ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 17, No. 3, 2024
P. 29-46, Bibliography 107, Engl.
UDC: 581.08:573.6
doi: https://doi.org/10.15407/biotech17.03.029
Full text: (PDF, in English)
1 Taras Shevchenko National University of Kyiv, Ukraine
2 National University of Kyiv-Mohyla Academy, Ukraine
3 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv
4 L.I. Medved’s Research Centre of Preventive Toxicology, Food and Chemical Safety, Kiev, Ukraine
The aim of the work was to review modern extraction, detection, and quantification analytical methods of inositols and their derivatives.
Methods. Inositols are extracted from vegetable raw materials using liquid extraction, under pressure, microwave extraction and supercritical fluid extraction. Quantitatively analyzed using gas and liquid chromatography methods with preliminary derivatization. The structure of inositols can be determined by the NMR spectroscopy.
Results. Inositols and their derivatives are biologically active compounds, wich are involved in the egulation of the intracellular calcium level, the transmission of hormonal signals, the breakdown of fats and the reduction of cholesterol in the blood, the modulation of the neurotransmitters activity, etc. Inositols are used in the production of vitamin preparations. The main source for inositols extraction is vegetable raw material, namely alfalfa, as well as wheat sprouts, grapefruit, hazelnuts and others. In the paper, the methods of inositols extraction with organic and inorganic solvents, including the use of a Soxhlet apparatus, liquid extraction under pressure, microwave extraction and supercritical fluid extraction are considered. The procedure of preliminary sample preparation and polyols derivatization for their further separation and quantitative determination is described. Modern chromatographic methods of polyols identification and quantitative determination are analyzed. The possibility of using 1H, 13C and 31P NMR spectroscopy to identify the structure of inositols and their derivatives is described.
Conclusions. Inositols are biologically active compounds of a wide spectrum of action, therefore there is an urgent need to develop biotechnological processes for their production and extraction from plant raw materials and microorganisms.
Key words: polyols, inositols, extraction, chromatography, NMR spectroscopy, biotechnological synthesis.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2024
References
Rax
1. T.P.Pirog. Technologies of synthesis of organic substances by microorganisms using waste biodiesel production. Biotechnologia Acta . 2015, 8(3) : 9–27. https://doi.org/10.15407/biotech8.03.009
2. Liu C.; Luo J.; Xue R.-Y.; Guo L.; Nie L.; Li S.; Ji L.; Ma C.-J.; Chen D.-Q.; Miao K.; Zou Q.-M.; Li H.-B. The mucosal adjuvant effect of plant polysaccharides for induction of protective immunity against helicobacter pylori infection. Vaccine. 2019, 37 : 1053–1061 https://doi.org/10.1128/iai.00313-23
3. Khan H.; Perviz S.; Sureda A.; Nabavi S. M.; Tejada S. Current standing of plant derived flavonoids as an antidepressant. Food Chem. 2018, 119 : 176–188. https://doi.org/10.1016/j.fct.2018.04.052
4. Khazir J.; Mir B. A.; Pilcher L.; Rile, D. L. Role of plants in Anticancer Drug Discovery. Phytochem. Lett. 2014, 7 : 173–181.
https://doi.org/10.1016/j.phytol.2013.11.010
5. Schlemmer U.; Frølich W.; Prieto R. M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009 : 53. https://doi.org/10.1002/mnfr.200900099
6. Lipman A. G. Martindale: «Martindale — the extra pharmacopoeia» (30th ed), edited by J. E. F. Reynolds. IJPP. 1993, 2 : 124–124. https://doi.org/10.1111/J.2042-7174.1993.TB00740.X
7. Mayr G. W. A novel metal-dye detection system permits picomolar-range H.P.L.C. Analysis of inositol polyphosphates from non-radioactively labelled cell or tissue specimens. Biochem. J. 1988, 254 : 585–591. https://doi.org/10.1042/bj2540585
8. Mäkelä N.; Sontag-Strohm T.; Olin M.; Piironen, V. Quantitative analysis of inositol phosphate contents in oat products using an anion exchange chromatographic method. J. Cereal Sci. 2020, 96 : 103121. https://doi.org/10.1016/j.jcs.2020.103121
9. Abreu P.; Relva A. Carbohydrates from detarium microcarpum bark extract. Carbohydr. Res. 2002, 337 : 1663–1666. https://doi.org/10.1016/s0008-6215(02)00025-3
10. Shamsuddin A.K.M., Yang Guang-Yu, Inositol & its Phosphates: Basic Science to Practical Applications. Bentham Science. 2015.
