
https://doi.org/10.15407/biotech8.01.063
P. 63-79, Bibliography 25, English
Universal Decimal classification: 544.431.122: 582.284.3: 628.93
INDUCTION OF ANTIMICROBIAL ACTIVITY OF SOME MACROMYCETES BY LOW-INTENSITY LIGHT
1 Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 Kholodny Botany Institute of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3 Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
4 Gause Institute of New Antibiotics, Moscow, Russian Federation
The aim of the work was to study the induction of antimicrobial activity of macromycetes by low-intensity light of different wavelengths and coherence. The objects of investigation were the strains of Flammulina velutipes 3923, Pleurotus ostreatus 531, Ganoderma lucidum 1908 and G. applanatum 1552 from Mushrooms Collection of the Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, the test-cultures from Cultural Collections of the Gause Institute of New Antibiotics, All-Union Research Institute of Antibiotics and the All-Russian Collection of Industrial microorganisms. Helium-neon laser with a wavelength of 632.8 nm and an argon ion laser with wavelengths of 488.0 nm and 514.5 nm were used as a source of coherent visible light lasers. For obtaining incoherent light LEDs with emission at a wavelength of 490.0, 520.0 and 634.0 nm were used. It was found that short-term exposure of sowing mycelium by low intensity light with the energy density of 230 MJ/cm2 in the red and blue wavelength ranges reduced the cultivation period before the appearance of antimicrobial activity and induced the increasing of the culture fluid inhibitory activity against different test-cultures from 20 to 238%. Selected modes of antimicrobial activity photostimulation could be used in biotechnology of submerged cultivation of macromycetes for intensification of technological stages and increasing the yield of the final product.
Key words: macromycetes, low intensity lights, lasers, antimicrobial activity, light emitting diodes.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
- Arias C. A., Murray B. E., Murray B. E. Antibiotic-Resistant Bugs in the 21st Century – A Clinical Super-Challenge. N. Engl. J. Med. 2009, 360 (5), 439–443. doi:10.1056/NEJMp0804651.
- Sidorenko S. C. Rational antibiotic therapy and evidence based medicine. Antibiotiki i Khimioterapiia. 2001, N 9, P. 12?18. (In Russian).
- Donadio S., Carrano L., Brandi L., Serina S., Soffientini A., Raimondi E. Target sands says for discovering novel antibacterial agents. J. Biotechnol. 2002, V. 99, P. 175?185.
http://dx.doi.org/10.1016/S0168-1656(02)00208-0 - Shivrina A. N., Nizkovskaja O. P., Falina N. N., Matisson N., L., Efimanko O. M. Biosynthetic activity of higher fungi. Leningrad.: Nauka. 1969, 243 p. (In Russian).
- Djakov M. Ju., Kamzolkina O. V., Poedinok N. L., Bisko N. A., Mihajlova O. B., Efremenkova O. V. Morphological characteristics of natural strains of some macromycetes species and biological analysis of antimicrobial activity in submerged culture. Mikol. Fitopatol. 2010, 44 (3), 225?240. (In Russian).
- Krupodorova T. A., Bisko N. A., Pojedynok N. L., Mytropolskaja N. Ju., Vasyleva B. F., Efremenkova O. V. Antimicrobial activity of strains of Ganoderma applanatum (Pers.: Wallr.) PAT and G. lucidum (Curt.: Fr.) P. Karst. under conditions of submerged cultivation. Ukr. bot. zh. 2008, V. 6, P. 590?594. (In Ukrainian).
- Alves M. J., Ferreira I. C., Dias J., Teixeira V., Martins A., Pintado M. A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Med. 2012, 78 (16), 1707?1718.
http://dx.doi.org/10.1055/s-0032-1315370 - Alves M. J., Ferreira I. C., Dias J., Teixeira V., Martins A., Pintado M. A. Review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds. Cur. Top. Med. Chem. 2013, 13 (21), 2648?2659.
http://dx.doi.org/10.2174/15680266113136660191 - Nagaraj K., Mallikarjun N., Naika R., Venugopal T. M. Phytochemical Analysis and In Vitro Antimicrobial Potential of Ganoderma applanatum (Pers.) Pat. of Shivamogga District-Karnataka, India. Int. J. Pharm. Sci. Rev. Res., 2013, 23 (2), 36?41.
