ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta v. 8, No 1, 2015;
https://doi.org/10.15407/biotech8.01.009
Р. 9-18, Bibliography 97, English
Universal Decimal classification: 541.64: 57.013: 612.349: 615.012
NANOMATERIALS IN THE DIAGNOSIS AND THERAPY OF DIABETES MELLITUS
M. V. Tolkachev, K. I. Bogutska, O. M. Savchuk, Yu. І. Prylutskyy
Taras Shevchenko National University of Kyiv, Ukraine
The problem of development of modern biotechnologies for the purposeful use of biocompatible low toxic objects of the nanometer size in the treatment of the most widespread diseases, including diabetes, is analyzed in this review. It is likely that by means of nanotechnologies the problems of early diagnostics of this disease and new effective methods of its selective therapy will be developed.
The modern literature data on the latest biotechnological ways in therapy of diabetes are generalized, in particular the effect in vivo and in vitro of the biocompatible complexes on the basis of carriers of the different nature (glycopolymer, lipid etc.) and multilayered structures with nanoparticles as potential transporters of insulin, and use of biosensors and magnetic probes on the basis of nanoparticles (carbon nanotubes and oxide of iron) for detecting of glucose and visualization of beta-cells of Langergans islands, which produce insulin, are considered under in vivo and in vitro conditions.
Key words: diabetes mellitus, nanomaterials.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
- Kapustynska O. Patients with diabetes mellitus type 2 risk factors of coronary heart isease and diabetic cardiomyopathy. Clinical Physiol. Biochem. 2014, N 2, P. 106–111. (In Ukrainian).
- Pankiv B. I. Diabetes: diagnostic criteria, etiology and pathogenesis. Int. J. Endocrinol. 2013, 8 (56), 53–69. (In Ukrainian).
- Kuzishin O. V., Kovalishin N. V., Almashina Kh. Biochemistry of diabetes: 1. Theoretical part (review). Bull. of Prikarpat. National Un-t. Chem. Ser. 2010, Is. IX , P . 74–115. (In Ukrainian).
- Kovalishin N. V., Almashina Kh. V., Kuzishin O. V., Midak L. Ya. Biochemistry of diabetes: 2. Experimental part — 1. Bull. of Prikarpat. National Un-t. Chem. Ser. 2010, Is. Х, Р. 141–157. (In Ukrainian)
- Diabetes: diagnostics, treatment, prevention. Eds. I. I. Dedov, M. V. Shestakova. Moskow: Medical news agency. 2011, 808 p. (In Russian).
- Halenova T. I., Kuznetsova M. Y., Savchuk O. M., Ostapchenko L. Isolation and characterization of insulin receptor of plasma membranes of rat liver cells at type 2 diabetes model. Biotechnologia Acta. 2014, 7 (3), 81–87. (In Ukrainian).
http://dx.doi.org/10.15407/biotech7.03.081 - Harsoliya M. S., Patel V. M., Modasiya M., Pathan J. K., Chauhan A., Parihar M., Ali M. Recent advances & applications of nanotechnology in diabetes. Int. J. Pharm. & Biol. Archiv. 2012, 3 (2), 255–261.
- Asatiani N., Kurashvili R., Popitashvili A., Helashvili M., Shelestova O., Tsutskiridze L. Gestational diabetes mellitus. Diabetes and Heart. 2009, 5 (131), 47–51. (In Russian).
- Tkachenko V. I., Vydyborets N. V., Bondar O. K. Modern approaches to the treatment of diabetes mellitus type 2 in the family physician's practice. Diabetes and Heart. 2014, 2 (178), 38–42. (In Ukrainian).
- Tronko M. D., Pasteur I. P. Advances of regenerative medicine in the therapy of type 1 diabetes mellitus. III . Clinical trials in the use of stem cell s for the therapy of main disease. Endokrynologiia. 2013, 18 (3), 53–63. (In Ukrainian).
- Biletskyi S. V., Novytska O. Z., Petrynych O. A., Kazantseva T. V. The state of carbohydrate and lipid metabolism and glomerular filtration rate in patients with degree II hypertensive disease associated with type II diabetes. Med. Herald. 2014, 18 (2), 8–10. (In Ukrainian).
- Pertseva N. O., Turlyun T. S. Clinical and morphological parallels in conditions of impaired platelet-vascular hemostasis in patients with type 2 diabetes. Morfologiia 2011, 5 (2), 5–18. (In Ukrainian).