https://doi.org/10.2174/97816810800791150101
11. Nikolskiy B. P. Spravochnik Khimika. red. Koll.: B.P. Nikolskiy i dr.; Publisher: Khimiia Leningrad, 1971.
12. Brady S.; Siegel G.; Albers R.W.; Price D.; Basic Neurochemistry, 8th ed., AP, 2011.
13. Gerasimenko J. V.; Flowerdew O. V. Bile acids induce Сa2+ release from both the endoplasmic reticulum and acidic intracellular calcium stores through activation of inositol trisphosphate receptors and ryanodine receptors. J Biol Chem. 2006, 281 : 40154–40163. https://doi.org/10.1074/jbc.M606402200
14. D-chiro-inositol - its functional role in insulin action and its deficit in insulin resistance. Available online: http://www.ncbi.nlm.nih.gov/pubmed/11900279 (accessed Nov 20, 2023)
15. Conway S.J.; Miller G.J.. Biology-enabling inositol phosphates, phosphatidylinositol phosphates and derivatives. Nat. Prod. Rep. 2007, 24 : 687.
https://doi.org/10.1039/B407701F
16. Lewin L.M.; Melmed S.; Passwell J H.; Yannai Y.; Brish M.; Orda S.; Boichis H.; Bank H. Myoinositol in human neonates: Serum concentrations and renal handling. Pediatr. Res. 1978, 12 : 3–6. https://doi.org/10.1203/00006450-197801000-00002
17. Raks V.; Al-Suod H.; Buszewski B. Isolation, separation, and preconcentration of biologically active compounds from plant matrices by extraction techniques. Chromatographia. 2017, 81 : 189–202. https://doi.org/10.1007/s10337-017-3405-0
18. Stochmal A.; Simonet A. M.; Macias F. A.; Oleszek W. Alfalfa (Medicago sativa) flavonoids. 2. Tricin and chrysoeriol glycosides from aerial parts. J. Agric. Food Chem. 2001, 49 : 5310–5314. https://doi.org/10.1021/jf010600x
19. Kohler P. R.; Zheng J. Y.; Schoffers E.; Rossbach S. Inositol catabolism, a key pathway in sinorhizobium meliloti for competitive host nodulation. AEM. 2010, 76 : 7972–7980. https://doi.org/10.1128/AEM.01972-10
20. Mendiola J. A.; Herrero M.; Cifuentes A.; Ibañez E. Use of compressed fluids for sample preparation: Food applications. J. Chromatogr. A. 2007, 1152 : 234–246. https://doi.org/10.1016/j.chroma.2007.02.046
21. Schroeder R.; Breitenbach M. Metabolism of myo-inositol during sporulation of myo-inositol-requiring saccharomyces cerevisiae. JB. 1981, 146 : 775–783. https://doi.org/10.1128/jb.146.2.775-783.1981
22. Konishi K.; Imazu S.; Sato M. Method for producing myo-inositol and myo-inositol derivative. Patent number WO2013073483A9, 2012.
Application PCT/JP2012/079182
23. Brockman I. M.; Prather K. L. J. Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. MBE. 2015, 28 : 104–113. https://doi.org/10.1016/j.ymben.2014.12.005
24. Shiue E.; Brockman I. M.; Prather K. L. Improving product yields on d‐glucose in escherichia coli via knockout of pgi and zwf and feeding of supplemental carbon sources. Biotechnol. Bioeng. 2014, 112 : 579–587. https://doi.org/10.1002/bit.25470
25. Yim H.; Haselbeck R.; Niu W.; Pujol-Baxle, C.; Burgard A.; Khandurina J.; Trawick J.D.; Osterhout R.E.; Stephen R.; Estadilla J.; Teisa, S.; Schreyer H.B.; Andrae S.; Yang T.H.; Lee S.Y.; Burk M.J.; Van Dien S. Metabolic engineering of escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 2011, 7 : 445–452.
