ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 17, No. 3, 2024
P. 16-28, Bibliography 100 Engl.
UDC: 577.13: 615.26:615.322
doi: https://doi.org/10.15407/biotech17.03.016
Full text: (PDF, in English)
PLANT RAW MATERIAL AS A SOURCE OF METABOLITES FOR WOUND HEALING AND ANTI-SCARRING PRODUCT
Department of Technology of Biologically Active Compounds, Pharmacy and Biotechnology
Lviv Polytechnic National University, Ukraine
Cosmeceutical products based on plant raw materials have a complex effect, are available, and are low-toxic. Creating of new natural products for wound healing without tissue scarring is topical. For this, the secondary metabolites of the plant must demonstrate antibacterial, anti-inflammatory, and antioxidant effects and have low cytotoxicity.
Aim. To conduct an analysis of literary sources in electronic databases, regarding products on the market with a wound healing effect and plant raw materials that would have a therapeutic effect on wound healing without the formation of scars.
Results. The characteristics of four types of scars are described. Plants and secondary metabolites are listed according to their action: antibacterial, antioxidant, anti-inflammatory, collagenstimulating, and anti-scarring. Lupeol, allicin, and cinnamaldehyde show antibacterial effect; quercetin, resveratrol, luteolin, naringenin, gallic acid, and curcumin show antioxidant effect; asiatic acid, pinocembrin, and myricetin show anti-inflammatory effect. Cryptotanshinone, bexarotene, taspine, sesamol, and astragaloside IV contribute to the deposition of fresh collagen in the wound. On the Ukrainian market, there are natural wound healing products in the form of a balm, cream, and gel. They include vegetable oils, essential oils, extracts of Thymus L., Arnica montana, Inula helenium, Aloe vera, Matricaria chamomilla, etc. Wound healing medicinal products of a chemical nature occupy a large part of the Ukrainian market, among them the products with dexapentanol predominate. The use of the cell culture method as an alternative source of plant raw materials for wound and scar treatment is perspective. The biotechnological method helps preserve biodiversity and obtain chemically pure plant raw materials regardless of environmental conditions.
Conclusions. The study demonstrates the possibilities of using plant raw materials to create new cosmeceuticals with wound healing and anti-scaring effects for use in combined therapy.
Key words: cosmeceuticals, plant biomass, secondary metabolites, wound healing effect, antiscaring effect.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2024
References
1. Chernykh V.P. Pharmaceutical encyclopedia. MORION. 2010. (In Ukraine).
2. Lyakh, V. R., Konechna, R. T. Applied aspects of the use of medicinal plants of the Ranunculaceae family in ethnomedicine and pharmacy. Challenges and achievements of medical science and education. 2020: 203–217. https://doi.org/10.30525/978-9934-26-024-7-10 (In Ukraine).
3. Pilehvar-Soltanahmadi Y., Dadashpour M., Mohajeri A., Fattahi A., Sheervalilou R., Zarghami N. An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings. Mini reviews in medicinal chemistry. 2017, (18) : 414–427. . https://doi.org/10.2174/1389557517666170308112147
4. Nagaichuk, V.V., Shkilniak, L.I. Features of diagnosis, treatment and prevention of pathological scars of the maxillofacial area. Ukrayinskyi stomatolohichnyi almanakh. 2017, 2 : 74-78. (In Ukraine).
5. Frangogiannis N. Transforming growth factor-β in tissue fibrosis. The Journal of experimental medicine. 2020, 217(3). . https://doi.org/10.1084/jem.20190103
6. Muangman P., Aramwit P., Palapinyo S., Opasanon S., Chuangsuwanich A. Efficacy of the combination of herbal extracts and a silicone derivative in the treatment of hypertrophic scar formation after burn injury. African Journal of Pharmacy and Pharmacology. 2011, 5(3) : 442–446. . https://doi.org/10.5897/AJPP10.282
7. Kharkov, L.V., Mochalov, Y.O., Klymenko, P.P., Kiselyova, N.V. Pathomorphological features of postoperative atrophic scars of the middle zone of the face in children. Novyny stomatolohii. 2011, (3) : 70-6. (In Ukraine).
