ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 8, No 1, 2015;
https://doi.org/10.15407/biotech8.01.019
Р. 19-31, Bibliography 97, English
Universal Decimal classification: 571.27:004.9
Institute of Cell Biology and Genetic Engineering NAS of Ukraine
The review explores some of the recent advances and the author's own researchs concerning biotechnological approaches for Agrobacterium tumefaciens- and A. rhizogenes-mediated transformation of Compositae family plants. This paper reviews the results of genetic transformation of Compositae plants, including edible (Cichorium intybus, Lactuca sativa), oil (Helianthus annuus), decorative (Gerbera hybrida), medical (Bidens pilosa, Artemisia annua, Artemisia vulgaris, Calendula officinalis, Withania somnifera etc.) plant species. Some Compositae genetic engineering areas are considered including creation of plants, resistant to pests, diseases and herbicides, to the effect of abiotic stress factors as well as plants with altered phenotype. The article also presents the data on the development of biotechnology for Compositae plants Cynara cardunculus, Arnica montana, Cichorium intybus, Artemisia annua "hairy" roots construction.
Key words: Compositae, Agrobacterium tumerfaciens, Agrobacterium rhizogenes, “hairy” roots.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1. Chilton M. D., Tepfer D. A., Petit A., Chantal David, Francine Casse-Delbart, Jacques Tempe Agrobacterium rhizogenes inserts T-DNA into the genomes of the host-plant root cells. Nature. 1982, V. 295, P. 432–434. doi:10.1038/295432a0.
http://dx.doi.org/10.1038/295432a0
2. Tepfer D. Transformation of several species of higher plants by agrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell. 1984, 37 (3), 959–967. PMID:6744417.
http://dx.doi.org/10.1016/0092-8674(84)90430-6
3. Matzke A. J. M.,Chilton M. D. Site-specific insertion of genes into T-DNA of the Agrobacterium tumor-inducing plasmid: an approach to genetic engineering of higher plant cells. J. Mol. Appl. Genet, 1981, 1 (1), 39–49. PMID:6955419.
4. Ba?za A. M., Quiroz-Moreno A., Ru?z J. A., Loyola-Vargas V. M. Genetic stability of hairy root cultures of Datura stramonium. Plant Cell Tiss. Org. 1999, 59 (1), 9–17. doi: 10.1023/A:1006398727508.
http://dx.doi.org/10.1023/A:1006398727508
5. Georgiev M., Pavlov A. I., Bley T. Hairy root type plant in vitro systems as sources of bioactive substances. Appl. Microbiol. Biotechnol. 2007, 74 (6), 1175–1185. PMID:17294182.
http://dx.doi.org/10.1007/s00253-007-0856-5
6. Shi H. P., Long Y. Y., Sun T. S., Tsang P. K. E. Induction of hairy roots and plant regeneration from the medicinal plant Pogostemon Cablin. Plant Cell Tiss. Org. 2011, 107 (2), 251–260. doi: 10.1007/s11240-011-9976-9.
http://dx.doi.org/10.1007/s11240-011-9976-9
7. Mishra B. N., Ranjan R. Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnol. Appl. Biochem. 2008, 49 (1), 1–10. PMID:18086010.
http://dx.doi.org/10.1042/BA20070103
8. Bais H. P., Suresh B., Raghavarao K., Ravishankar G. A. Performance of hairy root cultures of Cichorium intybus L. in bioreactors of different configurations. In Vitro Cell Dev. Biol. Plant. 2002, 38 (6), 573–580. doi:10.1079/IVP2002334.
http://dx.doi.org/10.1079/IVP2002334
9. Tang K., Shen Q., Yan T., Fu X. Transgenic approach to increase artemisinin content in Artemisia annua L. Plant Cell Rep. 2014, 33 (4), 605–615. doi: 10.1007/s00299-014-1566-y.
http://dx.doi.org/10.1007/s00299-014-1566-y
10. Bais H. P., Sudha G., Ravishankar G. A. Enhancement of growth and coumarin production in hairy root cultures of Cichorium intybus, L. cv. Lucknow Local (Witloof Chicory) under the influence of fungal elicitors. J. Biosci. Bioeng. 2000, 90 (6), 640–645. PMID:16232926.