26. Farme, W. R.; Liao J. C. Improving lycopene production in escherichia coli by engineering metabolic control. Nat. Biotechnol. 2000, 18 : 533–537.
27. Yu P.; Tai Y.-S.; Woodruff A. P.; Xiong M.; Zhang K. Engineering artificial metabolic pathways for biosynthesis. Curr. Opin. Chem. Eng. 2012, 1 : 373–379. https://doi.org/10.1016/j.coche.2012.09.004
28. Yu P.; Ren Q.; Wang X.; Huang X. Enhanced biosynthesis of γ-aminobutyric acid (GABA) in escherichia coli by pathway engineering. Biochem. Eng. J. 2019, 141 : 252–258. https://doi.org/10.1016/j.bej.2018.10.025
29. Yi M.; Yang L.; Ma J.; Liu H.; He M.; Hu C.; Yu P. Biosynthesis of myo-inositol in escherichia coli by engineering myo-inositol-1-phosphate pathway. Biochem. Eng. J. 2020, 164 : 107792. https://doi.org/10.1016/j.bej.2020.107792
30. Tanaka K, Takenaka S., Yoshida K. Scyllo-Inositol, a Therapeutic Agent for Alzheimer’s Disease. Austin J. Clin. Neurol. 2015, 2(4) : 1040.
31. André A.; Chatzifragkou A.; Diamantopoulou P.; Sarris D.; Philippoussis A.; Galiotou‐Panayotou M.; Komaitis M.; Papanikolaou S. Biotechnological conversions of bio‐diesel‐derived crude glycerol by yarrowia lipolytica strains. Eng. Life Sci. 2009, 9 : 468–478. doi.org/10.1002/elsc.200900063
32. Rymowicz W.; Rywińska A.; Gładkowsk, W. Simultaneous production of citric acid and erythritol from crude glycerol by Yarrowia lipolytica Wratislavia K1. Chem. Pap. 2008, 62. https://doi.org/10.2478/s11696-008-0018-y
33. Rymowicz W.; Rywińska A.; Marcinkiewicz M. High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol. Lett. 2008, 31 : 377–380. https://doi.org/10.1007/s10529-008-9884-1
34. Mirończuk A. M.; Furgała J.; Rakicka M.; Rymowicz W. Enhanced production of erythritol by yarrowia lipolytica on glycerol in repeated batch cultures. JIMB 2014, 41 : 57–64. https://doi.org/10.1007/s10295-013-1380-5
35. Koganti S.; Kuo T. M.; Kurtzman C. P.; Smith N.; Ju L.-K. Production of Arabitol from glycerol: Strain screening and study of factors affecting production yield. Appl. Microbiol. Biotechnol. 2010, 90 : 257–267. https://doi.org/10.1007/s00253-010-3015-3
36. Fabiszewska A. Yarrowia lipolytica: A beneficious yeast in biotechnology as a rare opportunistic fungal pathogen: A minireview. World J. Microbiol. Biotechnol. 2018, 35. https://link.springer.com/article/10.1007/s11274-018-2583-8
37. Yamaguchi M., Kita Y., Mori T., Kanbe K., Tomoda A., Takahashi A. et al. Process for producing scyllo-inositol. Patent number WO2005035774 A1.