- Stavniichuk R. V., Kuchmerovska T. M . Diabetic neuropathy. Role of a 12/15-lipoksi genaza and metabolism of arakhidonovy acid. Endokrynologiia. 2014, 2 (19), 156–166. (In Ukrainian)
- Grytsiuk M. I., Bojchyk T. M., Petryshen O. I. Comparative characteristics of experimental models of diabetes mellitus. World of Medicine and Biology. 2014, 2 (44), 199–203. (In Ukrainian).
- Sona P. S. Nanoparticulate drug delivery systems for the treatment of diabetes. Digest J. Nanomater. Biostructur. 2010, 5 (2), 411–418.
- Globa Ye. V., Zelinska N. B. Using auto antibodies for differential diagnosis of different types of diabetes mellitus. J. Endocrinol. 2014, 2 (58), 121–125. (In Ukrainian).
- Prylutska S. V., Grynyuk I. I., Matyshevska O. P., Prylutskyy Yu. I., Ritter U., Scharff P. Anti-oxidant properties of C60 fullerenes in vitro. Fullerenes, Nanotubes, Carbon Nanostruct. 2008, 16 (5–6), 698–705.
http://dx.doi.org/10.1080/15363830802317148 - Shubina T. E., Sharapa D. I., Schubert Ch., Zahn D., Halik M., Keller P. A., Pyne S. G., Jennepalli S., Guldi D.M., Clark T. Fullerene van der Waals oligomers as electron traps. J. Am. Chem. Soc. 2014, 136 (31), 10890–10893.
http://dx.doi.org/10.1021/ja505949m - Prior A. M., Thapa M., Hua D. H. Aldose reductase inhibitors and nanodelivery of diabetic therapeutics. Mini Rev. Med. Chem. 2012, 12 (4), 326–336.
http://dx.doi.org/10.2174/138955712799829294 - Mishra M., Kumar H., Singha R. K., Tripathi K. Diabetes and nanomaterials. Digest J. Nanomater. Biostruct. 2008, 3 (3), 109–113.
- De Ara?jo T. M., Teixeira Z., Barbosa-Sampaio H. C., Rezende L. F., Boschero A. C., Dur?n N., H?ehr N. F. Insulin-loaded poly(epsilon-caprolactone) nanoparticles: efficient, sustained and safe insulin delivery system. J. Biomed. Nanotechnol.2013, 9 (6), 1098–1106.
http://dx.doi.org/10.1166/jbn.2013.1607 - Gu Z., Aimetti A. A., Wang Q., Dang T. T., Zhang Y., Veiseh O., Cheng H., Langer R. S., Anderson D. G. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano. 2013, 7 (5), 4194–4201.
http://dx.doi.org/10.1021/nn400630x - Gu Z., Dang T.T., Ma M., Tang B.C., Cheng H., Jiang S., Dong Y., Zhang Y., Anderson D.G. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano. 2013, 7 (8), 6758–6766.
http://dx.doi.org/10.1021/nn401617u - Zdvizhkov Y., Bura M. Particular qualities of application of polyethylene glycol-based polymeric carrier for drug delivery to the coal target. Visnyk of the Lviv University. Series Bi ology. 2014, Is. 64, P. 3–20. (In Ukrainian).
- Wong T. W. Chitosan and its use in design of insulin delivery system. Recent Pat. Drug. Deliv. Formul. 2009, 3 (1), 8–25.
http://dx.doi.org/10.2174/187221109787158346 - Minimol P. F., Paul W., Sharma C. P. PEGylated starch acetate nanoparticles and its potential use for oral insulin delivery. Polym. 2013, 95 (1), 1–8. 27.
- Lee C., Choi J. S., Kim I., Oh K. T., Lee E. S., Park E. S., Lee K. C., Youn Y. S. Long-acting inhalable chitosan-coated poly(lactic-coglycolic acid) nanoparticles containing hydrophobically modified exendin-4 for treating type 2 diabetes. J. Nanomed. 2013, 8, 2975–2983.
- Chuang E. Y., Nguyen G. T., Su F. Y., Lin K. J., Chen C. T., Mi F. L., Yen T. C., Juang J. H., Sung H. W. Combination therapy via oral co-administration of insulin- and exendin-4-loaded nanoparticles to treat type 2 diabetic rats undergoing OGTT. Biomaterials. 2013, 34 (32), 7994–8001.
http://dx.doi.org/10.1016/j.biomaterials.2013.07.021 - Zheng C., Guo Q., Wu Z., Sun L., Zhang Z., Li C., Zhang X. Amphiphilic glycopolymer nanoparticles as vehicles for nasal delivery of peptides and proteins. J. Pharm Sci. 2013, 49 (4), 474–482.