- Ramesh Ch., M. G. Pattar M. G. Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India. Pharm. Res. 2010, 2 (2), 107–112. doi: 10.4103/0974-8490.62953.
http://dx.doi.org/10.4103/0974-8490.62953 - Ranadive K. R., Belsare M. H., Deokule S. S., Jagtap N. V., Jadhav H. K., Vaidya J. G. Glimpses of antimicrobial activity of fungi from World. J. New Biologic. Reports. 2013, 2 (2), 142–162.
- Oyetayo V. O., Ariyo O. O. Antimicrobial and Antioxidant Properties of Pleurotus ostreatus (Jacq: Fries) Cultivated on Different Tropical Woody Substrates. J. Waste Convers. Bioprod. Biotechnol. 2013, 1 (2), 28–32.
- Vamanu E. Studies on the antioxidant and antimicrobial activities of Pleurotus ostreatus PSI101109 mycelium. Pakist. J. Bot. 2013, 45 (1), 311–317.
- Corrochano L. M. Fungal phototobiology: a synopsis. IMA Fungus. 2011, 2 (1), 25–28.
http://dx.doi.org/10.5598/imafungus.2011.02.01.04 - Herrera-Estrella A., Horwitz B. A. Looking through the eyes of fungi: molecular genetics of photoreception. Mol. Microbiol. 2007, 64 (1), 5–15.
http://dx.doi.org/10.1111/j.1365-2958.2007.05632.x - Purschwitz J., Muller S., Kastner Ch. and Fischer R. Seeing the rainbow: light sensing in fungi. Cur. Opin. Microbiol. 2006, 9 (6), 566–571.
http://dx.doi.org/10.1016/j.mib.2006.10.011 - Poedinok N. L. Artificial light using in mushroom cultivation. Biotechnologia Acta. 2013, 6 (6), 58–70. (In Ukrainian).
http://dx.doi.org/10.15407/biotech6.06.058 - Karu T. J. Universal cellular mechanism of laser biostimulation: photoactivation of respiratory chain enzyme cytochrome oxidase. Holography: basic research, innovative projects and nanotechnology. Materials XXV1 School of coherent optics and holography. Irkutsk: "Papirus". 2008, P. 156–175. (In Russian).
- Tisch D., Schmoll M. Light regulation of metabolic pathways in fungi. Appl. Microbiol. Biotechnol. 2010, 85 (5), 1259–1277.
http://dx.doi.org/10.1007/s00253-009-2320-1 - Moore D., Robson G. D., Trinci A. P. J. 21st Century Guidebook to Fungi. Cambridge, UK: Cambridge University Press. 2011, 236 р.
http://dx.doi.org/10.1017/CBO9780511977022 - Semerd?ieva M., Veselsky J. L??ive houby d??ve a nyni. Praha: Academia. 1986, 177 p.
- Kamada T., Sano H., Nakazawa T., Nakahori K. Regulation of fruiting body photomorphogenesis in Coprinopsis cinerea. Fungal Gen. Biol. 2010, 47 (11), 917–921.
http://dx.doi.org/10.1016/j.fgb.2010.05.003 - Nakano Y., Fujii N., Kojima M. Identification of Blue-Light Photoresponse Genes in Mushroom Mycelia. Biosc. Biotehnol. Biochem. 2010, 74 (10), 2160–2165.
http://dx.doi.org/10.1271/bbb.100565 - Galagan G. V., Calvo S. E., orkovich K. A., Selker E. U., Read N. D., Jaffe D., FitzHugh W., Ma L. J., Smirnov S., Purcell S., Rehman B., Elkins T., Engels R., Wang S., Nielsen C. B., Butler J., Endrizzi M., Qui D., Ianakiev P., Bell-Pedersen D., Nelson M. A., Werner-Washburne M., Selitrennikoff C. P., Kinsey J. A., Braun E. L., Zelter A., Schulte U., Kothe G. O., Jedd G., Mewes W., Staben C., Marcotte E., Greenberg D., Roy A., Foley K., Naylor J., Stange-Thomann N., Barrett R., Gnerre S., Kamal M., Kamvysselis M., Mauceli E., Bielke C., Rudd S., Frishman D., Krystofova S., Rasmussen C., Metzenberg R. L., Perkins D. D., Kroken S., Cogoni C., Macino G., Catcheside D., Li W., Pratt R. J., Osmani S. A., DeSouza C. P., Glass L., Orbach M. J., Berglund J. A., Voelker R., Yarden O., Plamann M., Seiler S., Dunlap J., Radford A., Aramayo R., Natvig D. O., Alex L. A., Mannhaupt G., Ebbole D. J., Freitag M., Paulsen I., Sachs M. S., Lander E. S., Nusbaum C., Birren B. The genome seguence of the filamentous fungus Neurospora crassa. Nature. 2003, V. 422, Р. 859–868.
