- Details
- Hits: 618
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 6 , 2023
P. 34-47, Bibliography 70, Engl.
UDC:: 615.322: 578.76
DOI:https://doi.org/10.15407/biotech16.06.034
Full text: (PDF, in English)
MECHANISMS OF ANTIVIRAL ACTIVITY OF FLAVONOIDS
Golembiovska O.I., Bespalova O.Ya.,Prosvetova A.B., Samsonenko S.M., Poyedynok N.L.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine
The article examines the multifaceted mechanisms underlying the antiviral activity of flavonoids, compounds widely distributed in the plant kingdom.
The work aimed to review literature data on the mechanisms of antiviral activity of flavonoids.
Methods. Publications were selected based on the PubMed (https://pubmed.ncbi.nlm.nih.gov/) databases published in 2015–2023. They include information on mechanisms of antiviral activity of flavonoids.
Results. The document navigates through the intricate interactions between flavonoids and various stages of the viral life cycle, beginning with an overview of flavonoid structures. The review highlights the diverse ways in which flavonoids inhibit viral entry, replication, and release, drawing upon a comprehensive analysis of in vitro and in vivo studies. Depending on their antiviral mechanisms, flavonoids can serve as preventive inhibitors, therapeutic inhibitors, or indirect inhibitors by influencing the immune system.
Conclusion. The synthesized information not only contributes to the advancement of antiviral research but also lays the foundation for the development of novel therapeutic interventions against a spectrum of viral infections.
Key words: flavonoids, antiviral activity, viral infection, bioactive compounds, host-pathogen interaction.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
References
1. Lee E., Kang G., Cho S. Effect of flavonoids on human health: Old subjects but new challenges. Recent Patents on Biotechnology. 2007. 1(2), 139–150. https://doi.org/10.2174/187220807780809445
2. Watson R. R., Preedy V. R., Zibad S. (2018). Polyphenols: Mechanisms of action in human health and disease. In Elsevier eBooks. https://doi.org/10.1016/c2016-0-04277-8
3. Kumar S., Pandey, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal. 2013, 1–16. https://doi.org/10.1155/2013/162750
4. Panche A., Diwan A. D. Chandra S. Flavonoids: an overview. Journal of Nutritional Science, 5. https://doi.org/10.1017/jns.2016.41
5. Dias M. C., Pinto D., Silva A. M. S. Plant flavonoids: chemical characteristics and biological activity. Molecules 2021, 26(17), 5377. https://doi.org/10.3390/molecules26175377
6. Montenegro-Landívar M. F., Tapia-Quirós P., Vecino X., Reig M., Valderrama C., Granados M., Cortina J. L., Saurina, J. Polyphenols and their potential role to fight viral diseases: An overview. Science of the Total Environment. 2021, 801, 149719. https://doi.org/10.3390/molecules26175377
7. Mahmud A. R., Ema T. I., Siddiquee M. A., Shahriar A., Hossain A., Mosfeq-Ul-Hasan M., Rahman N., Islam R., Uddin M. R. Mizan, M. F. R. Natural flavonols: actions, mechanisms, and potential therapeutic utility for various diseases. Beni-Suef University Journal of Basic and Applied Science. 2023, 12(1). https://doi.org/10.1186/s43088-023-00387-4
8. Russo M., Moccia S., Spagnuolo C., Tedesco I., Russo G. L. Roles of flavonoids against coronavirus infection. Chemico-Biological Interactions, 2020, 328, 109211. https://doi.org/10.1016/j.cbi.2020.109211
9. Nair M., Kandaswami C., Mahajan S. D., Nair H. N., Chawda R., Shanahan T., Schwartz S. A.. Grape seed extract proanthocyanidins downregulate HIV- 1 entry coreceptors, CCR2b, CCR3 and CCR5 gene expression by normal peripheral blood mononuclear cells. Biological Research. 2002, 35(3–4). https://doi.org/10.4067/s0716-97602002000300016
10. Zakaryan H., Arabyan E., Oo A. Zandi K. Flavonoids: promising natural compounds against viral infections. Archives of Virology. 2017, 162(9), 2539–2551. https://doi.org/10.1007/s00705-017-3417-y
11. Lalani S., & Poh, C. L. Flavonoids as antiviral agents for enterovirus A71 (EV-A71). Viruses, 2020, 12(2), 184. https://doi.org/10.3390/v12020184
12. Shahid, F., Noreen Ali R., Badshah S. L., Jamal S. B., Ullah R., Bari A., Mahmood H. M., Sohaib M. Ansari S. A. Identification of Potential HCV Inhibitors Based on the Interaction of Epigallocatechin-3-Gallate with Viral Envelope Proteins. Molecules. 2021, 26(5), 1257. https://doi.org/10.3390/molecules26051257
13. Badshah S. L., Faisal S., Akhtar M., Jaremko M. Emwas A. Antiviral activities of flavonoids. Biomedicine & Pharmacotherapy. 2021, 140, 111596. https://doi.org/10.1016/j.biopha.2021.111596
14. Wang, Y. Li Q., Zheng X., Lu J., Liang Y. Antiviral Effects of Green Tea EGCG and Its Potential Application against COVID-19. Molecules. 2021, 26(13), 3962. https://doi.org/10.3390/molecules26133962
15. Breitinger H., Ali N. K. M., Sticht H., Breitinger H.. Inhibition of SARS COV envelope protein by flavonoids and classical viroporin inhibitors. Frontiers in Microbiology. 2021, 12. https://doi.org/10.3389/fmicb.2021.692423
16. Mir A., Ismatullah H., Rauf S., Niazi U. H. Identification of bioflavonoid as fusion inhibitor of dengue virus using molecular docking approach. Informatics in Medicine Unlockeю, 2016, 3, 1–6. https://doi.org/10.1016/j.imu.2016.06.001
17. Sharma M., Bansal A., Sethi S., Sharma N. Potential alphavirus inhibitors from phytocompounds – molecular docking and dynamics based approach. Innovative Biosystems and Bioengineering. 2023, 7(3), 21–31. https://doi.org/10.20535/ibb.2023.7.3.285245
18. Wu W., Dong L., Shen X., Li F., Fang Y., Li K., Xun T., Yang G., Yang J., Liu S., He J. New influenza A Virus Entry Inhibitors Derived from the Viral Fusion Peptides. PLOS ONE. 2015, 10(9), e0138426. https://doi.org/10.1371/journal.pone.0138426
19. Wang L., Song J., Liu A., Xiao B., Li S., Zhang W., Lü Y., Du G. Research progress of the antiviral bioactivities of natural flavonoids. Natural Products and Bioprospecting. 2020, 10(5), 271–283. https://doi.org/10.1007/s13659-020-00257-x
20. Wu W., L, R., Li X., He J., Jiang S., Liu S., Yang J. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses. 2015, 8(1), 6. https://doi.org/10.3390/v8010006
21. Wang Q., Wang H., Jia Y., Ding H., Zhang L., Pā, H. Luteolin reduces migration of human glioblastoma cell lines via inhibition of the p-IGF-1R/PI3K/AKT/mTOR signaling pathway. Oncology Letter. 2017, 14(3), 3545–3551. https://doi.org/10.3892/ol.2017.6643
22. Mehrbod P., Hudy D., Shyntum D. Y., Markowski J., Łos M., Ghavami S. Quercetin as a natural therapeutic candidate for the treatment of influenza virus. Biomolecules. 2020, 11(1), 10. https://doi.org/10.3390/biom11010010
23. Kim M., Kim S., Lee H. W., Shin J. S., Kim P., Jung Y., Jeong H., Hyun J. Lee C. Inhibition of influenza virus internalization by (−)-epigallocatechin-3-gallate. Antiviral Research. 2013, 100(2), 460–472. https://doi.org/10.1016/j.antiviral.2013.08.002
24. Moghaddam E., Teoh B., Sam S., Lani R., Hassandarvish P., Chik Z., Yueh A., AbuBakar S., Zandi K. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Scientific Reports. 2014, 4(1). https://doi.org/10.1038/srep05452
25. Yoneyama S., Kawai K., Tsuno N. H., Okaji Y., Asakage M., Tsuchiya T., Yamada J., Sunami E., Osada T., Kitayama J., Takahashi K., Nagawa H. Epigallocatechin gallate affects human dendritic cell differentiation and maturation. The Journal of Allergy and Clinical Immunology, 2008Б 121(1), 209–214. https://doi.org/10.1016/j.jaci.2007.08.026