38. Clements R. S.; Darnell B. Myo-inositol content of common foods: Development of a high-myo-inositol diet. AJCN 1980, 33 : 1954–1967.
https://doi.org/10.1093/ajcn/33.9.1954
39. Yamaoka M.; Osawa S.; Morinaga T.; Takenaka S.; Yoshida K. A cell factory of bacillus subtilis engineered for the simple bioconversion of myo-inositol to Scyllo-inositol, a potential therapeutic agent for alzheimer’s disease. Microb. Cell Factories 2011, 10. https://doi.org/10.1186/1475-2859-10-69
40. Yoshida K.; Aoyama D.; Ishio I.; Shibayama T.; Fujita Y. Organization and transcription of the myo-inositol operon, IOL, of bacillus subtilis. J. Bacteriol 1997, 179 : 4591–4598. https://doi.org/10.1128/jb.179.14.4591-4598.1997
41. Morinaga T.; Ashida H. Identification of two scyllo-inositol dehydrogenases in bacillus subtilis. Microbiology 2010, 156 : 1538–1546. https://doi.org/10.1099/mic.0.037499-0
42. Yoshida K.; Yamaguchi M.; Morinaga T.; Kinehara M.; Ikeuchi M.; Ashida H.; Fujita Y. Myo-inositol catabolism in bacillus subtilis. J Biol Chem 2008, 283 : 10415–10424. https://doi.org/10.1074/jbc.M708043200
43. Tanaka K.; Tajima S.; Takenaka S.; Yoshida K. An improved bacillus subtilis cell factory for producing scyllo-inositol, a promising therapeutic agent for alzheimer’s disease. Microb. Cell Factories 2013, 12.
https://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-12-124
44. Oh B.-C.; Choi W.-C.; Park S.; Kim Y.-O.; Oh T.-K. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl. Microbiol. Biotechnol. 2004, 63: 362–372. DOI: 10.1007/s00253-003-1345-0
45. Ragon M.; Aumelas A.; Chemardin P.; Galvez S.; Moulin G.; Boze H. Complete hydrolysis of myo-inositol hexakisphosphate by a novel phytase from Debaryomyces castellii CBS 2923. Appl. Microbiol. Biotechnol. 2008, 78 : 47–53. https://doi.org/10.1007/s00253-007-1275-3
46. Escobin-Mopera L.; Ohtani M.; Sekiguchi S.; Sone, T.; Abe A.; Tanaka M.; Meevootisom V.; Asano K. Purification and characterization of phytase from Klebsiella pneumoniae 9-3b. J. Biosci. Bioeng. 2012, 113 : 562–567. https://doi.org/10.1016/j.jbiosc.2011.12.010
47. Antelmann H.; Tjalsma H.; Voigt B.; Ohlmeier S.; Bron S.; van Dijl J. M.; Hecker M. A proteomic view on genome-based signal peptide predictions. Genome Res. 2001, 11 : 1484–1502. https://doi.org/10.1101/gr.182801
48. Van Dijl J.M.; Braun P.G.; Robinson C.; Antelmann H.; Hecker M.; Müller J.; Tjalsma H.; Bron S.; Jongbloed J.D.H. Functional genomic analysis of the bacillus subtilis tat pathway for protein secretion. Biotechnol. J. 2002, 98 : 243–254. https://doi.org/10.1016/s0168-1656(02)00135-9
49. Majumder A. L.; Chatterjee A.; Ghosh Dastidar K.; Majee M. Diversification and evolution of l‐myo‐inositol 1‐phosphate synthase1. FEBS Lett. 2003, 553 : 3–10. https://doi.org/10.1016/s0014-5793(03)00974-8
50. Reizer,J.; Saier M. H.; Deutscher J.; Grenier F.; Thompson J.; Hengstenberg W.; Dills S. S. The phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: Properties, mechanism, and regulation. Crit. Rev. Microbiol. 1988, 15 : 297–338. https://doi.org/10.3109/10408418809104461
51. Carabias-Martínez R.; Rodríguez-Gonzalo E.; Revilla-Ruiz P.; Hernández-Méndez J. Pressurized liquid extraction in the analysis of food and biological samples. J. Chromatogr. A. 2005, 1089 : 1–17. https://doi.org/ 10.1016/j.chroma.2005.06.072
52. Alañón M. E.; Ruiz‐Matute A. I.; Martínez‐Castro I.; Díaz‐Maroto M. C.; Pérez‐Coello M. S. Optimisation of pressurised liquid extraction for the determination of monosaccharides and polyalcohols in Woods used in wine aging. J. Sci. Food Agric 2009, 89 : 2558–2564. https://doi.org/10.1002/jsfa.3752
53. Best M. D.; Zhang H.; Prestwich G. D. Inositol polyphosphates, diphosphoinositol polyphosphates and phosphatidylinositol polyphosphate lipids: Structure, synthesis, and development of probes for studying biological activity. Nat. Prod. Rep. 2010, 27 : 1403. https://doi.org/10.1039/b923844c
54. Chauhan P. S.; Gupta K. K.; Bani S. The immunosuppressive effects of agyrolobium roseum and pinitol in experimental animals. Int. Immunopharmacol. 2011, 11 : 286–291. https://doi.org/10.1016/j.intimp.2010.11.028
55. Chaubal R.; Pawar P. V.; Hebbalkar G. D.; Tungikar V. B.; Puranik V. G.; Deshpande V. H.; Deshpande N. R. Larvicidal activity ofacacia nilotica extracts and isolation OFD-pinitol - a bioactive carbohydrate. Chem. Biodivers. 2005, 2: 684–688.