http://dx.doi.org/10.1016/S1389-1723(00)90011-2
11. Weremczuk-Jezyna I., Kalemba D., Wysokinska H. Constituents of the essential oil from hairy roots and plant roots of Arnica montana. J. Essent. Oil Res. 2011, 23 (1), 91–97. doi:10.1080/10412905.2011.9700432.
http://dx.doi.org/10.1080/10412905.2011.9700432
12. Rahnama H., Hasanloo T., Shams M. R., Sepehrifar R. Silymarin production by hairy root culture of Silybum marianum (L.) Gaertn. Iran. J. Biotechnol. 2008, 6 (1), 113–118.
13. Mahesh A., Jeyachandran R. Agrobacterium rhizogenes-mediated hairy root induction in Taraxacum officinale and analysis of sesquiterpene lactones. Plant Biosystems. 2011, 143 (3), 620–626 doi: 10.1080/11263504.2011.584702.
http://dx.doi.org/10.1080/11263504.2011.584702
14. Malarz J., Stojakowska A., Kisiel W. Sesquiterpene Lactones in a Hairy Root Culture of Cichorium intybus. Z. Naturforsch. 2002, 57 (11–12), 994–997. PMID:12562083.
http://dx.doi.org/10.1515/znc-2002-11-1207
15. Samadi A., Carapetian J., Heidari R., Jaferi M. A. Hassanzaden Gorrttapen Hairy Root Induction in Linum mucronatum ssp. mucronatum, an Anti-Tumor Lignans Producing Plant. Not. Bot. Horti. Agrobo. 2012, 40 (1), 125–131.
16. Bandyopadhyay M., Jha S., Tepfer D. Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep. 2007, 26 (5), 599–609. PMID:17103214.
http://dx.doi.org/10.1007/s00299-006-0260-0
17. Syed Hamid Hussain, Abdul Latif, Cox R. J., Simpson T. J., Mumtaz Ali, Mohammad Arfan, Ghias Uddin. Phytochemicals from the aerial parts of Ligularia thomsonii and their radical scavenging activity. Phytochem. Lett. 2014, 7 (6), 6–10. doi: 10.1016/j.phytol.2013.09.002.
http://dx.doi.org/10.1016/j.phytol.2013.09.002
18. Akbar Esmaeili, Zahra Mousavi, Maryam Shokrollahi, Ali Shafaghat. Antioxidant Activity and Isolation of Luteoline from Centaurea behen L. Grown in Iran. of Chem. 2013,
19. Stojakowska A., Malarz J., Szewczyk A., Kisie W. Caffeic acid derivatives from a hairy root culture of Lactuca virosa. Acta Physiol. Plant. 2012, 34 (1), 291–298. doi:10.1007/s11738-011-0827-4.
http://dx.doi.org/10.1007/s11738-011-0827-4
20. Albino de Almeida A. B., S?nchez-Hidalgo M., Mart?n A. R., Luiz-Ferreira A., Trigo J. R., Vilegas W., dos Santos L. C., Souza-Brito A. R., de la Lastra C. A. Anti-inflammatory intestinal activity of Arctium lappa L. (Asteraceae) in TNBS colitis model. J. Ethnopharmacol. 2013, 146 (1), 300–310. doi: 10.1016/j.jep.2012.12.048.
http://dx.doi.org/10.1016/j.jep.2012.12.048
21. Shih-Chang Chien, Young P. H., Yi-Jou Hsu, Chen C. H., Tien Y. J., Shiu S. Y., Li T. H., Yang C. W., Marimuthu P., Tsai L. F., Yang W. C. Anti-diabetic properties of three common Bidens pilosa variants in Taiwan. Phytochemistry. 2009, 70 (10), 1246–1254. doi: 10.1016/j.phytochem.
22. Li-Ping Yuan, Fei-Hu Chen, Lu Ling, Dou P. F., Bo H., Zhong M. M., Xia L. J. Protective effects of total flavonoids of Bidens pilosa L. (TFB) on animal liver injury and liver fibrosis. J. Ethnopharmacol. 2008, 116 (3), 539–546. doi: 10.1016/j.jep.2008.01.010.
http://dx.doi.org/10.1016/j.jep.2008.01.010
23. Heibatollah S., Reza N. M., Izadpanah G., Sohailla S. Hepatoprotective effect of Cichorium intybus on CCl4-induced liver damage in rats. Afr. J. Biochem. Res. 2008, 2 (6), 141–144.