26. Li K., Liang Y., Cheng A. S., Wang Q., Liu Y., Wei H., Chang-Zheng, Z., Wan X. Antiviral Properties of Baicalin: a Concise Review. Revista Brasileira De Farmacognosia. 2021, 31(4), 408–419. https://doi.org/10.1007/s43450-021-00182-1
27. Tao J., Hu Q., Yang J., Li R., Li X., Lu C., Chen C., Wang L., Shattock R. J., Ben K.. In vitro anti-HIV and -HSV activity and safety of sodium rutin sulfate as a microbicide candidate. Antiviral Research. 2007, 75(3), 227–233. https://doi.org/10.1016/j.antiviral.2007.03.008
28. Lü, P. Zhang T., Ren Y., Rao H., Lei J., Zhao G., Wang M., Gong D., Cao Z. A literature review on the antiviral mechanism of luteolin. Natural Product Communications, 2023, 18(4), 1934578X2311715. https://doi.org/10.1177/1934578x231171521
29. Joo Y., Lee Y., Lim Y., Jeon H., Lee I., Cho Y., Hong S. I., Kim E. H., Choi S. H., Kim J., Kang S. C., Seo Y. Anti-influenza A virus activity by Agrimonia pilosa and Galla rhois extract mixture. Biomedicine & Pharmacotherapy. 2022, 155, 113773. https://doi.org/10.1016/j.biopha.2022.113773
30. Xu X., Jin M., Shao Q., Gao Y., Hong L. Apigenin suppresses influenza A virus‐induced RIG‐I activation and viral replication. Journal of Medical Virology.2020, 92(12), 3057–3066. https://doi.org/10.1002/jmv.26403
31. Taheri Y., Sharifi‐Rad J., Antika G., Yılmaz Y. B., Tumer T. B., Abuhamdah S., Chandra S., Saklani S., Kılıç C. S., Sestito S., DaştanS. D., Kumar M., Alshehri M. M., Rapposelli S., Cruz‐Martins N., Cho W. C.. Paving Luteolin Therapeutic potentialities and Agro-Food-Pharma applications: Emphasis on in vivo pharmacological effects and bioavailability traits. Oxidative Medicine and Cellular Longevity. 2021, 1–20. https://doi.org/10.1155/2021/1987588
32. Lipson P. Flavonoid-associated direct loss of rotavirus antigen/antigen activity in cell-free suspension. Vadose Zone Journal. 2013, 2(1), 10–24. https://doi.org/10.7275/r52b8vzj
33. Shakoor H., Feehan J., Apostolopoulos V., Platat C., Dhaheri A. S. A., Ali H. I., Ismail L. C., Bosevski M., Stojanovska L. Immunomodulatory effects of dietary polyphenols. NutrientsЮ\. 2021, S13(3), 728. https://doi.org/10.3390/nu13030728
34. Pérez-Cano F. J., Castellote C. Flavonoids, inflammation and immune system. Nutrients. 2016, 8(10), 659. https://doi.org/10.3390/nu8100659
35. Venigalla M., Gyengési E., Münch G. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer′s disease. Neural Regeneration Research 2015, 10(8), 1181. https://doi.org/10.4103/1673-5374.162686
36. Wang S., Li Z., Ma Y., Liu Y., Lin C., Li S., Zhan J., Ho C. Immunomodulatory effects of green tea polyphenols. Molecules. 2021, 26(12), 3755. https://doi.org/10.3390/molecules26123755
37. Li Y., Song K., Zhang H., Yuan M., An N., Wei Y., Wang L., Sun Y., Xing Y., Gao Y. Anti-inflammatory and immunomodulatory effects of baicalin in cerebrovascular and neurological disorders. Brain Research Bulletin. 2020, V.164, 314–324. https://doi.org/10.1016/j.brainresbull.2020.08.016
38. Liao H., YeJ. Gao L., Liu Y. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomedicine & Pharmacotherapy. 2021, 133, 110917. https://doi.org/10.1016/j.biopha.2020.110917
39. Poronnik О. О. (2021). Obtaining of plant tissue culture Scutellaria baicalensis Georgi. and its biochemical analysis. Biotechnologia Acta, 14(6), 53–58. https://doi.org/10.15407/biotech14.06.0053
40. Ginwala, R., Bhavsar R., Chigbu D. G. I., Jain P., Khan Z. K. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants. 2019, 8(2), 35. https://doi.org/10.3390/antiox8020035
41. García–Lafuente A., Guillamón E., Villares A., Rostagno M. A., Martínéz J. A.. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflammation Research. 2009, 58(9), 537–552. https://doi.org/10.1007/s00011-009-0037-3
42. Rathee P., Chaudhary H., Rathee S., Rathee D., Kumar V., Kohli K.. Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflammation and Allergy - Drug Targets. 2009, 8(3), 229–235. https://doi.org/10.2174/187152809788681029
43. Ahn H. I., Jang H., Kwon O., Kim J., Oh J., Kim S., Oh S., Han S., Ahn K. H., Park J. W. Quercetin Attenuates the Production of Pro-Inflammatory Cytokines in H292 Human Lung Epithelial Cells Infected with Pseudomonas aeruginosa by Modulating ExoS Production. Journal of Microbiology and Biotechnology. 2023, 33(4), 430–440. https://doi.org/10.4014/jmb.2208.08034
44. Sun H., Li J., Qian W., Yin M., Yin H., Huang G. Quercetin suppresses inflammatory cytokine production in rheumatoid arthritis fibroblast‑like synoviocytes. Experimental and Therapeutic Medicine. 2021, 22(5). https://doi.org/10.3892/etm.2021.10695
45. David A. V. A., Arulmoli R., Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacognosy Reviews. 2016, 10(20), 84. https://doi.org/10.4103/0973-7847.194044
46. Yao C., Xi C., Hu K., Gao W., Cai X., Qin J., Lv S., Du C., Wei Y. Inhibition of enterovirus 71 replication and viral 3C protease by quercetin. Virology Journal. 2018, 15(1). https://doi.org/10.1186/s12985-018-1023-6
47. Li Z., Cao H., Cheng Y., Zhang X., Zeng W., Sun Y., Chen S., He Q., Han H. Inhibition of porcine epidemic diarrhea virus replication and viral 3C-Like protease by quercetin. International Journal of Molecular Sciences. 2020, 21(21), 8095. https://doi.org/10.3390/ijms21218095
48. Sugamoto K., Tanaka Y., Saito A., Goto Y., Nakayama T., Okabayashi T., Kunitake H., Morishita K. Highly polymerized proanthocyanidins (PAC) components from blueberry leaf and stem significantly inhibit SARS-CoV-2 infection via inhibition of ACE2 and viral 3CLpro enzymes. Biochemical and Biophysical Research Communications. 2022, 615, 56–62. https://doi.org/10.1016/j.bbrc.2022.04.072
49. Jo S., Kim S., Shin D., Kim M. S. Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry. 2019, 35(1), 145–151. https://doi.org/10.1080/14756366.2019.1690480
50. Li W., Xu C., Hao C., Zhang Y., Wang Z., Wang S., Wang W. Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway. Antiviral Research. 2020, 177, 104714. https://doi.org/10.1016/j.antiviral.2020.104714
51. Agraharam G., Girigoswami A., Girigoswami K. Myricetin: a Multifunctional Flavonol in Biomedicine. Current Pharmacology Reports. 2022, 8(1), 48–61. https://doi.org/10.1007/s40495-021-00269-2
52. Silva J. H. C. E., Souza J. T., Schitine C. De Freitas Santos Júnior, A., Bastos, E. M. S., & Costa, S. L.. Pharmacological Potential of Flavonoids against Neurotropic Viruses. Pharmaceuticals. 2022, 15(9), 1149. https://doi.org/10.3390/ph15091149
53. Kaul R., Paul P., Kumar S., Büsselberg D., Dwivedi V. D., Châari A. Promising Antiviral Activities of Natural Flavonoids against SARS-CoV-2 Targets: Systematic Review. International Journal of Molecular Sciences. 2021, 22(20), 11069. https://doi.org/10.3390/ijms222011069
54. Rehman S. U., Shafqat F., Fatima B., Nawaz M., Niaz K.. Flavonoids and other polyphenols against SARS-CoV-2. In Elsevier eBooks. 2023, (pp. 83–123). https://doi.org/10.1016/b978-0-323-95047-3.00014-9
55. Ninfali P., Antonelli A., Magnani M., Scarpa E. S.. Antiviral properties of flavonoids and delivery strategies. Nutrients. 2020, 12(9), 2534. https://doi.org/10.3390/nu12092534
56. Cataneo A. H. D., Ávila E. P., De Oliveira Mendes L. A., De Oliveira V. G., Ferraz C. R., De Almeida M. V., Frabasile S., Santos C. N. D. D., Verri W. A., Bordignon J., Wowk P. F. Flavonoids as Molecules With Anti-Zika virus Activity. Frontiers in Microbiology. 2021, 12. https://doi.org/10.3389/fmicb.2021.710359