8. Ye Q, Wang S. J, Chen J. Y., Rahman K, Xin H. L , Zhang H. Medicinal plants for the treatment of hypertrophic scars. Evid Based Complement Alternat Med. 2015. https://doi.org/10.1155/2015/101340
9. Song J., Dai Y., Bian D., Zhang H., Xu H., Xia Y, Gong Z. Madecassoside induces apoptosis of keloid fibroblasts via a mitochondrial-dependent pathway. Drug Development Research. 2011,72(4) : 315–322. . https://doi.org/10.1002/ddr.20432
10. Foley T. T., Ehrlich H. P. Through gap junction communications, co-cultured mast cells and fibroblasts generate fibroblast activities allied with hypertrophic scarring. Plastic and Reconstructive Surgery. 2013,131(5) : 1036–1044. . https://doi.org/10.1097/prs.0b013e3182865c3f.
11. Hu X., Wang H., Liu J., Fang X., Tao R., Wang Y., Li N., Shi J., Wang Y., Ji P., Cai W., Bai X., Zhu X., Han J., Hu D. The role of ERK and JNK signaling in connective tissue growth factor induced extracellular matrix protein production and scar formation. Archives of Dermatological Research. 2013,305(5) : 433–445. . https://doi.org/10.1007/s00403-013-1334-9
12. Thitita Unahabhokha, Apirada Sucontphunt, Ubonthip Nimmannit, Pithi Chanvorachote, Nuttida Yongsanguanchai, Varisa Pongrakhananon. Molecular signalings in keloid disease and current therapeutic approaches from natural based compounds. Pharmaceutical Biology. 2015,53(3) : 457‒463. . https://doi.org/10.3109/13880209.2014.918157
13. Shedoeva A, Leavesley D, Upton Z, Fan C. Wound Healing and the Use of Medicinal Plants. Evidence-based complementary and alternative medicine. 2019. https://doi.org/10.1155/2019/2684108
14. Beserra F.P., Gushiken L.F.S., Vieira A.J., Bérgamo D.A., Bérgamo P.L., Souza V.O. , Hussni C.A., Takahira R.K., Nóbrega R.H., Martinez E.R.M., Jackson C.J., Maia G.L.A, Rozza A.L., Pellizzon C.H.. From inflammation to cutaneous repair: topical application of lupeol improves skin wound healing in rats by modulating the cytokine levels, NF-KB, Ki-67, growth factor expression, and distribution of collagen fibers. International journal of molecular sciences. 2020, (21) : 4952. . https://doi.org/10.3390/ijms21144952
15. Thangapazham R.L., Sharad S., Maheshwari R.K. Phytochemicals in wound healing. Adv Wound Care (New Rochelle). 2016, (5) : 230–241. . https://doi.org/10.1089/wound.2013.0505
16. Mandawgade S.D., Patil K.S. Wound healing potential of some active principles of Lawsonia аlba Lam. leaves. Indian J. Pharm. Sci. 2003, (65) : 390–394.
