ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 6 , 2023
P. 48-68, Bibliography 105, Engl.
UDC: 612.233+612.176:577.151.6
DOI: https://doi.org/10.15407/biotech16.06.048
Full text: (PDF, in English)
O.M. KLYUCHKO 1, G.V. LIZUNOV 2, P.V. BELOSHITSKY 3
1 National Aviation University, Educational & Research Institute of Air Navigation, Kyiv, Ukraine
2 Space Research Institute of the National Academy of Sciences of Ukraine – State Space Agency of Ukraine, Kyiv
3P. Tychyny Uman State Pedagogical University, Ukraine
The influences of cosmic radiation on atoms and molecules in the Earth's atmosphere were observed with subsequent transformation of atoms, molecules of gases, as well as the development of states of oxygen deficiency (hypoxic) in biological organisms; some recommended ways of such disorders correction.
Aim.This work was purposed to study radiation effects in the ionosphere with subsequent high-energy transformations of atoms and molecules of gases at different heights above the Earth's surface, the interaction of some high-energy atmospheric particles with biological objects near Earth's heights up to 5.500 m above sea level (a.s.l.), and oxygen roles in consequences of biological organisms' irradiation.
Methods. Analysis of results of satellite and rocket observations of the Earth atmosphere gases exploring at different altitudes a.s.l. Investigations in mountain conditions at EMBS research station of the National Academy of Sciences of Ukraine: comparative analysis of results of long-term observation of patients using standard laboratory methods, complex of methodological techniques: clinical, physiological studies of respiratory, cardiovascular systems; hematological, immunological states; functional state of higher nervous activity, mental and neurotic state; antihypoxants use, histochemical, biophysical methods, math modeling, others.
Results.The last data obtained during the satellite atmosphere exploration were presented:
- Studies of influences on the structure of atoms and molecules in the atmosphere
- Concentrations of gases from the ionosphere to the Earth's surface
- Such phenomena as photochemical processes and photoionization
The notion of "information" was discussed based on phenomena described in the article. Described studies of gas-particle modification and oxygen deficiency in organisms (hypoxic states) were supplemented with the results of irradiated Chornobyl patients' examinations and rehabilitation by Ukrainian doctors and scientists in mountain conditions.
Conclusions. Phenomena of solar radiation influence on atoms, molecules and molecular complexes in the Earth's atmosphere were observed. The primary attention was concentrated on the studies of gas concentrations at different heights with linked effects of oxygen roles in the consequences of organisms' irradiation and rehabilitation. Practical recommendations for patients' medical care and rehabilitation were made.
Key words: radiation damage of organisms, hypoxia, high altitudes, high-energy particles, free radicals.
References
1. Lizunov G. V., Korepanov V. E., Lukeniuk A. A., Piankova O. V., Fedorov O. P. Space project “Ionosat-Micro”: readiness for implementation. Space science and technology. 2022, 28(6), 3–11 [In Ukrainian]. http://dx.doi.org/10.15407/knit2022.06.003
2. Lizunov G., Skorokhod T., Hayakawa M., Korepanov V. Formation of ionospheric precursors of earthquakes — probable mechanism and its substantiation. Open Journal of Earthquake Research. 2020, 9(2), 142–169. https://doi.org/10.4236/ojer.2020.92009