57. Corona A., Wycisk K., Talarico C., Manelfi C., Milia J., Cannalire R., Esposito F., Gribbon P., Zaliani A., Iaconis D., Beccari A. R., Summa V., Nowotny M., Tramontano E. Natural Compounds Inhibit SARS-CoV-2 nsp13 Unwinding and ATPase Enzyme Activities. ACS Pharmacology & Translational Science. 2022, 5(4), 226–239. https://doi.org/10.1021/acsptsci.1c00253
58. Inhibition of human T cell leukemia virus by the plant flavonoid baicalin (7-Glucuronic acid, 5, 6-Dihydroxyflavone) on JSTOR. (n.d.). www.jstor.org. http://www.jstor.org/stable/30112044
59. Pietta P. Flavonoids as antioxidants. Journal of Natural Products, 63(7). 2000, 1035–1042. https://doi.org/10.1021/np9904509
60. Crozier A., Burns J. M., Aziz A. A., Stewart A., Rabiasz H. S., Jenkins G. I., Edwards C., & Lean M. E. J. Antioxidant flavonols from fruits, vegetables and beverages: measurements and bioavailability. Biological Research. 2000, 33(2). https://doi.org/10.4067/s0716-97602000000200007
61. Ganeshpurkar A., Saluja A. K. The pharmacological potential of Rutin. Saudi Pharmaceutical Journal. 2017, 25(2), 149–164. https://doi.org/10.1016/j.jsps.2016.04.025
62. Ciumărnean L., Milaciu M. V., Runcan O., Vesa Ș. C., Răchişan A. L., Negrean V., Perné M., Donca V., Alexescu T., Para I., Dogaru G. The effects of flavonoids in cardiovascular diseases. Molecules. 2020, 25(18), 4320. https://doi.org/10.3390/molecules25184320
63. Vetrivel P., Kim S. W., Saralamma V. V. G., Ha S. E., Kim E. H., Min T. S., Kim G. S. Function of flavonoids on different types of programmed cell death and its mechanism: a review. Journal of Nanjing Medical University. 2019, 33(6), 363. https://doi.org/10.7555/jbr.33.20180126
64. Bryan-Marrugo O. L., Ramos‐Jiménez J., Barrera-Saldaña H. A., Rojas-Martı́Nez A., Vidaltamayo R., Rivas‐Estilla A. M. History and progress of antiviral drugs: From acyclovir to direct-acting antiviral agents (DAAs) for Hepatitis C. Medicina Universitaria. 2015, 17(68), 165–174. https://doi.org/10.1016/j.rmu.2015.05.003
65. Hosseinzade A., Sadeghi O., Biregani A. N., Soukhtehzari S., Brandt G., Esmaillzadeh A. Immunomodulatory effects of flavonoids: possible induction of T CD4+ regulatory cells through suppression of MTOR pathway signaling activity. Frontiers in Immunology. 2019, 10. https://doi.org/10.3389/fimmu.2019.00051
66. Inflammaging. Cell Guidance Systems. 2023, May 8. https://www.cellgs.com/blog/inflammaging-how-our-cytokines-age-us.html
67. Peng S., Fang C., He H., Song X., Zhao X., Zou Y., Li L., Jia R., Yin Z. Myricetin exerts its antiviral activity against infectious bronchitis virus by inhibiting the deubiquitinating activity of papain-like protease. Poultry Science. 2022, 101(3), 101626. https://doi.org/10.1016/j.psj.2021.101626
68. Wang G., Wang Y., Yao L., Gu W., Zhao S., Shen Z., Lin Z., Liu W., Yan T. Pharmacological activity of Quercetin: an updated review. Evidence-based Complementary and Alternative Medicine, 2022, 1–12. https://doi.org/10.1155/2022/3997190
69. Tutunchi H., Naeini F., Ostadrahimi A., Hosseinzadeh‐Attar M. J. Naringenin, a flavanone with antiviral and anti‐inflammatory effects: A promising treatment strategy against COVID‐19. Phytotherapy Researchю 2022, 34(12), 3137–3147. https://doi.org/10.1002/ptr.6781
70. Zalpoor H., Bakhtiyari M., Shapourian H., Rostampour P., Tavakol C., Nabi‐Afjadi M. Hesperetin as an anti-SARS-CoV-2 agent can inhibit COVID-19-associated cancer progression by suppressing intracellular signaling pathways. Inflammopharmacology. 2022, 30(5), 1533–1539. https://doi.org/10.1007/s10787-022-01054-3
..
- Details
- Hits: 752
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 6 , 2023
P.76-81, Bibliography 20, Engl.
UDC: 582.282.195.2:579.222
DOI:https://doi.org/10.15407/biotech16.06.076
Full text: (PDF, in English)
COMPLEXATION OF CURCUMIN WITH BOVINE SERUM ALBUMIN AND DIPHTHERIA TOXOID CRM197
Palladin Institute of biochemistry of the National Academy of Sciences of Ukraine, Kyiv
Aim. The goal of the study was to demonstrate the binding sites for curcumin on the protein carriers - bovine serum albumin and diphtheria toxoid CRM197. BSA was chosen as a potential non-specific protein carrier because of its wide use in medicine as a drug carrier.
Methods. In the investigation, both spectrophotometric and molecular docking methods were used.
Results. Two stable binding sites were demonstrated for BSA to bind curcumin. CRM197 was taken as a well-studied carrier protein with its antitumor activity. It has been investigated as a specific carrier with a high affinity for cancer cells with overexpression of the epidermal growth factor receptor.
Our results showed one possible curcumin binding site, making CRM197 an ideal specific curcumin delivery platform that provided at least an additive effect in anticancer therapies.
Conclusions. In conclusion, both studied proteins formed stable complexes with curcumin that could lay in the base of the commercial drug application.
Key words: curcumin, blood proteins, BSA, toxoid, CRM197, complex formation, macromolecular complexes, nanocomplex, protein structure, molecular docking.
References
- Li J, Wang R, Gao J. Novel anticancer drugs approved in 2020. Drug Discov Ther. 2021;15(1):44¾ https://doi.org/10.5582/ddt.2021.01013. PMID: 33692282
- Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, Thareja S,Yadav JP, Pathak P, Grishina M, Verma A, Khalilullah H, Jaremko M, Emwas AH, Kumar P. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals (Basel). 2023 Feb 14;16(2):299. https://doi.org/3390/ph16020299. PMID: 37259442; PMCID: PMC9965678.
- Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, Kumar R, Akil ASA, Macha MA, Haris M, Uddin S, Singh M, Bhat AA. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J.Transl Med. 2023 Jul 7;21(1):449. https://doi.org/1186/s12967-023-04292-3. Erratum in: J.Transl Med. 2023 Aug 25;21(1):571. PMID: 37420216; PMCID: PMC10327392.
- Trinidad-Calderón PA, Varela-Chinchilla CD, García-Lara S. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules. 2021 Dec 9;26(24):7453. https://doi.org/3390/molecules26247453. PMID: 34946535; PMCID: PMC8708364.
- Kalanaky S, Hafizi M, Fakharzadeh S, Vasei M, Langroudi L, Janzamin E, Hashemi SM, Khayamzadeh M, Soleimani M, Akbari ME, Nazaran MH. BCc1, thenovel antineoplastic nanocomplex, showed potent anticancer effects in vitro and invivo. Drug Des Devel Ther. 2015 Dec 30;10:59¾ https://doi.org/10.2147/DDDT.S89694.PMID: 26766901; PMCID: PMC4699513.
- Stephan A, Conti M, Rubboli D, Ravagli L, Presta E, Hochkoeppler A.Overexpression and purification of the recombinant diphtheria toxin variant CRM197in Escherichia coli. Journal of Biotechnology 2011; 156(4):245–252. https://doi.org/1016/j.jbiotec.2011.08.024
- Malito E, Bursulaya B, Chen C, Lo Surdo P, Picchianti M, Balducci E,Biancucci M, Brock A, Berti F, Bottomley MJ, Nissum M, Costantino P, Rappuoli R,Spraggon G. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5229¾ https://doi.org/10.1073/pnas.1201964109. Epub 2012 Mar 19. PMID: 22431623; PMCID:PMC3325714
- Donovan JJ, Simon MI, Draper RK, Montal M. Diphtheria toxin forms transmembrane channels in planar lipid bilayers. Proc Natl Acad Sci U S A. 1981Jan;78(1):172¾ https://doi.org/10.1073/pnas.78.1.172. PMID: 6264431; PMCID: PMC319013.9.