17. Fujisawa H., Watanabe K., Suma K., Origuchi K., Matsufuji H., SEKI T., Ariga T. Antibacterial potential of garlic-derived allicin and its cancellation by sulfhydryl compounds. Biosci. Biotechnol. Biochem. 2009, (73) : 1948–1955. . https://doi.org/10.1271/bbb.90096
18. Alhashim M., Lombardo J. Mechanism of action of topical garlic on wound healing. Dermatologic Surg. 2018, (44) : 630–634. . https://doi.org/10.1097/DSS.0000000000001382
19. Khameneh B., Iranshahy M., Soheili V., Fazly Bazzaz B.S. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob. Resist. Infect. Control. 2019, (8) : 118. https://doi.org/10.1186/s13756-019-0559-6
20. Su X., Liu X., Wang S., Li B., Pan T., Liu D., Wang F., Diao Y., Li K. Wound-healing promoting effect of total tannins from Entada phaseoloides (L.) Merr. in rats. Burns. 2017, (43) : 830–838. . https://doi.org/10.1016/j.burns.2016.10.010
21. Cushnie T.P., Lamb A.J. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005, (26) : 343–356. . https://doi.org/10.1016/j.ijantimicag.2005.09.002
22. Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. 2015,(22) : 132–149. https://doi.org/10.2174/0929867321666140916113443
23. Jin Y.S. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg Med Chem Lett. 2019, (29). . https://doi.org/10.1016/j.bmcl.2019.07.048
24. Edwards J., Howley P., Cohen IK. In vitro inhibition of human neutrophil elastase by oleic acid albumin formulations from derivatized cotton wound dressings. Int. J. Pharm. 2004, (284) : 1–12. . https://doi.org/10.1016/j.ijpharm.2004.06.003
25. Tam J. C.-W., Ko C.-H., Lau K.-M., To M.H. , Kwok X.F., Chan Y.W., Siu W.S., Selloum N.Y., Lau C.P., Chan W.E., Leung P.C., Fung R.P., Kerth V.B.S., Lau C.B.S . A Chinese 2-herb formula (NF3) promotes hindlimb ischemia-induced neovascularization and wound healing of diabetic rats. Journal of Diabetes and its Complications. 2014, 28(4) : 436–447. . https://doi.org/10.1016/j.jdiacomp.2014.03.004.
26. Adedapo A. A., Adeoye B. O., Sofidiya M. O., Oyagbemi A. A. Antioxidant, antinociceptive and anti-inflammatory properties of the aqueous and ethanolic leaf extracts of Andrographis paniculata in some laboratory animals. Journal of Basic and Clinical Physiology and Pharmacology. 2015, 26(4) : 327–334. . https://doi.org/10.1515/jbcpp-2014-0051.
27. Lei T., Li H., Fang Z., Lin J., Wang S., Xiao L., Yang F., Liu X., Zhang J., HuangZ., Liao W., M.D., Ph.D.. Polysaccharides from Angelica sinensis alleviate neuronal cell injury caused by oxidative stress. Neural Regeneration Research. 2014, 9(3) : 260–267. . https://doi.org/10.4103/1673-5374.128218.
28. Espinosa C., López-Jiménez J. A., Pérez-Llamas F., Guardiola F.A., Esteban M.A., Arnao M.B., Zamora S. . Long-term intake of white tea prevents oxidative damage caused by adriamycin in kidney of rats. Journal of the Science of Food and Agriculture. 2016, 96(9) : 3079–3087. . https://doi.org/10.1002/jsfa.7483.
29. Yao D., Wang Z., Miao L., Wang L. Effects of extracts and isolated compounds from safflower on some index of promoting blood circulation and regulating menstruation. Journal of Ethnopharmacology. 2016, (191) : 264–272. . https://doi.org/10.1016/j.jep.2016.06.009.
30. Roh J. S., Han J. Y., Kim J. H., Hwang J. K. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biological & Pharmaceutical Bulletin. 2004, 27(12) : 1976–1978. . https://doi.org/10.1248/bpb.27.1976.