24. Kviecinski M. R., Felipe K. B., Schoenfelder T., de Lemos Wiese L. P., Rossi M. H., Gon?alez E., Felicio J. D., Filho D. W., Pedrosa R. C. Study of the antitumor potential of Bidens pilosa (Asteraceae) used in Brazilian folk medicine. J. Ethnopharmacol. 2008, 117 (1), 69–75. PMID:18342465.
http://dx.doi.org/10.1016/j.jep.2008.01.017
25. Mohamed Salla, Isabelle Fakhoury, Najat Saliba, Darwiche N., Gali-Muhtasib H. Synergistic anticancer activities of the plant-derived sesquiterpene lactones salograviolide A and iso-seco-tanapartholide. J. Nat. Med. 2013, 67 (3), 468–479. doi: 10.1007/s11418-012-0703-6.
http://dx.doi.org/10.1007/s11418-012-0703-6
26. Hughes R., Rowland I. R. Stimulation of apoptosis by two prebiotic Chicory fructans in the rat colon. Carcinogenesis. 2001, 22 (1), 43–47. PMID:11159739.
http://dx.doi.org/10.1093/carcin/22.1.43
27. Medjroubi K., Benayache F., Bermejo J. Sesquiterpene lactones from Centaurea musimomum. Antiplasmodial and cytotoxic activities. Fitoterapia. 2006, 76 (7–8), 744–776. doi: 10.1016/j.fitote.2005.08.005.
http://dx.doi.org/10.1016/j.fitote.2005.08.005
28. Milosevi? T., Argyropoulou C., Soluji? S., Murat-Spahi? D., Skaltsa H. Chemical composition and antimicrobial activity of essential oils from Centaurea pannonica and C. jacea. Nat. Prod. Commun. 2010, 5 (10), 1663–1668. PMID:21121269.
29. Nergard C. S., Diallo D., Michaelsen T. E., Malterud K. E., Kiyohara H., Matsumoto T., Yamada H., Paulsen B. S. Isolation, partial characterisation and immunomodulating activities of polysaccharides from Vernonia kotschyana Sch. Bip. ex Walp. J. Ethnopharmacol. 2004, 91 (1), 141–152. PMID:15036481.
http://dx.doi.org/10.1016/j.jep.2003.12.007
30. Petrova M., Zayova E., Vlahova M. Induction of hairy roots in Arnica montana L. by Agrobacterium rhizogenes. Central Europ. J. Biol. 2013, 8 (5), 470–479. doi:10.2478/s11535-013-0157-6.
http://dx.doi.org/10.2478/s11535-013-0157-6
31. Yuko Otani, Dong Poh Chin, Masahiro Mii Establishment of Agrobacterium-mediated genetic transformation system in Dahlia. Plant Biotechnol. 2013, 30 (2), 135–139.
http://dx.doi.org/10.5511/plantbiotechnology.13.0128a
32. Elomaa P., Honkanen J., Puska R., Sepp?nen P., Helariutta Y., Mehto M., Kotilainen M., Nevalainen L., Teeri T. H. Agrobacterium-Mediated Transfer of Antisense Chalcone Synthase cDNA to Gerbera hybrida Inhibits Flower Pigmentation. Nat. Biotechnol. 1993, 11 (4), 508–511. doi:10.1038/nbt0493-508.
http://dx.doi.org/10.1038/nbt0493-508
33. Nagaraju V., Srinivast G. S. L., Lakshmi Sita G. Agrobacterium -mediated genetic transformation in Gerbera hybrida. Curr. Sci. 1998, 74 (7), 10–15.