- Martarelli D, Pompei P, Mazzoni G. Inhibition of adrenocortical carcinoma by diphtheria toxin mutant CRM197. 2009;55(6):425-32. https://doi.org/10.1159/000264689. Epub 2009 Dec 8. PMID: 19996587.
- Tang TY, Choke EC, Walsh SR, Tiwari A, Chong TT. What Now for theEndovascular Community After the Paclitaxel Mortality Meta-Analysis: Can Sirolimus Replace Paclitaxel in the Peripheral Vasculature? J Endovasc Ther. 2020 Feb;27(1):153¾ https://doi.org/10.1177/1526602819881156. Epub 2019 Oct 14. PMID: 31608741
- Kanumi N., Yotsumoto, F., Ishitsuka, K., Fukami, T., Odawara, T. andManabe, S., et al. Antitumor effects of CRM197, a specific inhibitor of HB-EGF, in T-cell acute lymphoblastic leukemia. Anticancer Res., 2011, 31(7), pp. 2483–248.
- Wang L., Wang, P., Liu, Y. and Xue, Y. Regulation of cellulargrowth, apoptosis, and Akt activity in human U251 glioma cells by a combination ofcisplatin with CRM197. Anticancer Drugs. 2012, 23(1), pp. 81–89. https://doi.org/10.1097/CAD.0b013e32834b9b72
- Kong WY, Ngai SC, Goh BH, Lee LH, Htar TT, Chuah LH. Is Curcumin theAnswer to Future Chemotherapy Cocktail? 2021 Jul 17;26(14):4329. https://doi.org/10.3390/molecules26144329. PMID: 34299604; PMCID: PMC8303331.
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a Protein-SmallMolecule Docking Web Service Based on EADock DSS. Nucleic Acids Res.2011, 39, W270–W277. https://doi.org/10.1097/CAD.0b013e32834b9b72
- Rappuoli R. Isolation and characterization of Corynebacterium diphtheriaenontandem double lysogens hyperproducing CRM197. Appl Environ Microbiol.1983 Sep;46(3):560¾ https://doi.org/10.1128/aem.46.3.560-564.1983. PMID: 6416165;PMCID: PMC239316.
- I. Kaniuk. Prospects of curcumin use in nanobiotechnology. Biotechnologia Acta" V. 9, No 3, 2016 https://doi.org/10.15407/biotech9.03.023 Р. 23¾36, Bibliography 76, EnglishUniversal Decimal Classification: 577.1:547.979.4:60-022.532
- Shen X, Liu X, Li T, Chen Y, Chen Y, Wang P, Zheng L, Yang H, Wu C, Deng S, Liu Y. Recent Advancements in Serum Albumin-Based NanovehiclesToward Potential Cancer Diagnosis and Therapy. Front Chem. 2021 Nov18;9:746646. https://doi.org/3389/fchem.2021.746646. PMID: 34869202; PMCID:PMC8636905.
- Yin C, Liu Y, Qi X, Guo C, Wu X. Kaempferol Incorporated Bovine Serum Albumin Fibrous Films for Ocular Drug Delivery. Macromol Biosci. 2021 Dec;21(12):e2100269. https://doi.org/1002/mabi.202100269. Epub 2021 Sep 16. PMID: 34528413.
- Mardikasari SA, Katona G, Sipos B, Ambrus R, Csóka I. Preparation and Optimization of Bovine Serum Albumin Nanoparticles as a Promising Gelling System for Enhanced Nasal Drug Administration. Gels. 2023 Nov 13;9(11):896. https://doi.org/3390/gels9110896. PMID: 37998986; PMCID: PMC10670644.
- Eskandari S, Good MF, Pandey M. Peptide-Protein Conjugation and Characterization to Develop Vaccines for Group A Streptococcus. Methods Mol Biol. 2021;2355:17¾ https://doi.org/10.1007/978-1-0716-1617-8_3. PMID: 34386947.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
- Details
- Hits: 550
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 5 , 2023
P. 5-16, Bibliography 47, Engl.
UDC:: 577.112.5: 57.088
DOI: https://doi.org/10.15407/biotech16.06.005
Full text: (PDF, in English)
BIOMEDICAL APPLICATION OF K5 PLASMINOGEN FRAGMENT
L.G. Kapustianenko, A.O. Tykhomyrov
Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
Aim. Plasminogen kringle 5 is an endogenous angiogenic inhibitor. The review was purposed to highlight the potential biomedical application of Kringle 5 in the regulation of angiogenesis and tumor growth.
Methods. Angiogenesis is a complex process that involves endothelial cell proliferation, migration, basement membrane degradation, and neovessel organization. Since the uncontrolled growth of new blood vessels causes the progression of many common diseases, first of all, oncological diseases, autoimmune disorders, and neovascular damage of the eye, the use of angiostatins can be a promising pharmacotherapeutic approach to the prevention and adjuvant therapy of these pathological conditions. The advantages of angiostatin application are their non-toxicity even at high doses, non-immunogenicity, and lack of tolerance of target cells to their action. Angiostatins comprise a group of kringle-containing proteolytically-derived fragments of plasminogen/plasmin, which act as potent inhibitory mediators of endothelial proliferation and migration. Among all known angiostatin species, isolated K5 plasminogen fragment was shown to display the most potent inhibitory activity against proliferation of endothelial cells via triggering multiple signaling pathways, which lead to cell death and resulting angiogenesis suppression.
Results. Current literature data suggest that in addition to the expressed and highly specific cytotoxicity in relation to endotheliocytes and some types of tumor cells, the kringle domain 5 of human plasminogen has other advantages as an antiangiogenic and antitumor regulator, including its specific inhibitory activity, which affects only activated, proliferating endothelial cells, and therefore is non-toxic to different types of normal cells. As an endogenous protein, which is formed in the human organism, K5 does not provoke an immune response. K5, as a small polypeptide molecule with a stable structure, can be obtained as a recombinant protein in E. coli cells and can also be used in pharmacokinetic systems of targeted delivery and sustained release.
Conclusions. The prospect of successful use of K5 as a therapeutic agent to manage pathological processes associated with dysregulation of angiogenesis makes it necessary to develop and improve methods of its production and to test its plausible pleiotropic biological activities further.
Key words: angiostatins, plasminogen fragment kringle 5, angiogenesis, endothelial cells, neovascular diseases, tumor growth, retinopathy.
Refrebces
1. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 2007, 6(4), 273‒286. https://doi.org/10.1038/nrd2115
2. Dvorak H.F. Angiogenesis: update. J. Thromb. Haemost. 2005, vol. 3, 1835‒1842. https://doi.org/10.1111/j.1538-7836.2005.01361.x.
3. van der Vorm L., Remijn J., de Laat B., Huskens D. Effects of Plasmin on von Willebrand Factor and Platelets: A Narrative Review. TH Open Georg Thieme Verlag KG Stuttgart, New York. 2018, 2, e218–e228. https://doi.org/10.1055/s-0038-1660505
4. O'Reilly M.S., Holmgren L., Shing Y., Chen C., Rosenthal R.A., Moses M., Lane W.S., Cao Y., Sage E.H., Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994, 79(2), 315‒328. https://doi.org/10.1016/0092-8674(94)90200-3.
5. Wahl M.L., Kenan D.J., Gonzalez-Gronow M., Pizzo S.V. Angiostatin's molecular mechanism: aspects of specificity and regulation elucidated. J. Cell Biochem. 2005, 96(2), 242‒261. https://doi.org/10.1002/jcb.20480.
6. Hiramoto K., Yamate Y. Tranexamic acid reduces endometrial cancer effects through the production of angiostatin. J. Cancer. 2022, 13(5), 1603‒1610. https://doi.org/10.7150/jca.68169.