31. Malomo S. O., Ore A., Yakubu M. T. In vitro and in vivo antioxidant activities of the aqueous extract of Celosia argentea leaves. Indian Journal of Pharmacology. 2011, 43(3) : 278–285. . https://doi.org/10.4103/0253-7613.81519
32. Fatani A. J., Alrojayee F. S., Parmar M. Y., Abuohashish H. M., Ahmed M. M., Al-Rejaie S. S. Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis. Experimental and Therapeutic Medicine. 2016, 12(2) : 730–738. . https://doi.org/10.3892/etm.2016.3398
33. Rho S., Chung H.-S., Kang M., Lee E., Cho C., Kim, H., Park S., KimH.Y., Hong M., Shin M., Bae H. Inhibition of production of reactive oxygen species and gene expression profile by treatment of ethanol extract of Moutan Cortex Radicis in oxidative stressed PC12 cells. Biological & Pharmaceutical Bulletin. 2005, 28(4) : 661–666. . https://doi.org/10.1248/bpb.28.661
34. Zhou N., Tang Y., Keep R. F., Ma X., Xiang J. Antioxidative effects of Panax notoginseng saponins in brain cells. Phytomedicine. 2014, 21(10) : 1189–1195. . https://doi.org/10.1016/j.phymed.2014.05.004
35. Clementi E. M., Misiti F. Potential Health Benefits of Rhubarb. Ch. 27. In: Ronald Ross, W. and Victor, R.P., Eds., Bioactive Foods in Promoting Health. Academic Press. 2010 : 407–423. https://doi.org/10.1016/B978-0-12-374628-3.00027-X
36. Gupta V., Lahiri S. S., Sultana S., Tulsawani R. K., Kumar R. Anti-oxidative effect of Rhodiola imbricata root extract in rats during cold, hypoxia and restraint (C-H-R) exposure and post-stress recovery. Food and Chemical Toxicology. 2010, 48(4) : 1019–1025. . https://doi.org/10.1016/j.fct.2010.01.012
37. Tang Y., Wang M., Le X., Meng J., Huang L., Yu P., Chen I., Wu P. Antioxidant and cardioprotective effects of Danshensu (3-(3, 4-dihydroxyphenyl)-2-hydroxy-propanoic acid from Salvia miltiorrhiza) on isoproterenol-induced myocardial hypertrophy in rats. Phytomedicine. 2011, 18(12) : 1024–1030. . https://doi.org/ 10.1016/j.phymed.2011.05.007
38. Xu X., Li X., Zhang L., iu Z., Pan Y., Chen D., Bin D., Deng Q., Sun Y.U., Hoffman R.M., Yang Z., Yuan Z. Enhancement of wound healing by he traditional Chinese medicine herbal mixture Sophora flavescens in a rat model of perianal ulceration. In Vivo. 2017, 31(4) : 543–549. . https://doi.org/10.21873/invivo.11092
39. Govindappa M. Antimicrobial, antioxidant and in vivo anti-inflammatory activity of ethanol extract and active phytochemical screening of Wedelia trilobata (L.) Hitchc. Journal of Medicinal Plants Research. 2011, 5(24) : 5718–5729
40. Zhang Y., Wang D., Yang L., Zhou D., Zhang J. Purification and characterization of flavonoids from the leaves of Zanthoxylum bungeanum and correlation between their structure and antioxidant activity. PLoS One. 2014, 9(8). . https://doi.org/10.1371/journal.pone.0105725.e105725
41. Panche A.N, Diwan A.D, Chandra S.R. Flavonoids: an overview. J Nutr Sci. 2016, (5) : 47. . https://doi.org/10.1017/jns.2016.41
42. Sklenarova R., Svrckova M., Hodek P., Ulrichova J., Frankova J. Effect of the natural flavonoids myricetin and dihydromyricetin on the wound healing process in vitro. J. Appl. Biomed. 2021, (19) : 149–158. . https://doi.org/10.32725/jab.2021.017
43. Di R., Murray A.F., Xiong J., Esposito D., Komarnytsky S., Gianfagna T.J., Munafo J.P. Lily steroidal glycoalkaloid promotes early inflammatory resolution in wounded human fibroblasts. J. Ethnopharmacol. 2020, (258). . https://doi.org/10.1016/j.jep.2020.112766
44. El-Shitany N.A., Eid B.G. Icariin modulates carrageenan-induced acute inflammation through HO-1/Nrf2 and NF-kB signaling pathways. Biomed Pharmacother. 2019, (120). . https://doi.org/10.1016/j.biopha.2019
45. Hosseinzade A., Sadeghi O., Biregani A.N., Soukhtehzari S., Brandt G.S., Esmaillzadeh A. Immunomodulatory effects of flavonoids: possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Front Immunol. 2019, (10) : 51. . https://doi.org/10.3389/fimmu.2019.00051
46. Ginwala R., Bhavsar R., Chigbu D.I., Jain P., Khan Z.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants (Basel). 2019, (8) : 35. . https://doi.org/10.3390/antiox8020035
47. Zhang Q., Fong C. C., Yu W. K., Chen Y., Wei F., Koon C.M., Lau K.M., Leung P.C., Lau C.B.S., Fung K.P., Yang M. Herbal formula Astragali Radix and Rehmanniae Radix exerted wound healing effect on human skin fibroblast cell line Hs27 via the activation of transformation growth factor (TGF-β) pathway and promoting extracellular matrix (ECM) deposition. Phytomedicine. 2012, 20(1) : 9–16. . https://doi.org/10.1016/j.phymed.2012.09.006.