- Zalevsky Z., Belkin M. Coherence and Speckle in Photomedicine and Photobiology. Photomed. Laser Surgery. 2011, 29 (10), 655–656.
- Details
- Hits: 479
ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
Biotechnologia Acta, V. 8, No 1, 2015;
https://doi.org/10.15407/biotech8.01.056
P. 56-62, Bibliography 19, English
Universal Decimal classification: 58.085.2:582.542.11:631.811.98
I. R. Gorbatyuk 1, A. V. Bavol 1, 2, A. V. Holubenko 1, 3, B. V. Morgun 1, 2
1 Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv
2 Institute of Plant Physiology and Genetics, National Academy of Science of Ukraine, Kyiv
3 Taras Shevchenko National University of Kyiv, Ukraine
The aim of the study was to determine the dependence of morphogenetic reactions of wheat callus tissues to content of syntetic growth regulators of auxin nature (picloram, dicamba) in the nutrient medium.
Apical meristems of Triticum aestivum wheat were the primary explants for callusogenesis. Basic culture medium MS supplemented by vitamins of Gamborg, dicamba at different concentrations (0.2, 0.4, 0.6 mg/l), and picloram (0.16; 0.25; 0.5 mg/l) was used for regeneration. It was established that dicamba at a concentration of 0.2 mg/l is the most effective for production of regenerants. It was also observed that at the concentration of 0.16 mg/l picloram there are the formation of the greatest number of morphogenic zones (60%) and a significant amount of plant-regenerants. Increased concentrations of picloram to 0.25 mg/l and 0.5 mg/l caused a decrease in the number of morphogenic islands: in the first case, 10%, and the second – 36.4%. Among the described options the MS medium supplemented with 0.5 mg/l 6-benzylaminopurine and 0.16 mg/l picloram was the most effective. Shoots obtained from callus culture were capable to form roots in vitro and adapt to septic conditions. Regenerated plants when cultivated in greenhouse showed high viability (over 75%) and reached the generative phase.
Key words: growth regulators, picloram, dicamba, Triticum aestivum, in vitro culture.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1. Benderradji L., Brini F., Kellou K., Ykhlef N., Djekoun A., Masmoudi K., Bouzerzour H. Callus induction, proliferation, and plantlets regeneration оf two bread wheat (Triticum aestivum L.) genotypes under saline and heat stress conditions. Int. Schol. Res. Network. 2012, P. 1–8.
2. Sharma V. K., Hansch R., Mendel R.R, Schulze J. Influence of picloram and thidiazuron on high frequency plant regeneration in elite cultivars of wheat with long-term retention of morphogenecity using meristematic shoot segments. Plant Breed. 2005, V. 124, P. 242–246.
http://dx.doi.org/10.1111/j.1439-0523.2005.01095.x
3. Becher T., Haberland G., Koop H. Callus formation and plant regeneration in standard and microexplants from seedlings of barley (Hordeum vulgare L.). Plant Cell Rep. 1992, V. 11, P. 39–43.
http://dx.doi.org/10.1007/BF00231837
4. Curtis I. S., Nam. H. G. Transgenic radish (Raphanus sativus L. Longipinnatus Bailey) by floral-dip method – plant development and surfactant are important in optimizing transformation efficiency. Transg. Res. 2001, V. 10, P. 363–371.
http://dx.doi.org/10.1023/A:1016600517293
5. Chen Jun-Ying, Yue Run-Qing, Xu Hai-Xia, Chen Xin-Jian. Study on plant regeneration of wheat mature embryos under endosperm-supported culture. Agricult. Sci. China. 2006, 5 (8), 572–578.
http://dx.doi.org/10.1016/S1671-2927(06)60094-1
6. Fazeli-nasab B., Omidi M., Amiritokaldani M. Callus induction and plant regeneration of wheat mature embryos under abscisic acid treatment. Int. J. Agricult. Crop Sci. 2012, V. 4, P. 17–23.