7. Drixler T.A., Borel Rinkes I.H., Ritchie E.D. Treffers F.W., van Vroonhoven T.J., Gebbink M.F., Voest E.E. Angiostatin inhibits pathological but not physiological retinal angiogenesis. Invest. Ophthalmol. Vis. Sci. 2001, 42(13), 3325‒3330. PMID: 11726640
8. Rezzola S., Loda A., Corsini M., Semeraro F., Annese T., Presta M., Ribatti D. Angiogenesis-inflammation cross talk in diabetic retinopathy: novel insights from the chick embryo chorioallantoic membrane/human vitreous platform. Front. Immunol. 2020, 11, 581288. https://doi.org/10.3389/fimmu.2020.581288
9. Sack R.A., Beaton A.R., Sathe S. Diurnal variations in angiostatin in human tear fluid: a possible role in prevention of corneal neovascularization. Curr. Eye Res. 1999, 18(3), 186‒193. https://doi.org/10.1076/ceyr.18.3.186.5367
10. Chavakis T., Athanasopoulos A., Rhee J.S., Orlova V., Schmidt-Wöll T., Bierhaus A., May A.E., Celik I., Nawroth P.P., Preissner K.T. Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood. 2005, 105(3), 1036‒1043. https://doi.org/10.1182/blood-2004-01-0166
11. Perri S.R., Martineau D., François M., Lejeune L., Bisson L., Durocher Y., Galipeau J. Plasminogen kringle 5 blocks tumor progression by antiangiogenic and proinflammatory pathways. Mol. Cancer. Ther. 2007, 6(2), 441‒449. https://doi.org/10.1158/1535-7163.MCT-06-0434.
12. Lee T.Y., Muschal S., Pravda E.A., Folkman J., Abdollahi A., Javaherian K. Angiostatin regulates the expression of antiangiogenic and proapoptotic pathways via targeted inhibition of mitochondrial proteins. Blood. 2009, 114(9), 1987‒1998. https://doi.org/10.1182/blood-2008-12-197236.
13. Cao R., Wu H.L., Veitonmäki N., Linden P., Farnebo J., Shi G.Y., Cao Y. Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc. Natl. Acad. Sci. USA. 1999, 96(10), 5728‒5733. https://doi.org/10.1073/pnas.96.10.5728.
14. Cao Y., Chen A., An S.S., Ji R.W., Davidson D., Llinás M. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J. Biol. Chem. 1997, 272(36), 22924‒22928. https://doi.org/10.1074/jbc.272.36.22924.
15. Spranger J., Bühnen J., Jansen V., Krieg M., Meyer-Schwickerath R., Blum W.F., Schatz H., Pfeiffer A.F. Systemic levels contribute significantly to increased intraocular IGF-I, IGF-II and IGF-BP3 [correction of IFG-BP3] in proliferative diabetic retinopathy. Horm. Metab. Res. 2000, 32(5), 196‒200. https://doi.org/10.1055/s-2007-978621.
16. Guzyk M.M., Tykhomyrov A.A., Nedzvetsky V.S., Prischepa I.V., Grinenko T.V., Yanitska L.V., Kuchmerovska T.M. Poly(ADP-Ribose) polymerase-1 (PARP-1) inhibitors reduce reactive gliosis and improve angiostatin levels in retina of diabetic rats. Neurochem. Res. 2016, 41(10), 2526‒2537. https://doi.org/10.1007/s11064-016-1964-3.
17. Lai С.С., Wu W.C., Chen S.L. X Xiao, Tsai T.C., Huan S.J., Chen T.L., Tsai R.J., Tsao Y.P. Suppression of choroidal neovascularization by adeno-associated virus vector expressing angiostatin. Vis. Sci. 2001, 42(10), 2401‒2407. PMID:11527956
18. Pearce J.W., Janardhan K.S., Caldwell S., Singh B. Angiostatin and integrin alphavbeta3 in the feline, bovine, canine, equine, porcine and murine retina and cornea. Vet. Ophthalmol. 2007, 10(5), 313‒319. https://doi.org/10.1111/j.1463-5224.2007.00560.x.
- Shyong M.P., Lee F.L., Kuo P.C., Wu A.C., Cheng H.C., Chen S.L., Tung T.H., Tsao Y.P. Reduction of experimental diabetic vascular leakage by delivery of angiostatin with a recombinant adeno-associated virus vector. Mol. Vis. 2007, 13, 133‒141. PMCID: PMC2533034
- Sima J., Zhang S.X., Shao C., Fant J., Ma J.X. The effect of angiostatin on vascular leakage and VEGF expression in rat retina. FEBS Lett. 2004, 564(1‒2), 19‒23. https://doi.org/10.1016/S0014-5793(04)00297-2
- Zhang S.X., Sima J., Shao C., Fant J., Chen Y., Rohrer B., Gao G., Ma J.X. Plasminogen kringle 5 reduces vascular leakage in the retina in rat models of oxygen-induced retinopathy and diabetes. Diabetologia. 2004, 47(1), 124‒131. https://doi.org/10.1007/s00125-003-1276-4.
- Lu K., Zhang S.X., Wang J.X., Shao C., Mott R., Ma J.X. Down-regulation of plasminogen kringle 5 receptor in Müller cells under hypoxia and in the diabetic retina. Invest. Ophthalmol. Vis. Sci. 2004, 45, 664.
- Gao G., Li Y., Gee S., Dudley A., Fant J., Crosson C., Ma J.X. Down-regulation of vascular endothelial growth factor and up-regulation of pigment epithelium-derived factor: a possible mechanism for the anti-angiogenic activity of plasminogen kringle 5. J. Biol. Chem. 2002, 277(11), 9492‒9497. https://doi.org/10.1074/jbc.M108004200
- Ma J., Li C., Shao C., Gao G., Yang X. Decreased K5 receptor expression in the retina, a potential pathogenic mechanism for diabetic retinopathy. Mol. Vis. 2012, 18, 330‒336. PMCID: PMC3283210
25. Tykhomyrov A. A., Yusova E. I., Diordieva S. I., Corsa V.V., Grinenko T.V. Production and characteristics of antibodies against K1-3 fragment of human plasminogen. Biotechnologia Acta. 2013, 6(1), 86‒96. (In Ukrainian). https://doi.org/10.15407/biotech6.01.086.
26. Gonzalez-Gronow M., Kalfa T., Johnson C.E., Gawdi G., Pizzo S. V. The voltage-dependent anion channel is a receptor for plasminogen kringle 5 on human endothelial cells. J. Biol. Chem. 2003, 278(29), 27312‒27318. https://doi.org/10.1074/jbc.M303172200.
27. Tarui T., Mazar A. P., Cines D. B., Takada Y. Urokinase-type plasminogen activator receptor (CD87) is a ligand for integrins and mediates cell-cell interaction. J. Biol. Chem. 2001, V. 276, P. 3983‒3990. https://doi.org/10.1074/jbc.M008220200
28. Cao Y., Ji R.W., Davidson D., Schaller J., Marti D., Söhndel S., McCance S.G., O'Reilly M.S., Llinás M., Folkman J. Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J. Biol. Chem. 1996, V. 271, P. 29461-29467. https://doi.org/10.1074/jbc.271.46.29461.
29. Llombart-Bosch A., López-Guerrero J. A., Felipo V. New trends in cancer for the 21st century. Springer Netherlands. 2006: 251‒275. https://doi.org/10.1007/978-1-4020-5133-3
30. Cao Y., Xue L. Angiostatin. Semin. Thromb. Hemost. 2004, 30(1), 83‒93. https://doi.org/10.1055/s-2004-822973.
31. Kapustianenko L.G., Iatsenko T.A., Iusova O.I., Grinenko T.V. Isolation and purification of a kringle 5 from human plasminogen using AH-Sepharose. Biotechnologia Acta. 2014, 7(4), 35‒42. https://doi.org/10.15407/biotech7.04.035
32. Shoshan-Barmatz V., De Pinto V., Zweckstetter M., Raviv Z., Keinan N., Arbel N. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol. Aspects Med. 2010, 31(3), 227‒285. https://doi.org/10.1016/j.mam.2010.03.002
33. Li L., Yao Y.C., Gu X.Q., Che D., Ma C.-Q., Dai Zh.-Y., Li C., Zhou T., Cai W.-B., Yang Zh.-H., Yang X., Gao G.-Q. Plasminogen kringle 5 induces endothelial cell apoptosis by triggering a voltage-dependent anion channel 1 (VDAC1) positive feedback loop. J. Biol. Chem. 2014, 289, 32628‒32638. https://doi.org/10.1074/jbc.M114.567792
34. Gonzalez-Gronow M., Ray R., Wang F., Pizzo S.V. The voltage-dependent anion channel (VDAC) binds tissue-type plasminogen activator and promotes activation of plasminogen on the cell surface. J. Biol. Chem. 2013, 288(1), 498‒509. https://doi.org/10.1074/jbc.M112.412502
35. Gu X., Yao Y., Cheng R., Zhang Y., Dai Z., Wan G., Yang Z., Cai W., Gao G.,Yang X. Plasminogen K5 activates mitochondrial apoptosis pathway in endothelial cells by regulating Bak and Bcl-x(L) subcellular distribution. Apoptosis. 2011, 16(8), 846‒855. https://doi.org/10.1007/s10495-011-0618-9
36. Fang S., Hong H., Li L., He D., Xu Z., Zuo S., Han J., Wu Q., Dai Z., Cai W., Ma J, Shao C., Gao G., Yang X. Plasminogen kringle 5 suppresses gastric cancer via regulating HIF-1α and GRP78. Cell Death Dis. 2017, 8(10), e3144. https://doi.org/10.1038/cddis.2017.528.