48. Lee K., Lee B., Lee M.-H., Kim B., Chinannai K.C., Ham I., ChoI H.H. Effect of Ampelopsis Radix on wound healing in scalded rats. BMC complementary and alternative medicine. 2015, 15(1) : 213. . https://doi.org/10.1186/s12906-015-0751-z
49. Pomari E., Stefanon B., Colitti M. Effect of Arctium lappa (burdock) extract on canine dermal fibroblasts. Veterinary Immunology and Immunopathology. 2013, 156(3-4) : 159–166. . https://doi.org/10.1016/j.vetimm.2013.10.008
50. Hsiao C. Y., Hung C.-Y., Tsai T.-H., Chak K.-F. A study of the wound healing mechanism of a traditional Chinese medicine, Angelica sinensis, using a proteomic approach. Evidence-Based Complementary and Alternative Medicine. 2012, (14). . https://doi.org/10.1155/2012/467531.467531
51. Pang Y., Wang D., Hu X., Wang H., Fu W., Fan Z., ChenX, Yu F. Effect of volatile oil from Blumea balsamifera (L.) DC. leaves on wound healing in mice. Journal of Traditional Chinese Medicine. 2014, 34(6) : 716–724. . https://doi.org/10.1016/s0254-6272(15)30087-x
52. Tewtrakul S., Tungcharoen P., Sudsai T., Karalai C., Ponglimanont C., Yodsaoue O. Antiinflammatory and wound healing effects of Caesalpinia sappan L. Phytotherapy Research. 2015, 29(6) : 850–856. . https://doi.org/10.1002/ptr.5321
53. Dinda M., Mazumdar S., Das S., Ganguly D., Dasgupta U.B., Dutta A., Jana K., Karmakar P.. The water fraction of Calendula officinalis hydroethanol extract stimulates in vitroand in vivo proliferation of dermal fibroblasts in wound healing. Phytotherapy Research. 2016, 30(10) : 1696–1707. . https://doi.org/10.1002/ptr.5678
54. Gao S.-Q., Chang C., Niu X.-Q., Li L.-J., Zhang Y., Gao J.-Q. Topical application of Hydroxysafflor yellow A accelerates the wound healing in streptozotocin induced T1DM rats. European Journal of Pharmacology. 2018, (823) : 72–78. . https://doi.org/10.1016/j.ejphar.2018.01.018
55. Priya K. S., Arumugam G., Rathinam B., Wells A., Babu M. Celosia argentea Linn. leaf extract improves wound healing in a rat burn wound model. Wound Repair and Regeneration. 2004, 12(6) : 618–625. . https://doi.org/10.1111/j.1067-1927.2004.12603.x
56. Shukla A., Rasik A. M., Jain G. K., Shankar R., Kulshrestha D. K., Dhawan B. N. In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. Journal of Ethnopharmacology. 1999, 65(1) : 1–11. . https://doi.org/10.1016/s0378-8741(98)00141-x.
57. Maquart F. X., Chastang F., Simeon A., Birembaut P., Gillery P., Wegrowski Y. Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds. European Journal of Dermatology. 1999, 9(4) : 289–296.