3. Klyuchko O. M., Gonchar O. O., Lizunov G. V. Pilots’ organisms: effects of radiation, hypoxia
and possible prospects of their pharmacological corrections. Mater. XVI International Congress “AVIA-23”, 18–20.04.2023, Kyiv, Ukraine, 7.46-7.52
4. Chernogor L. F. Possible Generation of Quasi-Periodic Magnetic Precursors of Earthquakes. Geomagnetism and Aeronomy. 2019, 59, 374–382. https://doi.org/10.1134/S001679321903006X
5. Brooks D. H., Yardley S. L. The source of the major solar energetic particle events from super active region 11944. ScienceAdvances. 2021, 7 (10). https://doi.org/10.1126/sciadv.abf0068
6. Castellanos Durán J. S., Lagg A., Solanki S. K., van Noort M. Detection of the strongest magnetic field in a sunspot light bridge. Astrophys. J., 2020, 895, 129. https://doi.org/10.3847/1538-4357/ab83f1
7. Clancy W. James, Jaime Alvarez-Muñiz, Justin D. Bray, Stijn Buitink, Rustam D. Dagkesamanskii, Ronald D. Ekers, Heino Falcke, Ken Gayley, Tim Huege, Maaijke Mevius, Rob Mutel, Olaf Scholten, Ralph Spencer, Sander ter Veen, Tobias Winchen. Overview of lunar detection of ultra-high energy particles and new plans for the SKA. Cornell University. arXiv:1704.05336 . EPJ Web Conf., 2017, 04001. https://doi.org/10.1051/epjconf/201713504001
8. Yang S.-S., Asano T., Hayakawa M. Abnormal Gravity Wave Activity in the Stratosphere Prior to the 2016 Kumamoto Earthquakes. Journal of Geophysical Research: Space Physics. 2019, 124, 1410–1425. https://doi.org/10.1029/2018JA026002
9. Hayakawa M., Asano T., Rozhnoi A., Solovieva M. Very-Low and Low-Frequency Sounding of Ionospheric Perturbations and Possible Association with Earthquakes. In: Ouzounov, D., et al., Eds., Pre-Earthquake Process: A Multidisciplinary Approach to Earthquake Prediction Studies, Washington
DC: “AGU”, 2018. 277–-304. https://doi.org/10.1002/9781119156949.ch16
10. Yang Z., Bethge C., Tian H., Tomczyk S., Morton R., Del Zanna G., McIntosh S. W., Karak B. B., Gibson S., Samanta T., He J., Chen Y., Wang L. Global maps of the magnetic field in the solar corona. Science , 2020, 369, 694–697. https://doi.org/10.1126/science.abb4462
11. Stansby D., Baker D., Brooks D. H., Owen C. J. Directly comparing coronal and solar wind elemetal fractionation. Astron. Astrophys., 2020, 640, A28. https://doi.org/10.1051/0004-6361/202038319
12. Müller D., St. Cyr O. C., Zouganelis I., Gilbert H. R., Marsden R., Nieves-Chinchilla T., Antonucci E., Auchère F., Berghmans D., Horbury T. S., Howard R. A., Krucker S., Maksimovic M., Owen C. J., Rochus P., Rodriguez-Pacheco J., Romoli M. Solanki S. K., Bruno R., Carlsson M., Fludra A., Harra L., Hassler D. M., Livi S., Louarn P., Peter H., Schühle U., Teriaca L., del Toro Iniesta J. C., Wimmer-Schweingruber R. F., Marsch E., Velli M., De Groof A., Walsh A., Williams D. The Solar Orbiter mission. Science overview. Astron. Astrophys., 2020, 642, A1. https://doi.org/10.1051/0004- 6361/202038467
13. Badman S. T., Bale S. D., Martínez J. C. Oliveros, Panasenco O., Velli M., Stansby D., Buitrago-Casas J. C., Réville V., Bonnell J. W., Case A. W. , de Wit T. D., Goetz K., Harvey P. R., Kasper J. C., Korreck K. E., Larson D. E., Livi R., MacDowall R. J., Malaspina D. M., Pulupa M., Stevens M. L., Whittlesey P. L. Magnetic connectivity of the ecliptic plane within 0.5 au: Potential field source surface modeling of the first Parker Solar Probe encounter. Astrophys. J. Suppl. Ser., 2020, 246, 23. https://doi.org/10.3847/1538-4365/ab4da7
14. Stansby D., Green L., van Driel-Gesztelyi L., Horbury T. Active region contributions to the solar wind over multiple solar cycles. Solar Physics. 2021, 296 (8), pp.116. ff10.1007/s11207-021-01861-x