http://dx.doi.org/10.1016/j.ejps.2013.04.027 - Kim J. Y., Lee H., Oh K. S., Kweon S., Jeon O. C., Byun Y., Kim K., Kwon I. C., Kim S. Y., Yuk S. H. Multilayer nanoparticles for sustained delivery of exenatide to treat type 2 diabetes mellitus. Biomaterials. 2013, 34 (33), 8444–8449.
http://dx.doi.org/10.1016/j.biomaterials.2013.07.040 - Wang Y., Zhang X., Cheng C., Li C. Mucoadhesive and enzymatic inhibitory nanoparticles for transnasal insulin delivery. Nanomedicine (Lond). 2014, 9 (4), 451–464.
http://dx.doi.org/10.2217/nnm.13.102 - Wu Z. M., Ling L., Zhou L. Y., Guo X. D., Jiang W., Qian Y., Luo K. Q., Zhang L. J. Novel preparation of PLGA/HP55 nanoparticles for oral insulin delivery. Nanoscale Res. Let. 2012, 7 (1), 299–306.
http://dx.doi.org/10.1186/1556-276X-7-299 - Kuchmerovska T. M ., Donchenko G. V., Tychonenko T. M., Guzyk M. M., Stavniichuk R. V., Yanitska L. V., Stepanenko S. P., Klimen ko А. P. Nicotinamide influence on pancreatic cells Ukr. Biochim. Zhurn. 2012, 84 (2), 81–88. (In Ukrainian).
- Prylutska S. V., Remeniak O. V., Honcharenko Yu. V., Prylutskyy Yu. I. Cardon nanotubes as a new class of materials for nanobiotechnology. Biotekhnolohiia. 2009, 2 (2), 55–66. (In Ukrainian).
- Rotko D. M., Prylutska S. V., Bogutska K. I., Prylutskyy Yu. I. Carbon nanotubes as new materials for neuroengineering. Biotekhnolohiia. 2011, 4 (5), 9–24. (In Ukrainian).
- Zhang Y., Bai Y., Yan B. Functionalized carbon nanotubes for potential medicinal applications. Drug Discov. Today. 2010, 15 (11–12), 428–435. 37.
- Ilie I., Ilie R., Mocan T., Tabaran F., Iancu C., Mocan L. Nicotinamide-functionalized multiwalled carbon nanotubes increase insulin production in pancreatic beta cells via MIF pathway. J. Nanomedicine. 2013, 8, 3345–3353.
- Nedzvetsky V., Andrievsky G., Chachibaia T., Tykhomyrov A. Differences in antioxidant/protective efficacy of hydrated C60 fullerene nanostructures in liver and brain of rats with streptozotocin-induced diabetes. Diabetes. Metab. 2012, 3, 215–223.
http://dx.doi.org/10.4172/2155-6156.1000215 - Bal R., T?rk G., Tuzcu M., Yilmaz O., Ozercan I., Kuloglu T., G?r S., Nedzvetsky V. S., Tykhomyrov A. A., Andrievsky G. V., Baydas G., Naziroglu M. Protective effects of nanostructures of hydrated C60 fullerene on reproductive function in streptozotocin diabetic male rats. Toxicology. 2011, 282 (3), 69–81.
http://dx.doi.org/10.1016/j.tox.2010.12.003 - Wang P., Yoo B., Yang J., Zhang X., Ross A., Pantazopoulos P., Dai G., Moore A. GLP-1R–targeting magnetic nanoparticles for pancreatic islet imaging. Diabetes. 2014, 63 (5), 1465–1474.
http://dx.doi.org/10.2337/db13-1543 - Zhu Zh., Garcia-Gancedo L., Flewitt A. J., Xie H., Moussy F., Milne W. I. A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors, 2012, 12 (5), 5996–6022.
http://dx.doi.org/10.3390/s120505996 - Pyeshkova V. M., Saiapina O. Y., Soldatkin O. O., Dzyadevych S. V. Traditional and biosensor methods of mono- and disaccharides determination. Biotekhnolohiia. 2010, 3 (3), 9–22. (In Ukrainian).
- Rogaleva N. S., Shkotova L. V., Lvova O. V., Garbuz V. V., Muratov V. B., Duda T. I ., Vasilev O. O., Korpan Ya. I., Biloivan O. A. Amperometric biosensor modified with multiwalled carbon nanotubes for glucose determination. Biotekhnolohiia. 2012, 5 (1), 53–61. (In Ukrainian).
- Zhu Z., Song W., Burugapalli K., Moussy F., Li Y. L., Zhong X. H. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor. Nanotechnology. 2010, 21 (16), 165501. doi: 10.1088/0957-4484/21/16/165501.
http://dx.doi.org/10.1088/0957-4484/21/16/165501