34. Lee Hye-Young, Lee Ki-Jung, Jeon Eun-Hee, Jeon Eun-Hee, Shin, Sang-Hyun , Lee Jai-Heon, Kim Doh-Hoon, Chung Dae-Soo, Chung Yong-Mo, Cho Yong-Cho, Kim Jeong-Kook, Chung Young-So. Optimization of Genetic Transformation Conditions for Korean Gerbera Lines. J. Plant Biotechnol. 2006, 33 (1), 49–56. doi: 10.5010/JPB.2006.33.1.049.
http://dx.doi.org/10.5010/JPB.2006.33.1.049
35. Hussein G. M., Abu El-Heba G. A., Abdou S. M., Abdallah N. A. Optimization of transient gene expression system in Gerbera jemosonii petals.GM Crops Food. 2013, 4 (1), 50–57. doi: 10.4161/gmcr.23925.
http://dx.doi.org/10.4161/gmcr.23925
36. Korbin M., Podwyszynska M., Komorowska B., Wawrzynczak D. Transformation of Gerbera plants with Tomato Spotted Wilt virus (TSWV) nucleoprotein gene. Proc. XX EUCARPIA Symp. on New Ornamentals II Eds. J. Van Huylenbroeck et al. Acta Hort. 572, ISHS. 2002, P. 149–157.
37. Menin B., Comino C., Moglia A., Dolzhenko Y. Setting up of genetic transformation system in globe artichoke. Proceedings of the 54th Italian Society of Agricultural Genetics Annual Congress Matera, Italy, 27/30 September, 2010.
38. Maroufi Asad, Karimi Mansour, Khosro Mehdi Khanlou, Van Bockstaele E., De Loose M. Regeneration ability and genetic transformation of root type chicory (Cichorium intybus var. sativum). Afr. J. Biotechnol. 2012, 11 (56), 11874–11886.
39. Frulleux F., Weyens G., Jacobs M. Agrobacterium tumefaciens-mediated transformation of shoot-buds of chicory. Plant.Cell Tiss. 1997, 50 (2), 107–112. doi: 10.1023/A:1005994711865.
http://dx.doi.org/10.1023/A:1005994711865
40. Cheng Lin Mei, Cao Qiu Fen, Huang Jing Establishment of a highly efficient genetic transformation system in Cichorium intybus. Acta Prataculturae Sinica. 2004, 13 (6), 112–116.
41. Bais H. P., Venkatesh R. T., Chandrashekar A., Ravishankar G. A. Agrobacterium rhizogenes-mediated transformation of Witloof chicory – in vitro shoot regeneration and induction of flowering. Curr. Sci. 2001, 80 (1), 83–87.
42. Sun L. Y., Gerard T., Charbonnier C., Tepfer D. Modification of phenotype in Belgian endive (Cichorium intybus) through genetic transformation by Agrobacterium rhizogenes: conversion from biennial to annual flowering. Transg. Res. 1991, 1 (1), 14–22. doi:10.1007/BF02512992.
http://dx.doi.org/10.1007/BF02512992
43. Kamada H., Saitou T., Harada H. No requirement of vernalization for flower formation in Ri-transformed Cichorium plants. Plant Tiss. Cult. Lett. 1992, 9 (3), 206–208.
http://dx.doi.org/10.5511/plantbiotechnology1984.9.206
44. Vermeulen A., Vaucheret H., Pautot V., Chupeau Y. Agrobacteriu-mediated transfer of a mutantArabidopsisacetolactatesynthase gene confers resistance to chlorsulfuron in chicory (Cichorium intybus L.). Plant. Cell. Rep. 1992, 11 (5–6), 243–247. doi: 10.1007/BF00235074.
http://dx.doi.org/10.1007/BF00235074
45. Zhao Yu Wei, Wang Ying Juan, Bu Huai Yu, Hao Jian Guo, Jia Jing Fen. Transformation of Cichorium intybus with the AtNHX1 gene and salinity tolerance of the transformants. Acta Prataculturae Sinica. 2009, 18 (3), 103–109.
46. Mukherjee S., Ghosh B., Jha T. B., Jha S. Genetic transformation of Artemisia annua by Agrobacterium rhizogenes. Ind. J. Exp. Biol. 1995, N 33, P. 868–871.
47. Weathers P. J., Bunk G., McCoy M. C. The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cell Dev. Biol. Plant. 2005, 41 (1), 47–53. doi: 10.1079/IVP2004604.
http://dx.doi.org/10.1079/IVP2004604
48. Giri A., Ravindra S. T., Dhingra V., Narasu M. L. Influence of different strains of Agrobacterium rhizogenes on induction of hairy root and artemisinin production in Artemizia annua. Curr. Sci. 2001, 81 (4), 4–25.