https://doi.org/10.1002/cbdv.200590044
56. Ruiz-Aceituno L.; Rodríguez-Sánchez S.; Sanz J.; Sanz M. L.; Ramos L. Optimization of pressurized liquid extraction of inositols from Pine Nuts (pinus pinea L.). Food Chem. 2014, 153 : 450–456. https://doi.org/10.1016/j.foodchem.2013.12.079
57. Rodríguez-Sánchez S.; Ruiz-Aceituno L.; Sanz M. L.; Soria A. C. New methodologies for the extraction and fractionation of bioactive carbohydrates from mulberry (Morus alba) leaves. J. Agric. Food Chem. 2013, 61 : 4539–4545. https://doi.org/10.1021/jf305049k
58. Horbowicz M.; Obendorf R. L.; McKersie B. D.; Viands D. R. Soluble saccharides and cyclitols in alfalfa (Medicago sativa L.) somatic embryos, leaflets, and mature seeds. Plant Sci. 1995, 109 : 191–198.
59. McDonald IV L.W., Goheen S.C., Donald P.A., Campbell J.A. Identification and quantitation of various inositols and o-methylinositols present in plant roots related to soybean cyst nematode host status, Nematropica. 2012, 42: 1–8.
60. Preethi S., Saral M. GC-MS Analysis of Microwave Assisted Ethanolic Extract of Pithecellobium dulce, Malaya J. Biosci. 2014: 242–247.
61. Ramawat K.G., Merillon J.M., Ramos L., Sanz M.L. Polysaccharides: bioactivity and biotechnology, Springer. 2015.
62. Ruiz-Aceituno L.; García-Sarrió M. J.; Alonso-Rodriguez B.; Ramos L.; Sanz M. L. Extraction of bioactive carbohydrates from artichoke (cynara scolymus L.) external bracts using microwave assisted extraction and pressurized liquid extraction. Food Chem. 2016, 196 : 1156–1162. https://doi.org/10.1016/j.foodchem.2015.10.046
63. Wang L.; Weller C. L. Recent advances in extraction of Nutraceuticals from plants. Trends Food Sci Technol. 2006, 17 : 300–312. https://doi.org/10.1016/j.tifs.2005.12.004
64. Cháfer A.; Berna A. Study of kinetics of the D-pinitol extraction from carob pods using supercritical CO2. J. Supercrit. Fluids. 2014, 94 : 212–215.