15. Lizunov G., Korepanov V., Piankova O. Regarding the theory of power lines emission propagation to the space. Journal of Geophysical Research: Space Physics, 2023, 128, e2023JA031668. https://doi.org/10.1029/2023JA031668
16. Fox N. J., Velli M. C., Bale S. D., Decker R., Driesman A., Howard R. A., Kasper J. C., Kinnison J., Kusterer M., Lario D., Lockwood M. K., McComas D. J., Raouafi N. E., Szabo A. The Solar Probe Plus mission: Humanity’s first visit to our star. Space Sci. Rev., 2016, 204, 7–48. https://doi.org/10.1007/s11214-015-0211-6
17. Yang Z., Bethge C., Tian H., Tomczyk S., Morton R., Del Zanna G., McIntosh S. W., Karak B. B., Gibson S., Samanta T., He J., Chen Y., Wang L. Global maps of the magnetic field in the solar corona. Science, 2020, 369, 694–697. https://doi.org/10.1126/science.abb4462
18. Lizunov G., Skorokhod T. On the selection of wave disturbances against the background of trends in satellite thermosphere observations. Space Science and Technology. 2018, 24, 57–68. https://doi.org/10.15407/knit2018.06.057
19. Reames D. V. Abundances, ionization states, temperatures, and FIP in solar energetic particles. Space Sci. Rev., 2018, 214, 61. https://doi.org/10.1007/s11214-018-0495-4
20. Laming J. M. , Vourlidas A. , Korendyke C., Chua D. , Cranmer S. R. , Ko Y.-K. , Kuroda N., Provornikova E. , Raymond J. C. , Raouafi N.-E., Strachan L. , Tun-Beltran S., Weberg M., Wood B. E. Element abundances: A new diagnostic for the solar wind. Astrophys. J., 2019, 879, 124. https://doi.org/10.3847/1538-4357/ab23f1
21. Kihara K., Huang Y., Nishimura N., Nitta N. V., Yashiro S., Ichimoto K., Asai A. Statistical analysis of the relation between coronal mass ejections and solar energetic particles. Astrophys. J., 2020, 900(1), 75. https://doi.org/10.3847/1538-4357/aba621
22. Desai M., Giacalone J. Large gradual solar energetic particle events. Living Rev. Sol. Phys., 2016, 13(1). https://doi.org/10.1007/s41116-016-0002-5
23. Warren H. P., Reep J. W., Crump N. A.,Ugarte-Urra I., Brooks D. H., Winebarger A. R., Savage
S., De Pontieu B., Peter H., Cirtain J. W., Golub L., Kobayashi K., McKenzie D., MortonR., Rachmeler L., Testa P., Tiwari S., Walsh R. Observation and modeling of hightemperature solar active region emission during the high-resolution coronal imager flight of 2018 May 29. Astrophys. J., 2020, 896, 51. https://doi.org/10.3847/1538-4357/ab917c
24. Desai M. I., Mason G. M., Dayeh M. A., Ebert R. W., Mccomas D. J., Li G., Cohen C. M. S., Mewaldt R. A., Schwadron N. A., Smith C. W. Spectral properties of large gradual solar energetic particle events. I. Fe, O, and seed material. Astrophys. J., 2016, 816(2), 68–87 https://doi.org/10.3847/0004-637X/828/2/106
25. Korepanov V., Lizunov G., Fedorov O., Yampolsky Yu., Ivchenko V. IONOSAT–Ionospheric satellite cluster. Advances in Space Research. 2008, 42(9), 1515-1522. https://doi.org/10.1016/j.asr.2008.02.022
26. Nickolaenko A. P., Hayakawa M. Schumann resonances for Tyros: essentials of global electromagnetic resonance in the Earthionosphere cavity. Tokyo: “Springer”, 2014. https://doi.org/10.1007/978-4-431-54358-9
27. Okamoto T. J., Sakurai T. Super-strong magnetic field in sunspots. Astrophys. J. Lett., 2018, 852, L16. https://doi.org/10.3847/2041-8213/aaa3d8
28. Mareev E. A., Iudin D. I. Molchanov O. A. Mosaic Source of Internal Gravity Waves Associated with Seismic Activity. In: Hayakawa M., Molchanov O. A., Eds., Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling. Tokyo: “TERRAPUB”, 2002. 335–342.