7. Holubenko A. V. Studies of morphogenesis Gentiana macrophylla pall. In sterile culture conditions. Vydavnychyi tsentr «Kyivskyi unіversytet», Vіsnyk Kyivskoho natsіonalnoho unіversytetu «Іntroduktsіia ta zberezhennia roslynnoho rіznomanіttia». 2004, V. 7, P. 52–53. (In Ukrainian).
8. Kruglova N. N., Seldimirova O. A., Zaitsev D. Y., Katasonova A. A. Biotechnological evaluation of explants for obtaining regenerated in vitro plants of spring wheat for adaptive selection in the conditions of the Southern Urals. Izv. Chelyab. NCUrО RАN. 2006, 2 (32), 94–98. (In Russian).
9. Kruglova N. N., Dubrovnaya O. V. Morphogenesis of cereal androclinal calluses in vitro. Fiziologiia i biokhimiia kulturnykh rastenii. 2011, 43 (1), 15–25. (In Russian).
10. Gopitha K., Lakshmi Bhavani A., Senthilmanickam J. Effect of the different auxins and cytokinins in callus induction, shoot, root regeneration in sugarcane. Int. J. Pharma Bio Sci. 2010, V. 1, P. 1–7.
11. Ying-Hua Su, Yu-Bo Liu, Xian-Sheng Zhang. Auxin–cytokinin interaction regulates meristem development. Mol. Plant. 2011, 4 (4), 616–625.
http://dx.doi.org/10.1093/mp/ssr007
12. Bavol A. V., Dubrovna O. V., Lialko І. І. Regeneration of plants from shoot tips explants of wheat sprouts. Vіsnyk Ukrainskoho tovarystva henetykіv і selektsіonerіv. 2007, 5 (1–2), 3–10. (In Ukrainian).
13. Bavol A. V., Dubrovna O. V., Lialko І. І., Zіnchenko M. O. Effect of thidiazuron on the processes of morphogenesis in culture in vitro of wheat. Fiziolohiia i biokhimiia kulturnykh rastenii. 2011, V. 5, P. 412–418. (In Ukrainian).
14. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Phys. Plant. 1962, 15 (3), 473–497.
15. Gamborg O. L., Eveleigh D. E. Culture methods and detection of glucanases in cultures of wheat and barley. Can. J. Biochem. 1968, 46 (5), 417–421.
16. Musienko M. M., Paniuta O.O. Plant biotechnology. Tutorial. Kyiv: Vyd.-polihraf. tsentr «Kyivskyi universytet», 2005, 114 p. (In Ukrainian).
17. Eudes F., Achatya S., Laroche A., Selinger L. B., Cheng K.-J. A novel method to induce direct somatic embryogenesis, secondary embryogenesis and regeneration of fertile green cereal plants. Plant Cell Tiss. Org. Cult. 2003, 73 (2), 147–157.
http://dx.doi.org/10.1023/A:1022800512708
18. Timofeeva O. A., Rumjanceva N. I. Culture of cells and tissues of plants. Textbook. Kazan: Kazanskii (Privolzhskii) federalnyy universitet, 2012, 91 p. (In Russian).
19. Butenko R. G. Culture isolated tissues and physiology of plant morphogenesis. Moskva: Nauka, 1964, 272 p. (In Russian).