49. Banerjee S., Zehra M., Gupta M. M., Kumar S. Agrobacterium rhizogenes-mediated transformation of Artemisia annua: production of transgenic plants. Planta Med. 1997, 63 (5), 467–469. PMID: 17252369.
http://dx.doi.org/10.1055/s-2006-957737
50. Ahlawat S., Saxena P., Ram M., Pravej Alam, Tazyeen nafis, Anis Mohd and Malik Zainul Abdin. Influence of Agrobacterium rhizogenes on induction of hairy roots for enhanced production of artemisinin in Artemisia annua L. Plants. Afr. J. Biotechnol. 2012, 11 (35), 8684–8691.
51. Wang H., Liu Y., Chong K., Liu B. Y., Ye H. C., Li Z. Q., Yan F., Li G. F. Earlier flowering induced by over-expression of CO gene does not accompany increase of artemisinin biosynthesis in Artemisia annua. Plant Biol. 2007, 9 (3), 442–446. PMID: 17099845.
http://dx.doi.org/10.1055/s-2006-924634
52. Han J. L., Liu B. Y., Ye H. C., Hong Wang, Zhen-Qiu Li, Guo-Feng Li. Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. Acta Botanica Sinica. 2006, 48 (4), 482–487. doi: 10.1111/j.1744-7909.2006.00208.
53. Mannan A., Shaheen N., Arshad W., Qureshi R. A., Muhammad Zia, Bushra Mirza. Hairy roots induction and artemisinin analysis in Artemisia dubia and Artemisia indica. Afr. J. Biotechnol. 2008, 7 (18), 3288–3292.
54. Alam P., Mohammad A., Ahmad M. M., Khan M. A., Nadeem M., Khan R., Akmal M., Ahlawat S., Abdin M. Z. Efficient method for Agrobacterium mediated transformation of Artemisia annua L. Rec. Path. Biotechnol. 2014, 8 (1), 102–107. PMID: 22642822.
http://dx.doi.org/10.2174/18722083113079990001
55. Elfahmi, Suhandono S., Chahyadi A. Optimization of genetic transformation of Artemisia annua L. Using Agrobacterium for Artemisinin production. Pharmacogn. Mag. 2014, 10 (37), 176–180. doi: 10.4103/0973-1296.127372.
http://dx.doi.org/10.4103/0973-1296.127372
56. Sujatha G., Zdravkovic-Korac S., Calic D., Flamin G., Ranjitha Kumari B. D. High-efficiency Agrobacterium rhizogenes-mediated genetic Transformation in Artemisia vulgaris: Hairy root production and Essential oil analysis. Industr. Crops Prod. 2013, V. 44, P. 643–652. doi: 10.1016/j.indcrop.2012.09.007.
http://dx.doi.org/10.1016/j.indcrop.2012.09.007
57. Nin S., Bennici G., Roselli D., Mariotti D., Schiff S., Magherini R. Agrobacterium-mediated transformation of Artemisia absinthium L. (wormwood) and production of secondary metabolites. Plant Cell Rep. 1997, 16 (10), 725–730. doi: 10.1007/s002990050310.
http://dx.doi.org/10.1007/s002990050310
58. Lee M. H., Yoon E. S., Jeong J. H., Choi Y. E. Agrobacterium rhizogenes-mediated transformation of Taraxacum platycarpum and changes of morphological characters. Plant Cell Rep. 2004 , 22 (11), 822–827. PMID: 14986056.
http://dx.doi.org/10.1007/s00299-004-0763-5
59. Zahra Shirazi, Khosro Piri, Asghar Mirzaie Asl, Tahereh Hasanloo. Establishment of Inula helenium hairy root culture with the use of Agrobacterium rhizogenes. Int. Res. J. Appl. Basic Sci. 2013, 4 (5), 1034–1038.