https://doi.org/10.1016/j.supflu.2014.07.015
65. Baumgartner S.; Genner-Ritzmann R.; Haas J.; Amado R.; Neukom H. Isolation and identification of cyclitols in carob pods (Ceratonia siliqua L.). J. Agric. Food Chem. 1986, 34 : 827–829. https://doi.org/10.1021/JF00071A015
66. Sharma N.; Verma M. K.; Gupta D. K.; Satti N. K.; Khajuria R. K. Isolation and quantification of pinitol in Argyrolobium Roseum Plant, by 1H-NMR. J. Saudi Chem. Soc. 2016, 20 : 81–87. https://doi.org/10.1016/j.jscs.2014.07.002
67. Lee S. O.; Choi S. Z.; Lee J. H.; Chung S. H.; Park S. H.; Kang H. C.; Yang E. Y.; Cho H. J.; Lee K. R. Antidiabetic coumarin and cyclitol compounds frompeucedanum japonicum. Arch. Pharm. Res. 2004, 27 : 1207–1210. https://doi.org/10.1007/BF02975882
68. Shamsuddin A. M.; Yang G.-Y. Inositol and its phosphates: Basic science to practical applications; Bentham Science. 2015. https://doi.org/10.2174/97816810800791150101
69. Abe F.; Okabe H.; Yamauchi T.; Honda K.; Hayashi N. Pregnane glycosides from Marsdenia tomentosa. Chem. Pharm. Bull. 1999, 47 : 869–875.
https://doi.org/10.1080/1028602031000135549
70. Abe F.; Yamauchi T.; Honda K.; Hayashi N. Cyclitols and their glycosides from leaves of Marsdenia tomentosa. Phytochem. 1998, 47 : 1297–1301.
71. Vidhate M., Ranade A., Vidhate B., Birajdar P. Isolation, characterization and quantification of extracted D-pinitol from Bougainvillea spectabilis stem park, World J. Pharm. 2015, 4 : 1669–1683.
72. Kallio H.; Lassila M.; Järvenpää E.; Haraldsson G. G.; Jonsdottir S.; Yang B. Inositols and methylinositols in sea buckthorn (Hippophaë rhamnoides) berries. J. Chromatogr. B 2009, 877 : 1426–1432. https://doi.org/ 10.1016/j.jchromb.2009.03.027
73. Yang N.; Ren G. Determination ofd-chiro-inositol in tartary buckwheat using high-performance liquid chromatography with an evaporative light-scattering detector. J. Agric. Food Chem 2008, 56 : 757–760. https://doi.org/10.1021/jf0717541
74. Rebecca, O. P.; Boyc, A. N.; Somasundram, C. Isolation and identification of myo-inositol crystals from Dragon Fruit (Hylocereus Polyrhizus). Mol. 2012, 17 : 4583–4594 https://doi.org/10.3390/molecules17044583
75. Duliński R.; Starzyńska-Janiszewska A.; Stodolak B.; Żyła K. Comparison of high-performance ion chromatography technique with microbiological assay of myo-inositol in plant componentsof poultry feeds. J. Anim. Feed Sci. 2011, 20 : 143–156. https://doi.org/10.22358/jafs/66165/2011
76. Liu X.; Grieve C. Accumulation of chiro-inositol and other non-structural carbohydrates in limonium species in response to saline irrigation waters. J. Am. Soc. Hortic. Sci. 2009, 134 : 329–336. https://doi.org/10.21273/JASHS.134.3.329
77. Abdel-Hameed E.-S. S.; El-Nahas H. A.; El-Waki, E. A. Cytotoxic cholestane and pregnane glycosides from Tribulus macropterus. Z Naturforsch C. 2007, 62 : 319–325. https://doi.org/10.1515/znc-2007-5-602
78. Dreyer D. L.; Binde R. G.; Chan B. G.; Waiss A. C.; Hartwig E. E.; Beland G. L. Pinitol, a larval growth inhibitor for Heliothis Zea in soybeans. Experientia. 1979, 35 : 1182–1183. https://doi.org/10.1007/BF01963275
79. Pereira A. B.; Veríssimo T. M.; Oliveira M. A.; Araujo I. A.; Alves R. J.; Braga F. C. Development and validation of an HPLC-dad method for quantification of bornesitol in extracts from Hancornia speciosa leaves after derivatization with P-toluenesulfonyl chloride. J. Chromatogr. B. 2012, 887–888, 133–137. https://doi.org/10.1016/j.jchromb.2012.01.009
80. Ross M. S. F. Pre-column derivatisation in high-performance liquid chromatography. J. Chromatogr. A. 1977, 141 : 107–119. https://doi.org/10.1016/S0021-9673(00)83048-4
81. Indyk H. E.; Woollard D. C. Determination of free myo-inositol in milk and infant formula by high-performance liquid chromatography. Analyst. 1994, 119 : 397. https://doi.org/10.1039/AN9941900397
82. Frieler R. A.; Mitteness,D. J.; Golovko M. Y.; Gienger H. M.; Rosenberger T. A. Quantitative determination of free glycerol and myo-inositol from plasma and tissue by high-performance liquid chromatography. J. Chromatogr. B. 2009, 877 : 3667–3672.