29. Del Zanna G., Dere K. P., Young P. R., Landi E., Mason H. E. CHIANTI — An atomic data- base for emission lines. Version 8. Astron. Astrophys., 2015, 582, A56. https://doi.org/10.1051/0004-6361/201526827
30. Landi E., Hutton R., Brage T., Li W. Hinode/ EIS measurements of activeregion magnetic fields. Astrophys. J., 2020, 904(2), 87. https://doi.org/10.3847/1538-4357/abbf54
31. Korepanov V., Hayakawa M., Yampolski Yu., Lizunov G. AGW as Seismo-Ionospheric Coupling Response. Physics and Chemistry of the Earth. 2009, 34, 485–495. https://doi.org/10.1016/j.pce.2008.07.014
32. Li W., Grumer J., Y. Yang, Brage T., Yao K., Chen C., Watanabe T., Jönsson P., Lundstedt H., Hutton R., Zou Y. A novel method to determine magnetic fields in low-density plasma facilitated through accidental degeneracy of quantum states in Fe9+. Astrophys. J., 2015, 807(1), 69 https://doi.org/10.1088/0004-637X/807/1/69
33. Barnes W. T., Bobra M. G., Christe S. D., Freij N., Hayes L. A., Ireland J., Mumford S., Perez-Suarez D., Ryan D. F., Shih A. Y., Chanda P., Glogowski K., Hewett R., HughittV. K., Hill A., Hiware K., Inglis A., Kirk M. S. F., Konge S., Mason J. P., Maloney S. A., Murray S. A., Panda A., Park J., Pereira T. M. D., Rear- don K., Savage S., Sipőcz B. M., Stansby D., Jain Y., Taylor G., Yadav T., Rajul, Dang T. K. The SunPy project: Open source development and status of the version 1.0 core package. Astrophys. J., 2020, 890, 68. https://doi.org/10.3847/1538-4357/ab4f7a
34. Tronin A. A. Atmosphere-Lithosphere Coupling. Thermal Anomalies on the Earth Surface in Seismic Processes. In: Hayakawa, M. and Molchanov, O. A., Eds., Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling. Tokyo: “TERRAPUB”, 2002. 173–176.
35. Brooks D. H., Winebarger A. R., Savage S., Warren H. P., De Pontieu B., Peter H., Cirtain J. W., Golub L., Kobayashi K., McIntosh S. W., McKenzie D., Morton R., Rachmeler L., Testa P., Tiwari S., Walsh R. The drivers of active region outflows into the slow solar wind. Astrophys. J., 2020, 894(2), 144. https://doi.org/10.3847/1538-4357/ac7219
36. Si R., Brage T., Li W., Grumer J., Li M., Hutton R. A first spectroscopic measurement of the magnetic-field strength for an active region of the solar corona. Astrophys. J. Lett. 2020, 898, L34. https://doi.org/10.3847/2041- 8213/aba18c
37. Li M., Parrot M. Statistical analysis of an ionospheric parameter as a base for Earthquake prediction. Journal of Geophysical Research. 2013, 118, 3731–3739. https://doi.org/10.1002/jgra.50313
38. Nakamura T., Korepanov V., Kasahara Y., Hobara Y., Hayakawa M. An Evidence on the Lithosphere-Ionosphere Coupling in Terms of Atmospheric Gravity Waves on the Basis of a Combined Analysis of Surface Pressure, Ionospheric Perturbations and Ground-Based ULF Variations. Journal of Atmospheric Electricity. 2013, 33, 53–68. https://doi.org/10.1541/jae.33.53
39. Fedorenko A. Reproduction of the Characteristics of Atmospheric Gravity Waves in the Polar Regions on the Basis of Satellite Mass Spectrometric Measurements. Radio-Physics and Radio-Astronomy. 2009, 14, 254–265. [In Ukrainian].