37. Lu H., Dhanabal M., Volk R., Waterman M.J., Ramchandran R., Knebelmann B., Segal M., Sukhatme V.P. Kringle 5 causes cell cycle arrest and apoptosis of endothelial cells. Biochem. Biophys. Res. Commun. 1999, 258(3), 668‒673. https://doi.org/10.1006/bbrc.1999.0612.
38. Gao X., Jiang P., Wei X., Zhang W., Zheng J., Sun S., Yao H., Liu X., Zhang Q. Novel fusion protein PK5-RL-Gal-3C inhibits hepatocellular carcinoma via anti-angiogenesis and cytotoxicity. BMC Cancer. 2023, 23, 359. https://doi.org/10.1186/s12885-023-10843-0
39. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA Cancer J. Clin. 2016, 66, 7‒30. https://doi.org/10.3322/caac.21332
40. Shah M.A. Gastrointestinal cancer: targeted therapies in gastric cancer-the dawn of a new era. Nat. Rev. Clin. Oncol. 2014, 11, 10–11. https://doi.org/10.1038/nrclinonc.2013.231
41. Cai W.-B., Zhang Y., Cheng R,. Wang Zh., Fang Sh.-H., Xu Z.-M., Yang X., Yang Zh.-H., Ma J.-X., Shao Ch.-K., Gao G.-Q. Dual Inhibition of Plasminogen Kringle 5 on Angiogenesis and Chemotaxis Suppresses Tumor Metastasis by Targeting HIF-1α Pathway. PLoS One. Editor: Anjali Jain, Cedars-Sinai Medical Center, USA. 2012, 7(12), e53152. https://doi.org/10.1371/journal.pone.0053152
42. Melillo G. Inhibiting hypoxia-inducible factor 1 for cancer therapy. Mol. Cancer Res. 2006, 4, 601‒605. https://doi.org/10.1158/1541-7786.MCR-06-0235
43. Nordgren I.K., Tavassoli A. Targeting tumor angiogenesis with small molecule inhibitors of hypoxia inducible factor. Chem. Soc. Rev. 2011, 40, 4307‒4317. https://doi.org/10.1039/c1cs15032d
44. Shin J., Lee H.J., Jung D.B., Jung J.H., Lee E.O., Lee S.G, Shim B.S., Choi S.H., Ko S.G., Ahn K.S., Jeong S.-J., Kim S.-H. Suppression of STAT3 and HIF-1 alpha mediates anti-angiogenic activity of betulinic acid in hypoxic pc-3 prostate cancer cells. PLoS One. Editor: Anjali Jain, Cedars-Sinai Medical Center, USA. 2011, 6(6), e21492. https://doi.org/10.1371/journal.pone.0021492
45. Salceda S., Caro J. Hypoxia-inducible factor 1alpha (hif-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 1997, 272, 22642‒22647. https://doi.org/10.1074/jbc.272.36.22642
46. Chilov D., Camenisch G., Kvietikova I., Ziegler U., Gassmann M., Wenger R.H. Induction and nuclear translocation of hypoxia-inducible factor-1 (hif-1): Heterodimerization with arnt is not necessary for nuclear accumulation of hif-1alpha. J. Cell Sci. 1999, 112(Pt8), 1203‒1212. https://doi.org/10.1242/jcs.112.8.1203
47. Zhang D., Kaufman P.L., Gao G., Saunders R.A., Ma J.X. Intravitreal injection of plasminogen kringle 5, an endogenous angiogenic inhibitor, arrests retinal neovascularization in rats. Diabetologia. 2001, 44(6), 757‒765. https://doi.org/10.1007/s001250051685
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
- Details
- Hits: 677
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 6 , 2023
P. 17-33, Bibliography 33, Engl.
UDC:: 579.663
DOI: https://doi.org/10.15407/biotech16.06.017
Full text: (PDF, in English)
INFLUENCE OF BIOLOGICAL INDUCTORS ON THE SYNTHESIS AND BIOLOGICAL ACTIVITY OF MICROBIAL METABOLITES
1National University of Food Technologies, Kyiv, Ukraine
2Institute of Microbiology and Virology of NASU, Kyiv, Ukraine
The increasing antibiotic resistance is a severe concern for humanity. Co-cultivation of microorganisms is a promising method for obtaining new secondary antimicrobial metabolites. An effective strategy for the co-cultivation of microorganisms involves using certain biological inductors.
The review aimed to summarize existing scientific research in the literature related to the influence of physiologically different types of biological inductors on the synthesis and biological activity of microbial secondary metabolites.
An analysis of the literature showed that in such studies, either live or inactivated cells of the inductor were added to the culture medium at significantly lower concentrations compared to the producer cells of the final metabolites or the supernatant (filtrate) after cultivation of a competitive microorganism was used as an inductor.
According to the literature and our experimental studies, using inductors was a practical approach not only for intensifying the synthesis of bacteriocins, surfactants, and antibiotics but also for increasing their biological activity. Additionally, it often leads to the production of novel antimicrobial compounds that are not typical for the producer.
However, the mechanisms of the effect of inductors on the synthesis of biologically active secondary metabolites required further research, as the literature suggests that their introduction into the cultivation medium of the producer did not always lead to an intensification of the synthesis of the final product. Moreover, the biological activity of secondary metabolites depended on the cultivation conditions of the producer, including the presence of biological inductors in the culture medium. Therefore, it was essential to conduct further research on the interaction between producers and competitive microorganisms to regulate the biological activity of the synthesised metabolites. In addition, there was a necessity to search for more cost-effective substrates for the biosynthesis of secondary metabolites, optimize the composition of the culture medium, and expand the range of both pro- and eukaryotic inductors.
Key words: co-culture, inductor, physiological state of the inductor, antimicrobial metabolites.
References
- Pirog T.P., Ivanov М.S. Microbial co-cultivation: discovery of novel secondary metabolites with different biological activities. Acta. 2023, 16(1), 21-39. doi: 10.15407/biotech16.01.021.
- Wakefield J., Hassan H.M., Jaspars M., Ebel R., Rateb M.E. Dual induction of new microbial secondary metabolites by fungal bacterial co-cultivation. Microbiol. 2017, 8, 1284. https://doi.org/10.3389/fmicb.2017.01284
- Peng X.Y., Wu J.T., Shao C.L., Li Z.Y., Chen M., Wang C.Y. Co-culture: stimulate the metabolic potential and explore the molecular diversity of natural products from microorganisms. Mar. Life. Sci. 2021, 3(3), 363-374. doi: 10.1007/s42995-020-00077-5.
- Fouad N.A., Khalid J.K.L. Improvement of bacteriocin production by Bacillus subtilis NK16 via elicitation with prokaryotic and eukaryotic microbial cells. Iraqi Journal of Biotechnology. 2016, 15(2), 59-73.
- Stincone P., Veras F.F., Pereira J.Q., Mayer F.Q., Varela A.P.M., Brandelli A. Diversity of cyclic antimicrobial lipopeptides from Bacillus P34 revealed by functional annotation and comparative genome analysis. Res. 2020, 238. doi: 10.1016/j.micres.2020.126515.
- Leães F.L., Velho R.V., Caldas D.G., Ritter A.C., Tsai S.M., Brandelli A. Expression of essential genes for biosynthesis of antimicrobial peptides of Bacillus is modulated by inactivated cells of final microorganisms. Microbiol. 2016, 167(2), 83–89. https://doi.org/10.1016/j.resmic.2015.10.005
- Ramchandran R., Ramesh S., Thakur R., Chakrabarti A., Roy U. Improved production of two anti-Candida lipopeptide homologues co-produced by the wild-type Bacillus subtilis RLID 12.1 under optimized conditions. Pharm. Biotechnol. 2020, 21(5), 438-450. doi: 10.2174/1389201020666191205115008.