83. Cataldi T. R.; Margiotta G.; Iasi L.; Di Chio B.; Xiloyannis C.; Bufo S. A. Determination of sugar compounds in olive plant extracts by anion-exchange chromatography with pulsed amperometric detection. Anal. Chem. 2000, 72 : 3902–3907. https://doi.org/10.1021/ac000266o
84. Negishi O.; Mun’im A.; Negishi Y. Content of methylated Inositols in familiar edible plants. J. Agric. Food Chem. 2015, 63 : 2683–2688. https://doi.org/10.1021/jf5041367
85. Al-Suod H.; Gadzała-Kopciuch R.; Buszewski B. Simultaneous HPLC-ELSD determination of sugars and cyclitols in different parts of Phacelia tanacetifolia benth. Biochem. Syst. Ecol. 2018, 80 : 32–38. https://doi.org/10.1016/j.bse.2018.06.003
86. Duong Q. H.; Clark K. D.; Lapsle, K. G.; Pegg,R. B. Quantification of inositol phosphates in almond meal and Almond Brown Skins by HPLC/ESI/MS. Food Chem. 2017, 229 : 84–92. https://doi.org/10.1016/j.foodchem.2017.02.031
87. Leung K.-Y.; Mills K.; Burren K. A.; Copp A. J.; Green, N. D. E. Quantitative analysis of myo-inositol in urine, blood and nutritional supplements by high-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B. 2011, 879 : 2759–2763. https://doi.org/10.1016/j.jchromb.2011.07.043
88. Yoshihashi, T.; Do, H. T.; Tungtrakul, P.; Boonbumrung, S. Simple, selective, and rapid quantification of 1‐deoxynojirimycin in Mulberry Leaf products by high‐performance anion‐exchange chromatography with pulsed Amperometric detection. J. Food Sci. 2010, 75. https://doi.org/10.1111/j.1750-3841.2010.01528.x
89. Sharma U.; Bhandari P.; Kumar N.; Singh B. Simultaneous determination of ten sugars in Tinospora cordifolia by ultrasonic assisted extraction and LC-ELSD. Chromatogr. 2010, 71 : 633–638. https://doi.org/10.1365/s10337-010-1520-2
90. Yao Y.; Cheng X.; Ren G. Contents of D-chiro-inositol, Vitexin, and isovitexin in various varieties of Mung Bean and its products. J. Agric. Sci. 2011, 10 : 1710–1715. https://doi.org/10.1016/S1671-2927(11)60169-7
91. Hatzack F.; Rasmussen S. K. High-performance thin-layer chromatography method for inositol phosphate analysis. J. Chromatogr. B. 1999, 736 : 221–229. https://doi.org/ 10.1016/s0378-4347(99)00465-x
92. Hedberg K. K.; Cogan E. B.; Birrell G. B.; Griffith O. H. Sensitive fluorescent quantitation of myo-inositol 1,2-cyclic phosphate and myo-inositol 1-phosphate by high-performance thin-layer chromatography. J. Chromatogr. B. 2001, 757: 317–324. https://doi.org/10.1016/s0378-4347(01)00169-4
93. Sripathi S.K., Poongothai G., Lalitha P. Identification of pinitol in plants extracts by HPTLC, J. Chem. Pharm. Res. 2011, 3(5) : 544-549.