40. Pulinets S. A., Ouzounov D. P., Karelin A. V., Davidenko D. V. Physical bases of the generation of short-term earthquake precursors: a complex model of ionizationinduced geophysical processes in the lithosphere-atmosphere-ionospheremagnetosphere system. Geomagnetism and Aeronomy. 2015, 55, 521–538. https://doi.org/10.1134/S0016793215040131
41. Lizunov G., Leontiev A. Ranges of AGW propagation in the Earth’s atmosphere. Geomagnetism and Aeronomy. 2014, 54, 841–848. https://doi.org/10.1134/S0016793214050089
42. Del Zanna G. A revised radiometric calibration for the Hinode/EIS instrument. Astron. Astrophys. 2013, 555, A47. https://doi.org/10.1051/0004-6361/201220810
43. Warren H. P., Ugarte-Urra I., Landi E., The absolute calibration of the EUV imaging spectrometer ONHINODE. Astrophys. J. Suppl. Ser., 2014, 213, 11. https://doi.org/10.1088/0067-0049/213/1/11
44. Bray J. D., Williamson A., Schelfhout J., James C. W., Specer R. E., Chen H., Cropper B. D., Emrich D., Gould K. M. L., HaungsA., Hodder W., Howland T., Huege T., Ken ney D., McPhail A., Mitchell S., Niţu I. C., Roberts P., Tawn R., Tickner J., Tingay S. J. The SKA particle array prototype: the first particle detector at the Murchison Radio-astronomy Observatory. Cornell University. ArXiv-
Labs. 2020, 2. ArXiv: 2005.07273. https://doi.org/10.1016/j.nima.2020.164168
45. Warren H. P., Ugarte-Urra I., Landi E., The absolute calibration of the EUV imaging spectrometer ONHINODE. Astrophys. J. Suppl. Ser. 2014, 213, 11. https://doi.org/10.1088/0067-0049/213/1/11
46. Landi E., Hutton R., Brage T., Li W. SUMER measurement of the Fe X 3p43d 4D5/2,7/2 energy difference. Astrophys. J., 2020, 902, 21. https://doi.org/10.3847/1538-4357/abb2a6
47. Yampolsky Yu., Zalizovsky A., Litvinenko L., Lizunov G., Groves K., Moldvin M. Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio-Physics and Radio-Astronomy. 2004, 9, 130–151. https://www.academia.edu/23674062/Magnetic_Field_Variations_in_Antarctica_
48. Müller D., Nicula B., Felix S., Verstringe F., Bourgoignie B., Csillaghy A., Berghmans D., Jiggens P., García-Ortiz J. P., Ireland J., Zahniy S., Fleck B. J Helioviewer —Timedependent 3D visualisation of solar and heliospheric data. Astron. Astrophys., 2017, 606, A10. https://doi.org/10.1051/0004-6361/201730893
49. Buitink S., Corstanje A., Falcke H., Hare B. M., Hörandel J. R., Huege T., James C., Krampah G., Mulrey K., Mitra P., Nelles A., Pandya H., Rachen J. P., Scholten O., ter Veen S., Thoudam S. , Trinh G. , Winchen T. Performance of SKA as an air shower observatory. Proceedings Of Science. 37th International Cosmic Ray Conference (ICRC2021) — CRI —Cosmic Ray Indirect. 2022, 395. https://doi.org/10.22323/1.395.0415
50. Dudkin F., Korepanov, V., Dudkin D.,Pilipen ko V., Pronenko V., Klimov S. Electric field of the power terrestrial sources observed by microsatellite Chibis-M in the Earth’s ionosphere in frequency range 1-60 Hz. Geophysical Research Letters. 2015, 42, 5686-5693 https://doi.org/10.1002/2015GL064595 51. Skorokhod T., Lizunov G.V. Localized packets of acoustic gravity waves in the ionosphere. Geomagnetism and Aeronomy. 2012, 52(1), 88–93. https://doi.org/10.15407/knit2020.03.055