- Mahmoud S.T., Luti K.J.K., Yonis R.W. Enhancement of prodigiosin production by Serratia marcescens S23 via introducing microbial elicitor cells into culture medium. Iraqi J. Sci. 2015, 56, 1938–51.
- Luti K.J.K., Yonis R.W., Mahmoud S.T. An application of solid-state fermentation and elicitation with some microbial cells for the enhancement of prodigiosin production by Serratia marcescens. Al‐Nahrain Univ. 2018, 21(2), 98-105. https://doi.org/10.22401/JNUS.21.2.15
- Huy N.A.D., Nguyen T.H.K. Studies on the prodigiosin production from Streptomyces coelicolor in liquid media by using heated Lactobacillus rhamnosus. App. Pharm. Sci. 2014, 4(5), 21-24.
- K.J.K., Yonis R.W. Elicitation of Pseudomonas aeruginosawith live and dead microbial cells enhances phenazine production. Rom. Biotechnol. Lett.2013, 18, 8769–8778.
- Liang L., Wang G., Haltli B., Marchbank D.H., Stryhn H., Correa H., Kerr R.G. Metabolomic comparison and assessment of co-cultivation and a heat-killed inductor strategy in activation of cryptic biosynthetic pathways. Nat. Prod. 2020, 83(9), 2696−2705. doi: 10.1021/acs.jnatprod.0c00621.
- El-Sherbiny G.M., Moghannem S.A., Kalaba M.H. Enhancement of Streptomyces MH-133 activity against some antibiotic resistant bacteria using biotic elicitation. Azhar Bull. Sci. 2017, 9, 275-288.
- Xiaomeng H., Shasha L., Jun N., Guiyang W., Fang L., Qin L., Shuzhen C., Jicheng S., Maoluo G. Acremopeptaibols A–F, 16-residue peptaibols from the sponge-derived Acremonium IMB18-086 cultivated with heat-killed Pseudomonas aeruginosa. J. Nat. Prod. 2021, 84(11), 2990–3000. https://doi.org/10.1021/acs.jnatprod.1c00834
- Ancheeva E., Küppers L., Akone S.H. Expanding the metabolic profle of the fungus Chaetomium through co-culture with autoclaved Pseudomonas aeruginosa. Eur. J. Org. Chem. 2017, 3256–3264. https://doi.org/10.1002/ejoc.201700288
- Ge J., Fang B., Wang Y., Song G., Ping W. Bacillus subtilis enhances production of paracin1.7, a bacteriocin produced by Lactobacillus paracasei HD1-7, isolated from chinese fermented cabbage. Microbiol. 2014, 64, 1735-1743. https://doi.org/10.1007/s13213-014-0817-z
- Aida H.I., Marwa S.M. Elicitation of biosurfactant production of Serratia marcessens by using biotic and abiotic factors. Rev. Pharm. 2020, 11(11), 1630-1638.
- Wang M., Yang C., François J.M., Wan X., Deng Q., Feng D., Gong Y. A two-step strategy for high-value-added utilization of rapeseed meal by concurrent improvement of phenolic extraction and protein conversion for microbial iturin A production. Bioeng. Biotechnol. 2021, 975. doi: 10.3389/fbioe.2021.735714.
- Sh M.M., Abd Al-Rhman Rand M., Mater Haifa N. Enhancement of pyocyanin production by Pseudomonas aeruginosa using biotic and abiotic factors. J. Biotechnol. 2019, 14(1), 234-240.
- Sharma R., Jamwal V., Singh V.P., Wazir P., Awasthi P., Singh D., Chaubey A. Revelation and cloning of valinomycin synthetase genes in Streptomyces lavendulae ACR-DA1 and their expression analysis under different fermentation and elicitation conditions. Biotechnol. 2017, 253, 40-47. doi: 10.1016/j.jbiotec.2017.05.008.
- Song Z., Ma Z., Bechthold A., Yu X. Effects of addition of elicitors on rimocidin biosynthesis in Streptomyces rimosus Appl. Microbiol. Biotechnol. 2020, 104(10), 4445–4455. https://doi.org/10.1007/s00253-020-10565-4.
- Wang D., Yuan J., Gu S., Shi Q. Influence of fungal elicitors on biosynthesis of natamycin by Streptomyces natalensis HW-2. Microbiol. Biotechnol. 2013, 97, 5527-5534. doi: 10.1007/s00253-013-4786-0.
- Whitt J., Shipley S.M., Newman D.J., Zuck K.M. Tetramic acid analogues produced by coculture of Saccharopolyspora erythraea with Fusarium pallidoroseum. Nat. Prod. 2014, 77(1), 173–177. https://doi.org/10.1021/np400761g.
- Thu T.T.M., Vinh D.T.T., Dung N.A., Tu N.H.K. Effect of lactic acid produced by lactic acid bacteria on prodigiosin production from Streptomyces coelicolor. J. Pharm. Technol. 2021, 14(4), 1953-6. doi: 10.52711/0974-360X.2021.00345.
- Liu W., Wang J., Zhang H., Qi X., Du C. Transcriptome analysis of the production enhancement mechanism of antimicrobial lipopeptides of Streptomyces bikiniensis HD-087 by co-culture with Magnaporthe oryzae Microb. Cell Factories, 2022, 21(1), 1-11. doi: 10.1186/s12934-022-01913-2.
- Shen W., Wang D., Wei L., Zhang Y. Fungal elicitor-induced transcriptional changes of genes related to branched-chain amino acid metabolism in Streptomyces natalensis HW-2. Microbiol. Biotechnol. 2020, 104(10), 4471–4482. https://doi.org/10.1007/s00253-020-10564-5.
- Wang D., Wei L., Zhang Y., Zhang M., Gu S. Physicochemical and microbial responses of Streptomyces natalensis HW-2 to fungal elicitor. Microbiol. Biotechnol. 2017, 101(17), 6705–6712. doi: 10.1007/s00253-017-8440-0.
- Shi S., Tao Y., Liu W. Effects of fungi fermentation broth on natamycin production of Streptomyces. Appl. Microbiol. 2017, 1, 15–22.
- Mohammadipanah F., Kermani F., Salimi F. Awakening the secondary metabolite pathways of Promicromonospora kermanensis using physicochemical and biological elicitors. Biochem. Biotechnol. 2020, 192(4), 1224–1237. https://doi.org/10.1007/s12010-020-03361-3.
- Pirog T.P., Skrotska O.I., Shevchuk T.A. Іnfluence of biological inductors on antimicrobial, antiadhesive activity and biofilm destruction by Nocardia vaccinii IMV V-7405 surfactants. Z. 2020, 82(3), 24-33. doi: 10.15407/microbiolj82.03.035
- Pirog T., Ivanov M., Yarova H. Antimicrobial activity of Acinetobacter calcoaceticus IMV B-7241 surfactants, synthesized in the presence of biological inductors. Scientific Works of NUFT. 2021, 27(4), 43-52. https://doi.org/10.24263/2225-2924-2021-27-4-6
- Pirog T., Kluchka L., Skrotska O., Stabnikov V. The effect of co-cultivation of Rhodococcus erythropolis with other bacterial strains on biological activity of synthesized surface-active substances. Enzyme Microb. Technol. 2021, 142, 109677. doi: 10.1016/j.enzmictec.2020.109677.
- Pirog T., Kluchka I., Kluchka L. Influence of inactivated cells of competitive microorganisms on the biological activity of Rhodococcus erythropolis IMV Ac-5017 surfactants. Scientific Works of NUFT. 2022, 28(2), 24-35.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
- Details
- Hits: 643
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 6 , 2023
P. 69-75, Bibliography 23, Engl.
UDC:: 571.27; 57.083.3; 615.281.8
DOI: https://doi.org/10.15407/biotech16.06.069
Full text: (PDF, in English)
1 Taras Shevchenko National University of Kyiv, Ukraine
2 Bogomolets National Medical University, Kyiv, Ukraine
3 Latvian Biomedical Research and Study Centre, Riga, Latvia
Aim. This study aimed to examine the effect of Larifan on metabolic characteristics of human blood monocytes and granulocytes in vitro.
Methods. Four healthy adult men aged 21-26 years were recruited to participate in the study as blood donors. The metabolic profile of human blood monocytes and granulocytes was evaluated by phagocytic activity, reactive oxygen species production, nitric oxide generation, and arginase activity. Phagocytosis of FITC-labeled inactivated Staphylococcus aureus and reactive oxygen species generation was estimated by flow cytometry. Arginase activity was assessed in cell lysates. The nitric oxide generation in supernatants was examined using the Griess reaction.