94. Sanz M. L.; Martínez-Castro I.; Moreno-Arribas M. V. Identification of the origin of commercial enological tannins by the analysis of monosaccharides and polyalcohols. Food Chem. 2008, 111 : 778–783. https://doi.org/10.1016/j.foodchem.2008.04.050
95. Haga H.; Nakajima T. Determination of polyol profiles in human urine by capillary gas chromatography. Biomedical Chromatography. 1989, 3 : 68–71.
https://doi.org/10.1002/bmc.1130030206
96. March J. G.; Forteza R.; Grases F. Determination of inositol isomers and Arabitol in human urine by gas chromatography-mass spectrometry. Chromatogr. 1996, 42 : 329–331. https://doi.org/10.1007/BF02290319
97. De Koning A. J. Determination of myo-inositol and phytic acid by gas chromatography using Scyllitol as Internal Standard. Analyst. 1994, 119 : 1319.
98. Walton T. J.; Cooke C. J.; Newton R. P.; Smith C. J. Evidence that generation of inositol 1,4,5-trisphosphate and hydrolysis of phosphatidylinositol 4,5-biphosphate are rapid responses following addition of fungal elicitor which induces phytoalexin synthesis in lucerine (Medicago sativea) suspension culture cells. Cell. Signal. 1993, 5 : 345–356. https://doi.org/10.1016/0898-6568(93)90026-i
99. Horbowicz M.; Obendorf R. L.; McKersie B. D.; Viands, D. R. Soluble saccharides and cyclitols in alfalfa (Medicago sativa L.) somatic embryos, leaflets, and mature seeds. J. Plant Sci. 1995, 109 : 191–198.
100. Campbell B. C.; Binder R. G. Alfalfa cyclitols in the honeydew of an aphid. Phytochem. 1984, 23 : 1786–1787. https://doi.org/10.1016/S0031-9422(00)83492-5
101. Conde A.; Regalado A.; Rodrigues D.; Costa J. M.; Blumwald E.; Chaves M. M.; Gerós H. Polyols in grape berry: Transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. J. Exp. Bot. 2014, 66 : 889–906. https://doi.org/10.1093/jxb/eru446
102. Fiehn O.; Wohlgemuth G.; Scholz M.; Kind T.; Lee D. Y.; Lu Y.; Moon S.; Nikolau B. Quality Control for Plant Metabolomics: Reporting msi‐compliant studies. Plant J. 2008, 53 : 691–704. https://doi.org/10.1111/j.1365-313X.2007.03387.x
103. Ruiz‐Matute A. I., Montill A., del Castillo M. D., Martínez‐Castr I., Luz Sanz M. A GC method for simultaneous analysis of bornesitol, other polyalcohols and sugars in coffee and its substitutes. J. Sep. Sci. 2007, 30 : 557–562. https://doi.org/10.1002/jssc.200600381
104. Mayr G. W.; Dietrich W. The only inositol tetrakisphosphate detectable in avian erythrocytes is the isomer lacking phosphate at position 3: A NMR study. FEBS Lett. 1987, 213 : 278–282. https://doi.org/10.1016/0014-5793(87)81505-3
105. Gui W.; Lemley B. A.; Keresztes I.; Condo A. M.; Steadman, K. J.; Obendorf R. L. Purification and molecular structure of digalactosyl myo-inositol (DGMI), Trigalactosyl Myo-inositol (TGMI), and Fagopyritol B3 from common buckwheat seeds by NMR. Carbohydr. Res. 2013, 380 : 130–136.
https://doi.org/10.1016/j.carres.2013.08.004
106. Mernissi-Arifi K.; Wehrer C.; Schlewer G.; Spiess B. Reinvestigation of the 31P NMR studies of the D myo-inositol 1,2,6 tris(phosphate)-zinc complexes. J. Inorg. Biochem. 1996, 61 : 63–67. https://doi.org/10.1016/0162-0134(95)00044-5
107. Kenny O.; Smyth T. J.; Hewage C. M.; Brunton N. P.; McLoughlin P. 4-hydroxyphenylacetic acid derivatives of inositol from dandelion (taraxacum officinale) root characterised using LC–SPE–NMR and LC–Ms Techniques. Phytochem. 2014, 98 : 197–203. https://doi.org/10.1016/j.phytochem.2013.11.022