52. Walterscheid R. L., Hickey M. P. Group velocity and energy flux in the thermosphere: limits on the validity of group velocity in a viscous atmosphere. Journal of GeophysicalResearch. 2011, 116, D12101. https://doi.org/10.1029/2010JD014987
53. Astafyeva E. I., Afraimovich E. L. Long distance travelling ionospheric disturbances caused by the Great Sumatra’ Andaman Earthquake on 26 December 2004. Earth Planets Space. 2006, 58, 1025–1031. https://doi.org/10.1186/BF03352607
54. Vadas S. L., Fritts D. C. Thermospheric Responses to Gravity Waves: Influences of increasing viscosity and thermal diffusivity. Journal of Geophysical Research. 2005, 110, D15103. https://doi.org/10.1029/2004JD005574
55. Lizunov G., Larkov S., Pipko S. Ionic blanket of the Earth. UNIVERSE. Space Tech. Popular Scientific Journal About Space, Innovations and Technologies. 2020, 4 (179), 76–81. https://universemagazine.com/4-179-2020/
56. Menzel W. P., Tobin D. C., Revercomb H. E. Infrared remote sensing with meteorological satellites. Advances In Atomic, Molecular And Optical Physics. 2016, 65, 193–264. https://doi.org/10.1016/bs.aamop.2016.04.001
57. Ferencz Cs., Lizunov G., POPDAT Team. Ionosphere waves service (IWS): a problemoriented
tool in ionosphere and space weather research produced by POPDAT Project. Journal of Space Weather and Space Climate. 2014, 4, A17. https://doi.org/10.1051/swsc/2014013
58. Fritts D. C., Lund T. X. Gravity wave influences in the thermosphere and ionosphere: observations and recent modeling. Aeronomy of the Earth’s Atmosphere and Ionosphere. IAGA Special Sopron Book Series. 2011, 2, 109–130. https://doi.org/10.1007/978-94-007-0326-1_8
59. Molchanov A., Hayakawa M. Seismo electromagnetics and related phenomena: history and latest results. Tokyo:”TERRAPUB”, 2008
60. Brunelli B. E., Namgaladze A. A. Physics of the ionosphere.: “Science”. 1988. 528 p. 61. Vadas S. L., Fritts D. C. Thermospheric responses to gravity waves: influences of increasing viscosity and thermal diffusivity. Journal of Geophysical Research, 2005, 110, D15103. https://doi.org/10.1029/2004JD005574
62. Klyuchko O. M., Lizunov G. V., Beloshitsky P. V. Radiation phenomena: some natural sources, mechanisms of effects, ways of biological organisms’ protection and rehabilitation. Biotechnologia Acta. 2023, 16(3), 24–44 https://doi.org/10.15407/ biotech16.03.024
63. Biloshitsky P. V., Klyuchko O. M. Postradiation rehabilitation in mountainous conditions. Modern Problems of Science and Education: Mater. Of 11 Intl. Conference. Yalta-Kharkiv: KhNU, 2011. P. 160–161. [In Ukrainian].
64. Biloshitsky P. V., Klyuchko O. M., Onopchuk Yu. M. Radiation damages of organism and their corrections in condi tions of adaptation to high-altitude meteoro lo gical factors. Bull. of NAU. 2010, 1, 224–231. https://doi.org/10.18372/2306-1472.42.1839
65. Beloshitsky P. V., Baraboy V. A., Krasyuk A. N., Korkach V. I., Torbin V. F. Postradiation rehabilitation in mountain conditions. Kyiv: “VIPOL”, 1996. 230 p.