58. Liu M., Dai Y., Li Y., et al. Madecassoside isolated from Centella asiatica herbs facilitates burn wound healing in mice. Planta Medica. 2008,74(08):809–815. . https://doi.org/10.1055/s-2008-1074533
59. Yuan X., Han L., Fu P., Zeng X., Lv C., Chang W., Runyon R.S., Ishii M., Han L., Liu K., Fan T., Zhang W., Liu R. Cinnamaldehyde accelerates wound healing by promoting angiogenesis via up-regulation of PI3K and MAPK signaling pathways. Laboratory Investigation. 2018, 98(6) : 783–798. . https://doi.org/10.1038/s41374-018-0025-8
60. Yang D., Xu J. H., Shi R. J. Root extractive from Daphne genkwa benefits in wound healing of anal fistula through up-regulation of collagen genes in human skin fibroblasts. Bioscience Reports. 2017, 37(2). . https://doi.org/10.1042/bsr20170182.BSR20170182
61. Shivananda Nayak B., Sivachandra Raju S., Orette F. A., Chalapathi Rao A. V. Effects of Hibiscus rosa sinensis L (Malvaceae) on wound healing activity: a preclinical study in a sprague dawley rat. The International Journal of Lower Extremity Wounds. 2007, 6(2) : 76–81. . https://doi.org/10.1177/1534734607302840.
62. Cheng P. G., Phan C.-W., Sabaratnam V., Abdullah N., Abdulla M. A., Kuppusamy U. R. Polysaccharides-rich extract of Ganoderma lucidum (M.A. Curtis:Fr.) P. Karst accelerates wound healing in streptozotocin-induced diabetic rats. Evidence-Based Complementary and Alternative Medicine. 2013, (9). . https://doi.org/10.1155/2013/671252.671252
63. Choi S. Epidermis proliferative effect of the Panax ginseng Ginsenoside Rb2. Archives of Pharmacal Research. 2002, 25(1) : 71–76. . https://doi.org/10.1007/bf02975265
64. Shen K., Ji L., Gong C Ma Y., Yang L., Fan Y., Hou M., Wang Z. Notoginsenoside Ft1 promotes angiogenesis via HIF-1α mediated VEGF secretion and the regulation of PI3K/AKT and Raf/MEK/ERK signaling pathways. Biochemical Pharmacology. 2012, 84(6) : 784–792. . https://doi.org/10.1016/j.bcp.2012.05.024
65. Hong S.-J., Wan J.-B., Zhang Y., Hu G., Lin H.C., Seto S.W., Kwan Y.W, Lin Z.X., Wang Y.T., Lee S.M.Y. Angiogenic effect of saponin extract from Panax notoginseng on HUVECs in vitro and zebrafish in vivo. Phytotherapy Research. 2009, 23(5) : 677–686. . https://doi.org/10.1002/ptr.2705
66. Wu X.-B., Luo X.-Q., Gu S.-Y., Xu J.-H. The effects of Polygonum cuspidatum extract on wound healing in rats. Journal of Ethnopharmacology. 2012, 141(3) : 934–937. . https://doi.org/10.1016/j.jep.2012.03.040
67. Zeng Z., Zhu B.-H. Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats. Journal of Ethnopharmacology. 2014, 154(3) : 653–662. . https://doi.org/10.1016/j.jep.2014.04.038
68. Gupta A., Kumar R., Upadhyay N., Pal K., Kumar R., Sawhney R. Effects of Rhodiola imbricata on dermal wound healing. Planta Medica. 2007, 73(8) : 774–777. . https://doi.org/10.1055/s-2007-981546
69. Chen Y.-S., Lee S.-M., Lin Y.-J., Chiang S.-H., Lin C.-C. Effects of danshensu and salvianolic acid B from Salvia miltiorrhiza bunge (Lamiaceae) on cell proliferation and collagen and melanin production. Molecules. 2014, 19(2) : 2029–2041. . https://doi.org/10.3390/molecules19022029
70. Zhang H., Chen J., Cen Y. Burn wound healing potential of a polysaccharide from Sanguisorba officinalis L. in mice. International Journal of Biological Macromolecules. 2018, (112) : 862–867. . https://doi.org/10.1016/j.ijbiomac.2018.01.214
71. Kil Y.-S., Park J., Han A.-R., Woo H., Seo E.-K. A new 9,10-dihydrophenanthrene and cell proliferative 3,4-δ-dehydrotocopherols from Stemona tuberosa. Molecules. 2015, 20(4) : 5965–5974. . https://doi.org/10.3390/molecules20045965
72. Šmejkal, K. Cytotoxic potential of C-prenylated flavonoids. Phytochem. Rev. 2014, (13) : 245–275. . https://doi.org/10.1007/s11101-013-9308-2