Results. Phagocytic index and reactive oxygen species generation were found to be lower in both human blood monocytes and granulocytes treated with Larifan. The drug caused a dose-dependent increase in nitric oxide production, as well as a decrease in the arginase activity of blood monocytes.
Conclusions. Our results indicated the ability of Larifan to reinforce the antiviral properties of resting phagocytes along with the containment of oxidative stress development.
Key words: monocytes, granulocytes, phagocytosis, reactive oxygen species, nitric oxide, arginase, metabolic polarization.
References
- Kim Y.M., Shin E.C. Type I and III interferon responses in SARS-CoV-2 infection. Exp Mol Med. 2021, 53(5), 750-760. https://doi.org/10.1038/s12276-021-00592-0
- Mantovani S., Oliviero B., Varchetta S., Renieri A., Mondelli M.U. TLRs: Innate Immune Sentries against SARS-CoV-2 Infection. Int J Mol Sci. 2023, 24(9), 8065. https://doi.org/10.3390/ijms24098065
- Montazersaheb S., Hosseiniyan Khatibi S.M., Hejazi M.S., Tarhriz V., Farjami A., Sorbeni F.G., Farahzadi R., Ghasemnejad T. COVID-19 infection: an overview on cytokine storm and related interventions. Virol J. 2022; 19 (92). https://doi.org/10.1186/s12985-022-01814-1
- Sun M., Yu Z., Luo M., Li B., Pan Z., Ma J., Yao H. Screening Host Antiviral Proteins under the Enhanced Immune Responses Induced by a Variant Strain of Porcine Epidemic Diarrhea Virus. Microbiol Spectr. 2022, 10 (4), e0066122. https://doi.org/10.1128/spectrum.00661-22
- Vaivode K., Verhovcova I., Skrastina D., Petrovska R., Kreismane M., Lapse D., Kalnina Z., Salmina K., Rubene D., Pjanova D. Bacteriophage-Derived Double-Stranded RNA Exerts Anti-SARS-CoV-2 Activity In Vitro and in Golden Syrian Hamsters In Vivo. Pharmaceuticals (Basel). 2022,15(9), 1053. https://doi.org/10.3390/ph15091053
- Hurmach Y., Rudyk M., Svyatetska V., Senchylo N., Skachkova O., Pjanova D., Vaivode K., Skivka L. The effect of intranasally administered TLR3 agonist larifan on metabolic profile of microglial cells in rat with C6 glioma. Biochem. J. 2018, 90 (6), 110-119. https://doi.org/10.15407/ubj90.06.110
- Pjanova D., Hurmach Y., Rudyk M., Khranovska N., Skachkova O., Verhovcova I., Skivka L. Effect of Bacteriophage-Derived Double Stranded RNA on Rat Peritoneal Macrophages and Microglia in Normoxia and Hypoxia. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 2021, 75 (5), 343‒349. https://doi.org/10.2478/prolas-2021-0050
- Kolliniati O., Ieronymaki E., Vergadi E., Tsatsanis C. Metabolic Regulation of Macrophage Activation. J Innate Immun. 2022, 14 (1), 51–68. https://doi.org/10.1159/000516780
- Menck K., Behme D., Pantke M., Reiling N., Binder C., Pukrop T., Klemm F. Isolation of human monocytes by double gradient centrifugation and their differentiation to macrophages in teflon-coated cell culture bags. J Vis Exp. 2014, (91), e51554. https://doi.org/10.3791/51554
- Rudyk M., Fedorchuk O., Susak Y., Nowicky Y., Skivka L. Introduction of antineoplastic drug NSC631570 in an inpatient and outpatient setting: Comparative evaluation of biological effects. Asian Journal of Pharmaceutical Sciences. 2016, 11 (2), 308–17. https://doi.org/10.1016/j.ajps.2016.02.004
- Reiner N.E. Methods in molecular biology. Macrophages and dendritic cells. Methods and protocols. Preface. Methods Mol Biol. 2009, 531: v-vi. https://doi.org/10.1007/978-1-59745-396-7
- Bahnan W., Wrighton S., Sundwall M., Bläckberg A., Larsson O., Höglund U., Khakzad H., Godzwon M., Walle M., Elder E., Strand A.S., Happonen L., André O., Ahnlide J.K., Hellmark T., Wendel-Hansen V., Wallin R.P., Malmstöm J., Malmström L., Ohlin M., Rasmussen M., Nordenfelt P. Spike-Dependent Opsonization Indicates Both Dose-Dependent Inhibition of Phagocytosis and That Non-Neutralizing Antibodies Can Confer Protection to SARS-CoV-2. Front Immunol. 2022, 12, 808932. https://doi.org/10.3389/fimmu.2021.808932.
- Lee W.S., Wheatley A.K., Kent S.J., DeKosky B.J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. 2020, 5(10), 1185‒1191. https://doi.org/10.1038/s41564-020-00789-5
- Ikewaki N., Kurosawa G., Levy G.A., Preethy S., Abraham S.J.K. Antibody dependent disease enhancement (ADE) after COVID-19 vaccination and beta glucans as a safer strategy in management. Vaccine. 2023, 41 (15), 2427-2429. https://doi.org/10.1016/j.vaccine.2023.03.005.
- Herb M., Schramm M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel). 2021, 10(2), 313. https://doi.org/10.3390/antiox10020313.
- Lang P.A., Xu H.C., Grusdat M., McIlwain D.R., Pandyra A.A., Harris I.S., Shaabani N., Honke N., Maney S.K., Lang E., Pozdeev V.I., Recher M., Odermatt B., Brenner D., Häussinger D., Ohashi P.S., Hengartner H., Zinkernagel R.M., Mak T.W., Lang K.S. Reactive oxygen species delay control of lymphocytic choriomeningitis virus. Cell Death Differ. 2013, 20, 649–658. https://doi.org/10.1038/cdd.2012.167
- To E.E., Vlahos R., Luong R., Halls M.L., Reading P.C., King P.T., Chan C., Drummond G.R., Sobey C.G., Broughton B.R.S., Malcolm R. Starkey M.R., van der Sluis R., Sharon R. Lewin S.R., Bozinovski S., O’Neill L.A.J., Quach T., Porter C.J.H., Brooks D.A., O’Leary J.J., Selemidis S. Endosomal nox2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy. Commun. 2017, 8, 69. https://doi.org/10.1038/s41467-017-00057-x
- Wieczfinska J., Kleniewska P., Pawliczak R. Oxidative Stress-Related Mechanisms in SARS-CoV-2 Infections. Oxid Med Cell Longev. 2022, 2022, 5589089. https://doi.org/10.1155/2022/5589089
- Auch C.J., Saha R., Sheikh F.G., Liu X., Jacobs B.L., Pahan K. Role of protein kinase R in double-stranded RNA-induced expression of nitric oxide synthase in human astroglia. FEBS Lett. 2004, 563, 223–228. https://doi.org/10.1016/S0014-5793(04)00302-3
- Kieler M., Hofmann M., Schabbauer G. More than just protein building blocks: how amino acids and related metabolic pathways fuel macrophage polarization. FEBS J. 2021, 288, 3694‒3714. https://doi.org/10.1111/febs.15715
- Lisi F., Zelikin A.N., Chandrawati R. Nitric Oxide to Fight Viral Infections. Sci. 2021, 8, 2003895. https://doi.org/10.1002/advs.202003895
22.Iwata M, Inoue T, Asai Y, Hori K, Fujiwara M, Matsuo S, Tsuchida W, Suzuki S. The protective role of localized nitric oxide production during inflammation may be mediated by the heme oxygenase-1/carbon monoxide pathway. Biochem Biophys Rep. 2020, 23, 100790. https://doi.org/10.1016/j.bbrep.2020.100790
23.Ghosh A, Joseph B, Anil S. Nitric Oxide in the Management of Respiratory Consequences in COVID-19: A Scoping Review of a Different Treatment Approach. Cureus. 2022, 14(4), e23852. https://doi.org/10.7759/cureus.23852
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
- DYNAMICS OF THE ANTIOXIDANT ACTIVITY AND PHENOLIC CONSTITUENTS IN SUBMERGED CULTURES OF XYLARIA SPECIES Atamanchuk A.R.1, Bisko N.A.
- RADIATION AND HYPOXIA STUDIES: EFFECTS OF HIGH-ENERGY ATMOSPHERIC PARTICLES ON BIOLOGICAL ORGANISMS AND POSSIBILITIES OF THEIR REHABILITATION KLYUCHKO O.M., LIZUNOV G.V., BELOSHITSKY P.V.