66. Klyuchko O. M., Klyuchko Z. F. Electronic databases of Arthropods: methods and applications. Biotechnologia Acta. 2018. 11(4), 28–49. https://doi.org/10.15407/biotech11.04.028
67. Klyuchko O. M. Electronic expert systems for biology and medicine. Biotechnologia Acta. 2018. 11 (6), 5–28. https://doi.org/10.15407/biotech11.06.005
68. Klyuchko O. M., Pashkivsky A. O., Sheremet D. Yu. Computer modelling of some nanoelements for radiotechnic and television systems. Electr. Contr. Syst., 2012, 33 (3), 102–107. https://doi.org/10.18372/1990-5548.33.5589
69. Klyuchko O. M., Hayrutdinov R. R. Modeling of electrical signals propagation in neurons and its nanotructures. Electr. Contr. Syst., 2011, 28 (2), 120–124. https://doi.org/10.18372/1990-5548.28.870
70. Klyuchko O. M. Method of application of biotechnical monitoring system for bioindicators’ accounting with biosensor and sub-system for optical registration. Patent UA 129987 U. [In Ukrainian].
71. Klyuchko O. M. Electronic information systems in biotechnology. Biotechnologia Acta. 2018, 11 (2), 5–22. https://doi.org/10.15407/biotech11.02.005
72. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. Method of application of biotechnical monitoring system with expert subsystem and biosensor. Patent UA 131863 U; G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27.04.18, u201804663, Issued: 11.02.2019, Bull. 3. [In Ukrainian].
73. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. O. Method of bio-sensor test system application.
Patent UA 129923 U, G01N33/00, G01N33/50, C12Q 1/02. Priority: 22.03.2018, u201802896, Issued: 26.11.2018, Bull. 22, 7p. [In Ukrainian].
74. Klyuchko Z. F. Family of moths, or cutworms, — Noctuidae. Pests of crops and forest plantations. 1988, 2, 334–381. [In Ukrainian].
75. Klyuchko Z. F. To the study of moths (Lepidoptera: Noctuidae) of the Sumy region. Proceedings of the Kharkov Entomological Society. 2004, 11(1–2), 86–88 [In Ukrainian].
76. Rishbeth H. Ionoquakes: Earthquake precursors in the ionosphere. EoS. 2006, 87, 316–316. https://doi.org/10.1029/2006EO320008
77. Gonchar O., Maznychenko A., Klyuchko O., Mankovska I., Butowska K., Borowik A., Piosik Ja., Sokolowska I. C60 Fullerene Reduces 3-Nirtopropionic Acid-Induced Oxidative Stress Disorders and Mitochondrial Dysfunction in Rats by Modulation of P53, Bcl-2 and Nrf2 Targeted Proteins. International Journal of Molecular Sciences. 2021, 22(11), 5444-5468. https://doi.org/10.3390/ijms22115444
78. Rothkaehl H., Parrot M. Electromagnetic emissions detected in the topside ionosphere related to the human activity. Journal of Atmospheric and Solar-Terrestrial Physics. 2005, 67, 821–828. https://doi.org/10.1016/j.jastp.2005.02.003
79. Denisenko V., Pomozov E. Penetration of an electric field from the surface layer of the atmosphere into the ionosphere. Solar-Terrestrial Physics. 2010, 16, 70–75. https://doi.org/10.1016/j.jastp.2013.05.019
80. Skorokhod T., Lizunov G. V. Localized packets of acoustic gravity waves in the ionosphere. Geomagnetism and Aeronomy. 2012, 52(1), 88–93. https://doi.org/10.15407/knit2020.03.055