60. Enkhchimeg V., Tae W. B., Key Z. R., Soo-Young Kim, Hyo-Yeon Lee Overexpression of Arabidopsis ABF3 gene enhances tolerance to drought and cold in transgenic lettuce (Lactuca sativa). Plant Cell Tiss. Organ Cult. 2005, 83 (1), 41–50. doi: 10.1007/s11240-005-3800-3.
http://dx.doi.org/10.1007/s11240-005-3800-3
61. Michelmore R. W., Marsh E., Seely S., Landry B. Transformation of lettuce (Lactuca sativa) mediated by Agrobacterium tumefaciens. Plant Cell Rep. 1987, 6 (6), 439–442. PMID: 24248927.
62. McCabe M. S., Lee C. Garratt, Schepers F., Jordi W. J. R. M., Stoopen G. M., Davelaar E., J. Hans A. van Rhijn, Brian Power J., Davey M. R.. Effects of PSAG12-IPT Gene Expression on Development and Senescence in Transgenic Lettuce. Plant Physiol. 2001, 127 (2), 505–516. PMC125086.
http://dx.doi.org/10.1104/pp.010244
63. Ahmed M. B., Akhter M. S., Hossain M. An Efficient Agrobacterium-mediated Genetic Transformation Method of Lettuce (Lactuca sativa L.) With an Aphidicidal Gene, Pta (Pinellia ternata Agglutinin). Middle-East J. Sci. Res. 2007, 2 (2), 155–160.
64. Valimareanu S. Leaf Disk Transformation of Lactuca sativa Using Agrobacterium tumefaciens. Not. Bot. Hort. Agrobot. Clu. 2010, 38 (3), 181–186.
65. Mohapatra U., McCabe M. S., Power J. B, Schepers F., Van Der Arend A., Davey M. R. Expression of the Bar Gene Confers Herbicide Resistance in Transgenic Lettuce. Transgen. Res. 1999, 8 (1), 33–44. doi: 10.1023/A:1008891216134.
http://dx.doi.org/10.1023/A:1008891216134
66. Pileggi M., Pereira A. A. M., Silva J. dos Santos, S. Alvim Veiga Pileggi, Verma D. Pal S. An Improved Method for Transformation of Lettuce by Agrobacterium tumefaciens with a Gene that Confers Freezing Resistance. Braz. Arch. Biol. Technol. 2001, 44 (2), 191–196.
http://dx.doi.org/10.1590/S1516-89132001000200013
67. Pileggi M. Genetic transformation of the lettuce cultivar Grand Rapids (Lactuca sativa L.) by Agrobacterium tumefaciens to improve osmotic stress tolerance. Genet. Mol. Res. 2002, 1 (2), 176.
68. Vanjildorj E., Bae T. W., Riu K. Z., Soo-Young Kim, Hyo-Yeon Lee. Overexpression of Arabidopsis ABF3 gene enhances tolerance to drought and cold in transgenic lettuce (Lactuca sativa). Plant Cell Tiss. Org. Cult. 2005, 83 (1), 41–50. doi: 10.1007/s11240-005-3800-3.
http://dx.doi.org/10.1007/s11240-005-3800-3
69. Franklin G., Oliveira A. L., Dias, A. C. P. In vitro flowering and viable seed setting of transgenic lettuce cultures. Plant Biotechnol. 2011, 28 (1), 63–68.
http://dx.doi.org/10.5511/plantbiotechnology.10.1208a
70. Dinant S., Maisonneuve B., Albouy J., Chupeau Y., Chupeau M.-Ch, Bellec Y., Gaudefroy F., Kusiak C., Souche S., Robaglia C., Herv? Lot. Coat protein gene-mediated protection in Lactuca sativa against lettuce mosaic potyvirus strains. Mol. Breed. 1997, 3 (1), 75–86. doi: 10.1023/A:1009671925550.
http://dx.doi.org/10.1023/A:1009671925550
71. Yoichi Kawazu, Ryoi Fujiyama, Keita Sugiyama, Takahide Sasaya. A Transgenic Lettuce Line with Resistance to Both Lettuce Big-vein Associated Virus and Mirafiori Lettuce Virus. JASHS. 2006, 131 (6), 760–763.
72. Liu Jingmei, Chen Daming, Chen Hang. Genetic Transformation and Plant Regeneration of Lettuce with Sweet Protein Gene MBLII. Acta Hort. Sin. 2001, 28 (3), 246–250.