- Details
- Hits: 106
ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
Biotechnologia Acta, V. 8, No 1, 2015;
https://doi.org/10.15407/biotech8.01.049
P. 49-55, Bibliography 27, English
Universal Decimal classification: 577.218:577.29
SO «Institute of food Biotechnology and Genomics of the National Academy of Sciences of Ukraine», Kyiv
Using of new approach with site-specific recombinase system Cre/loxP under the control of 35S-promoter to generate marker-free genetically modified plants was developed. The analysis of recombinase system was carried out during the next generation of Arabidopsis thaliana plants, produced by agrobacterium transformation method. For this purpose two types of DNA-constructions were used for establishing better variant. The histochemical analysis of the plants progeny T1 transformed by both construct types was described. As a result of our work, it was established that the amount of marker-free transformants was arising during every next transformation offspring independently of the used construct type. The new strategy provides a simple and rapid way to eliminate swelective and marker genes.
Key words: site-specific recombinase system Cre/loxP, marker genes excision.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1. Puchta H. Marker-free transgenic plants. Plant Cell Tis. Org. Cult. 2003, V. 74, P. 123–134.
http://dx.doi.org/10.1023/A:1023934807184
2. Dale E. C., Ow D. W. Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA. 1991, 88 (23), 10558–10562
http://dx.doi.org/10.1073/pnas.88.23.10558
3. Gidoni D., Bar M., Leshem B., Gilboa N., Mett A., Feiler J. Embryonal recombination and germline inheritance of recombined Frt loci mediated by constitutively expressed Flp in tobacco. Euphytica. 2001, V. 121, P. 145–156.
http://dx.doi.org/10.1023/A:1012081125631
4. Ebinuma H., Komamine A. MAT (Multi-Auto-Trans formation) Vector System. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free ransgenic plants. In Vitro Cell. Dev. Biol. Plant. 2001, V. 37, pp 103–111.
http://dx.doi.org/10.1007/s11627-001-0021-2
5. Kittiwongwattana C., Lutz K., Clark M., Maliga P. Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol. Biol. 2007, V. 64, P. 137?143.
http://dx.doi.org/10.1007/s11103-007-9140-4
6. Rubtsova M., Kempe K., Gils A., Ismagul A., Weyen J., Gils M. Expression of active Streptomyces phage phiC31 integrase in transgenic wheat plants. Plant Cell Rep. 2008, V. 27, P. 1821–1831.
http://dx.doi.org/10.1007/s00299-008-0604-z
7. Maeser S., Kahmann R. The Gin recombinase of phase Mu can catalyse site-specific recombination in plant protoplasts. Mol. Gen. Genet. 1991, V. 230, P. 170–176.
http://dx.doi.org/10.1007/BF00290665
8. Moon H. S., Eda S., Saxton A. M., Ow D., Stewart C. N. Jr. An efficient and rapid transgenic pollen screening and detection method using a flow cytometry. Biotechnol. J. 2011, V. 6, P. 118–120.
http://dx.doi.org/10.1002/biot.201000258
9. Thomson J. G., Yau Y.-Y., Blanvillain R., Chinquy D., Thilmony R., Ow D. W. ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transg. Res. 2009, V. 18, P. 237–248.
http://dx.doi.org/10.1007/s11248-008-9213-4
10. Grindley N. D. F., Whiteson K. L., Rice P. A. Mechanisms of site-specific recombination. Annu. Rev. Biochem. 2006, V. 75, P. 567–605.
http://dx.doi.org/10.1146/annurev.biochem.73.011303.073908
11. Wang Y., Yau Y.-Y., Perkins-Balding D., Thompson J. G. Recombinase technology: applications and possibilities. Plant. Cell. Rep. 2011, V. 30, P. 267–285.
http://dx.doi.org/10.1007/s00299-010-0938-1
12. Van Duyne G. D. A structural view of cre-loxp site-specific recombination. Annu. Rev. Biophys. Biomol. Struct. 2001, V. 30, P. 87–104.
http://dx.doi.org/10.1146/annurev.biophys.30.1.87
13. Kopertekh L., Schiemann J. Elimination of Transgenic Sequences in Plant by Cre Gene Expression. Transgenic Plants - Advances and Limitations, ISBN 978-953-51-0181-9, InTech. 2012, P. 449–468.