73. Yang X., Jiang Y., Yang J., He J., Sun J., Chen F., Zhang M., Yang B. Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends Food Sci. Technol. 2015, (44) : 93–104. . https://doi.org/10.1016/j.tifs.2015.03.007
74. Chen Y., Zhao J., Qiu Y., Yuan H., Khan S.I., Hussain N., Iqbal Choudhary M., Zeng F., Guo D.A., Khan I.A., et al. Prenylated flavonoids from the stems and roots of Tripterygium wilfordii. Fitoterapia. 2017, (119) : 64–68. . https://doi.org/10.1016/j.fitote.2017.04.003
75. Al-Rehaily A.J., Albishi O.A., El-Olemy M.M., Mossa J.S. Flavonoids and terpenoids from Helichrysum forskahlii. Phytochemistry. 2008, (69) : 1910–1914. . https://doi.org/10.1016/j.phytochem.2008.03.025
76. Sun Q., Wang D., Li F.F., Yao G.D., Li X., Li L.Z., Huang X.X., Song S.J. Cytotoxic prenylated flavones from the stem and root bark of Daphne giraldii. Bioorganic Med. Chem. Lett. 2016, (26) : 3968–3972. . https://doi.org/10.1016/j.bmcl.2016.07.002
77. Sychrová A., Škovranová G., Čulenová M., Bittner Fialová S. Prenylated flavonoids in topical infections and wound healing. Molecules. 2022, (27) : 4491. https://doi.org/10.3390/molecules27144491
78. Zhao W.Y., Zhang LY., Wang Z.C., Fang Q.Q., Wang Q.F., Du Y.Z., Shi B.H., Lou D., Xuan G.D., Tan W.Q. The compound losartan cream inhibits scar formation via TGF-β/Smad pathway. Sci Rep. 2022, (12). . https://doi.org/10.1038/s41598-022-17686-y
79. Järvinen TA, Ruoslahti E. Target-seeking antifibrotic compound enhances wound healing and suppresses scar formation in mice. Proc Natl Acad Sci U S A. 2010, 107(50) : 21671-21676. https://doi.org/10.1073/pnas.1016233107
80. Klass B. R., Branford O. A., Grobbelaar A. O., Rolfe K. J. The effect of epigallocatechin-3-gallate, a constituent of green tea, on transforming growth factor-β1-stimulated wound contraction. Wound Repair and Regeneration. 201, 18(1) : 80–88. . https://doi.org/10.1111/j.1524-475x.2009.00552.x
81. Pan Y., Chen Z., Qi F., Liu J. Identification of drug compounds for keloids and hypertrophic scars: drug discovery based on text mining and DeepPurpose. Ann Transl Med. 2021, 9(4) : 347. . https://doi.org/10.21037/atm-21-218.
82. Yang J., Ni B., Liu J., Zhu L., Zhou W. Application of liposome-encapsulated hydroxycamptothecin in the prevention of epidural scar formation in New Zealand white rabbits. Spine Journal. 2011, 11(3) : 218–223. . https://doi.org/10.1016/j.spinee.2011.01.028
83. Zhu L., Ni B., Liu J., Yang J., Guo Q., Zhou W. Hydroxycamptothecin liposomes inhibit collagen secretion and induce fibroblast apoptosis in a postlaminectomy rabbit model. European Journal of Orthopaedic Surgery & Traumatology. 2013, 23(1) : 85–91. . https://doi.org/10.1007/s00590-012-0971-6
84. Cao F.-H., OuYang W.-Q., Wang Y.-P., Yue P.-F., Li S.-P. A combination of a microemulsion and a phospholipid complex for topical delivery of oxymatrine. Archives of Pharmacal Research. 2011, 34(4) : 551–562. . https://doi.org/10.1007/s12272-011-0405-8
85. Chen X., Peng L.-H., Shan Y.-H., Li N,, Wei W., Yu L., Li Q.M., Liang W.Q., Gao L.O. Astragaloside IV-loaded nanoparticle-enriched hydrogel induces wound healing and anti-scar activity through topical delivery. International Journal of Pharmaceutics. 2013, 447(1-2) : 171–181. . https://doi.org/10.1016/j.ijpharm.2013.02.054
86. Cui W., Cheng L., Hu C., Li H., Zhang Y., Chang J. Electrospun poly(L-Lactide) fiber with ginsenoside Rg3 for inhibiting scar hyperplasia of skin. PLoS ONE. 2013, 8(7). . https://doi.org/10.1371/journal.pone.0068771.e68771
87. Paocharoen V. The efficacy and side effects of oral Centella asiatica extract for wound healing promotion in diabetic wound patients. Journal of the Medical Association of Thailand. 2010, 93(7) : 166–170.