73. Abou-Alaiwi W. A., Potlakayala S. D., Goldman S. L., Puthiyaparambil C. Josekutty, Deepkamal N. Karelia, Sairam V. Rudrabhatla. Agrobacterium-mediated transformation of the medicinal plant Centaurea montana. Plant Cell Tiss Org. Cult. 2012, 109 (1), 1–8. doi: 10.1007/s11240-011-0067-8.
http://dx.doi.org/10.1007/s11240-011-0067-8
74. Chen-Kuen Wang, Shin-Yun Hsu, Po-Yen Chen, Kin-Ying To. Transformation and characterization of transgenic Bidens pilosa L. Plant Cell Tiss. Org. Cult. 2012, 109 (3), 457–464. doi:10.1007/s11240-011-0110-9.
http://dx.doi.org/10.1007/s11240-011-0110-9
75. Mao J., Cao L. Y., Kong L. F., Maarten A. Jongsma, Cai-Yun Wang. An Agrobacterium-mediated transformation system of pyrethrum (Tanacetum cinerariifolium) based on leaf explants. Sci. Horticult. 2013, N 150, P. 130–134. doi:10.1016/j.scienta.2012.10.019.
http://dx.doi.org/10.1016/j.scienta.2012.10.019
76. Prathibha Devi , Swaroopa Rani. Agrobacterium rhizogenes induced rooting of in vitro regenerated shoots of the hybrid Helianthus annuus?Helianthus tuberosus. Sci. Horticult. 2002, 93 (2), 179–186. doi: 10.1016/S0304-4238(01)00322-3.
http://dx.doi.org/10.1016/S0304-4238(01)00322-3
77. G?rel E., Kazan K. Evaluation of various sunflower (Helianthus annuus L.) genotypes for Agrobacterium tumefaciens-mediated gene transfer. Turk. J. Bot. 1999, N 23, P. 171–177.
78. Haixue Liu, Xiaodong Xie, Shoujun Sun, Wenbi Zhu?Jing Ji, Gang Wang. Optimization of Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) immature embryos. AJCS, 2011, 5 (12), 1616–1621.
79. Sujatha M., Vijay S., Vasavi S., Reddy P. Veera, Chander Rao S. Agrobacterium-mediated transformation of cotyledons of matureseeds of multiple genotypes of sun?ower ( Helianthus annuus L.). Plant Cell Tiss. Org. Cult. 2012, 110 (2), 275–287. doi: 10.1007/s11240-012-0149-2.
http://dx.doi.org/10.1007/s11240-012-0149-2
80. Anitha V., Farzana Jabeen, Ansari N. A., Padma V. Genetic transformation studies in sunflower (Helianthus annuus L.). J. Res. ANGRAU. 2012, 40 (1), 91–93.
81. Knittel N., Gruber V., Hahne G., Lenee P. Transformation of sun?ower ( Helianthus annuus L.): a reliable protocol. Plant Cell Rep. 1994,14 (2–3), 81–86. doi: 10.1007/BF00233766.
http://dx.doi.org/10.1007/BF00233766
82. Burrus M., Molinier J., Himber C., Hunold R., Bronner R., Rousselin P., Hahne G. Agrobacterium-mediated transformation of sunflower (Helianthus annuus) shoot apices: transformation patterns. Mol. Breed. 1996, 2 (4), 329–338. doi:10.1007/BF00437911.
http://dx.doi.org/10.1007/BF00437911
83. Lucas O., Kallerhoff J., Alibert G. Production of stable transgenic sunflowers (Helianthus annuus L.) from wounded immature embryos by particle bombardment and co-cultivation with Agrobacterium tumefaciens. Mol. Breed. 2000, 6 (5), 476–487. doi:10.1023/A:1026583931327.
http://dx.doi.org/10.1023/A:1026583931327
84. M?ller A., Iser M., Hess D. Stable transformation of sunflower (H. annuus L.) using a non-meristematic regeneration protocol and green fluorescent protein as a vital marker. Trans. Res. 2001, 10 (5), 435–444. PMID:11708653.
http://dx.doi.org/10.1023/A:1012029032572
85. Hewezi T., Jardinaud F., Alibert G., Kallerhoff J. A new protocol for ef?cient regeneration of a recalcitrant genotype of sun?ower (Helianthus annuus L.) by organogenesis induction on splitembryonic axis. Plant Cell Tiss. Org. Cult. 2003, N 73, P. 81–86.