14. Zuo J., Niu Q.-W., M?ller S. G., Chua N.-H. Chemical-regulated, site-specific DNA excision in transgenic plants. Nat. Biotechnol. 2001, V. 19, P. 157–161.
http://dx.doi.org/10.1038/84428
15. Zhang Y., Li H., Quyang B., Lu Y., Ye Z. Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol. Lett. 2006, V. 28, P. 1247–1253.
http://dx.doi.org/10.1007/s10529-006-9081-z
16. Zhang W., Subbarao S., Addae P., Shen A., Armstrong C., Peschke V., Gilbertson L. Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor. Appl. Genet. 2003, 107 (7), 1157–1168.
http://dx.doi.org/10.1007/s00122-003-1368-z
17. Wang Y., Chen B., Hu Y., Li J., Lin Z. Inducible excision of selectable marker gene from transgenic plants by the Cre/lox site-specific recombination system. Transg. Res. 2005, 14 (5), 605–614.
http://dx.doi.org/10.1007/s11248-005-0884-9
18. Mlynarova L., Conner A. J., Nap J.-P. Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotech. J. 2006, 4 (4), 445–452.
http://dx.doi.org/10.1111/j.1467-7652.2006.00194.x
19. Kopertekh L., Schulze K., Frolov A., Strack D., Broer I., Schiemann J. Cre-mediated seed-specific transgene excision in tobacco. Plant Mol. Biol. 2010, 72 (6), 597–605.
http://dx.doi.org/10.1007/s11103-009-9595-6
20. Sekan A. S., Isaenkow S. V. Development of the DNA-constuktions with site-specific recombinase system CRE/loxP under control a 35s promotor for the obtaining marker-free Arabidopsis thaliana transformants. Avaliable at http://nd.nubip.edu.ua/2014_5/3.pdf (accessed, September, 2014).
21. Sekan A. S., Isaenkow S. V. One step obtaining of the marker-free Arabidopsis thaliana transformants by the DNA-construction with site-specific recombnase construction Cre/loxP under control a 35S promotor. NASU Rep. 2014, V. 3, P. 158–163.
22. Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Phys. Plantar. 1962, 15 (3), 473–497.
http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x
23. Jefferson R. A. Assaying chimeric genes in plants: the gus gene fusion system Plant. Mol. Biol. Rep. 1987, V. 5, P. 387–405.
http://dx.doi.org/10.1007/BF02667740
24. Kopertekh L., Schulze K., Frolov A. Cremediated seed-specific transgene excision in tobacco. Plant Mol. Biol. 2010, V. 72, P. 597–605.
http://dx.doi.org/10.1007/s11103-009-9595-6
25. Liu H. K., Yang C., Wei Z. W. Heat shock-regulated site-specific excision of extraneous DNA in transgenic plants. Plant Sci. 2005, V. 168, P. 997–1003.
http://dx.doi.org/10.1016/j.plantsci.2004.11.021
26. Kim H.-B., Cho J.-I., Ryoo N. Development of a simple and efficient system for excision selectable markers in Arabidopsis using a minimal promoter: Cre fusion construct. Mol. Cells. 2012, 33 (1), 61–69.
http://dx.doi.org/10.1007/s10059-012-2212-6
27. Matzke M. A., Matzke A. J. M. How and why do plants inactivate homologоus (trans) genes? Plant Physiol. 1995, 107 (3), 679–685.
- VITALITY AND MORPHOLOGY OF TUMOR CELLS TREATED WITH 4-TIAZOLIDINONE DERIVATIVES IMMOBILIZED ON NANOSCALE POLYMER CARRIER N. M. Boiko, O. Yu. Klyuchivska, L. I. Коbylinska, D. Ya. Havrylyuk, A. O. Ryabtseva, N. Ye. Mitina, R. B. Lesyk, O. S
- SEROLOGICAL AND BIOLOGICAL ACTIVITY OF LIPOPOLYSACCHARIDE FROM Escherichia coli L-19 L. D. Varbanets, E. L. Zdorovenko, Е. G. Garkavaya , O. S. Brovarskaya
- AGROBACTERIUM-MEDIATED TRANSFORMATION OF COMPOSITAE PLANTS. I. CONSTRUCTION OF TRANSGENIC PLANTS AND «HAIRY» ROOTS WITH NEW PROPERTIES N. A.Matvieieva
- NANOMATERIALS IN THE DIAGNOSIS AND THERAPY OF DIABETES MELLITUS M. V. Tolkachev, K. I. Bogutska, O. M. Savchuk, Yu. І. Prylutskyy