88. Yan L., Xian F. Y., Lin Q. Effect of carthamus tinctorius on fibroblasts and collagen I, III in hypertrophic scar of rabbit's ears. Journal of Clinical Rehabilitative Tissue Engineering Research. 2009, 13(37) : 7296–7300. . https://doi.org/10.3969/j.issn.1673-8225.2009.37.019
89. Selyuk M.M., Kozachok M.M., Selyuk O.V. Treatment and prevention of skin scars: the current state of the problem. Medychna hazeta “Zdorovya Ukrayiny 21 storichchya”. 2020, 20(489) : 27. (In Ukraine).
90. Sun G., Shen Y.I., Harmon J.W. Engineering pro-regenerative hydrogels for scarless wound healing. Advanced healthcare materials. 2018, (7). . https://doi.org/10.1002/adhm.201800016
91. Tottoli E.M., Dorati R., Genta I., Chiesa E., Pisani S., Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020, (12) : 735.. https://doi.org/10.3390/pharmaceutics12080735
92. Kovalenko V. M. Compendium 2019 — medicinal products. MORION. 2019, 2480. (In Ukraine).
93. Stadnytska, N. E., Parashchyn, Zh. D., Chernenko, Yu. V. Creation of a new herbal remedy using buckthorn oil. Visnyk Natsionalʹnoho universytetu «Lʹvivsʹka politekhnika». 2009, (644) : 96-100. (In Ukraine).
94. Grodzinskyi M. Medicinal plants: Encyclopedic guide. Ukrayinsʹkyy vyrobnycho-komertsiynyy tsentr “Olimp”. 1992 : 544. (In Ukraine).
95. Lyoshina, L.G., Bulko, O.V., Galkin, A.P. Preparation and characterization of callus and suspension culture of Vinca minor L. Faktory eksperymentalʹnoyi evolyutsiyi orhanizmiv. 2009, (7) : 124-128. (In Ukraine).
96. Petrina R., Fedorova O., Havryliak V. Modeling of biotechnological processes during the cultivation of medicinal plants in vitro. Lecture Notes in Networks and Systems. 21st Polish control conference, PCC 2023, LNNS, Gliwice, 26-29 June 2023. 2023, (709) : 148–154. . https://doi.org/10.1007/978-3-031-35173-0_15
97. Fedoryshyn O., Petrina R., Krvavych A., Kniazieva K., Hubrii Z., Atamanyuk V. Research on aspects of the extraction kinetics of metabolites of Carlina acaulis while mixing. Pytannya khimiyi ta khimichnoyi tekhnolohiyi. 2023, 1(146) : 3–10. . https://doi.org/10.32434/0321-4095-2023-146-1-3-10
98. Hutsko K., Petrina R. Plant raw materials with wound-healing and anti-scar effect in pharmacocosmeceuticals. Chemical and biopharmaceutical technologies: collection of scientific papers. 2023 : 116–118. (In Ukraine).
99. Кunakh. V. A. Plant biotechnology for human life improvement. Biotechnologia Acta. 2008, 1(1 : 28-39. (In Ukraine).
100. Petrina R. O., Konechna R. T., Pobigushka O. R., Matviykiv S. O. Introduction to in vitro culture of Carlina acaulis. Visnyk Natsionalʹnoho universytetu Lʹvivsʹka politekhnika. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya. 2013, (761) : 169–172. (In Ukraine).