86. Weber S., Friedt W., Landes N., Molinier J., Himber C., Rousselin P., Hahne G., Horn R. Improved Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.): assessment of macerating enzymes and sonication. Plant Cell Rep. 2003, 21 (5), 475–482. PMID:12789451.
87. Mohamed S., Boehm R., Binsfeld P. C., Schnabl H. Agrobacterium-mediated transformation of two high oleic sun?ower (Helianthus annuus L.) genotypes: assessment and optimizationof important parameters. Helia. 2004, 27 (40), 25–40.
http://dx.doi.org/10.2298/HEL0440025M
88. Ikeda M., Matsumura M., Kamada H. Suitability of small and branching sun?ower varieties for molecular genetic experimentsand their transformation by Agrobacterium infection. Plant Biotechnol. 2005, 22 (2), 97–104. doi: http://dx.doi.org/10.5511/plantbiotechnology.22.97.
http://dx.doi.org/10.5511/plantbiotechnology.22.97
89. Mohamed Sh., Boehm R., Schnabl H. Stable genetic transformation of high oleic Helianthus annuus L. genotypes with high efficiency. Plant Sci. 2006, 171 (5), 546–554. doi: 10.1016/j.plantsci.2006.05.012.
http://dx.doi.org/10.1016/j.plantsci.2006.05.012
90. Neskorodov Y. B., Rakitin A. L., Kamionskaya A. M., Skryabin K. G. Developing phosphinothricin-resistant transgenic sun?ower ( Helianthus annuus L.) plants. Plant Cell Tiss. Org. Cult. 2010, 100 (1), 65–71. doi: 10.1007/s11240-009-9620-0.
http://dx.doi.org/10.1007/s11240-009-9620-0
91. Sawahel W., Hagran A. Generation of white mold disease-resistant sun?ower plants expressing human lysozyme gene. Biol. Plant. 2006, 50 (4), 683–687. doi: 10.1007/s10535-006-0106-1
http://dx.doi.org/10.1007/s10535-006-0106-1.
92. Tao Jun, Tan Rufang, Li Ling. Genetic transformation of sunflower ?Helianthus annuus L.?mediated by Agrobacterium rhizogenes. Zuo wu xue bao. 2006, 32 (5), 743–748.
93. Tishchenko O. M., Komisarenko A. G., Mykhalska S. I., Sergeeva L. E., Adamenko N. I., Morgun B. V., Kochetov A. V. Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) in vitro and in planta using Lba4404 strain harboring binary vector pBi2E with dsRNA-suppressor of proline dehydrogenase gene. Cytol. Gen. 2014, 48 (4), 218–226. doi:10.3103/S0095452714040094.
http://dx.doi.org/10.3103/S0095452714040094
94. Masahiro Nishihara, Takashi Nakatsuka. Genetic Engineering of Novel Flower Colors in Floricultural Plants: Recent Advances via Transgenic Approaches. Protocols for In Vitro Propagation of Ornamental Plants Methods in Molecular Biology. 2010, N 589, P. 325–347.
95. Mubarac M. Genetic Transformation in Stevia rebaudiana, International Conference On Biotechnology Applications In Agriculture, Benha University (ICBAA), Moshtohor and Hurghada, 8–12, April 2014, Egypt, 19–26.
96. Hsin-Mei Wang, Kin-Ying To. Agrobacterium-mediated transformation in the high-value medicinal plant Echinacea purpurea. Plant Sci. 2004, 166 (4), 1087–1096. doi: 10.1016/j.plantsci.2003.12.035.
http://dx.doi.org/10.1016/j.plantsci.2003.12.035
97. Wang B., Zhang G., Zhu L., Chen L., Zhang Y. Genetic transformation of Echinacea purpurea with Agrobacterium rhizogenes and bioactive ingredient analysis in transformed cultures. Coll. Surf B Biointerfaces. 2006, 53 (1), 101–104. PMID: 16982176.
http://dx.doi.org/10.1016/j.colsurfb.2006.08.003