81. Frenkel Ya. The theory of the atmospheric electricity phenomenon. 2nd Edition. ”KomKniga”, 2007. 160 p.
82. Feng L., Li J., Qin L., Guo D., Ding H., Deng D. Radioprotective effect of lactoferrin in mice exposed to sublethal X-ray irradiation. Exp. Ther. Med., 2018, 16(4). 3143-3148. https://doi.org10.3892/etm.2018.6570
83. Gorgo Yu. P., Gretsky I. O., Demydova O. I. The Use of Luminos Bacteria Photobacterium phosphoreum as a Bioindicator of Geomagnetic Activity. Innov Biosyst Bioeng. 2018, 2(4), 271–277. [In Ukrainian] https://doi.org/10.20535/ibb.2018.2.4.151459
84. Halliwell B., Gutteridge J. M. C. Free Radicals in Biology and Medicine, 3rd ed. Oxford: “Oxford University Press” , 2015. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
85. Weiss J. F., Landauer M. R. Radioprotection by antioxidants. Ann. N. Y. Acad. Sci. 2000, 899, 44–60. PMID: 10863528 https://doi.org/10.1111/j.1749-6632.2000.tb06175.x
86. Gonchar O. O., Maznychenko A. V., Bulgakova N. V., Vereshchaka I. V., Tomiak T., Ritter U., Prylutskyy Y. I., Mankovska I. M., Kostyukov A. I. Modulation of Nrf2/AREAntioxidant Pathway by Nanoparticles Attenuates Oxidative Stress- Induced Disturbance in Rat Tissues. Top 5 Contributions in Oxidative Medicine: 2nd Edition. “Avid Science”, 2019, 2-43.
87. Kopaeva M. Y., Alchinova I. B., Cherepov A. B., Demorzhi M. S., Nesterenko M. V., Zarayskaya
I. Y., Karganov M. Y. New properties of a well-known antioxidant: pleiotropic effects of human lactoferrin in mice exposed to gamma irradiation in a sublethal dose. Antioxidants (Basel)., 2022, 11(9), 1833. https://doi.org/10.3390/antiox11091833
88. Brackett C. M., Greene K. F., Aldrich A. R., Trageser N. H., Pal S., Molodtsov I., Kandar B. M., Burdelya L. G., Abrams S. I., Gudkov A. V. Signaling through TLR5 mitigates lethal radiation damage by neutrophildependent release of MMP-9. Cell Death Discov., 2021, 7(1), 266. https://doi.org/10.1038/s41420-021- 00642-6
89. Feng Y., Feng Y., Gu L., Liu P., Cao J., Zhang S. The critical role of tetrahydrobiopterin (BH4) metabolism in modulating Radiosensitivity: BH4/NOS axis as an Angel or a Devil. Front Oncol., 2021, 11, 720632. https://doi.org/10.3389/fonc.2021.720632
90. Eid A. M., Hawash M., Amer J., Jarrar A., Qadri S., Alnimer I., Sharaf A., Zalmoot R., Hammoudie O., Hameedi S., Mousa A. Synthesis and Biological Evaluation of Novel Isoxazole-Amide Analogues as Anticancer and Antioxidant Agents. Biomed. Res. Int., 2021, 9, 6633297. https://doiorg/10.1155/2021/6633297
91. Khalil A., Al-Massarani G., Aljapawe A., Ekhtiar A., Bakir M. A. Resveratrol modulates the inflammatory profile of immune responses and circulating endothelial cells’ (CECs’) population during acute whole body gamma irradiation. Front Pharmacol., 2020, 11, 528400. https://doi.org/10.3389/fphar.2020.528400
92. Ungurianu A., Margina D., Borsa C., Ionescu C., von Scheven G., Oziol L., Faure P., Artur Y.,
Bürkle A., Gradinaru D., Moreno-Villanueva M. The radioprotective effect of procaine and procaine-derived product gerovital H3 in lymphocytes from young and aged individuals. Oxid. Med. Cell. Longev., 2020, 3580934. https://doi.org/10.1155/2020/3580934
93. Antropova I. G., Revina A. A., Kurakina E. S., Magomedbekov E. P. Radiation chemical investigation of antioxidant activity of biologically important compounds from plant materials. ACS Omega. 2020, 11(5), 5976–5983. https://doi.org/10.1021/acsomega.9b04335
94. Pouri M., Shaghaghi Z., Ghasemi A., Hosseinimehr S. J. Radioprotective effect of gliclazide as an anti-hyperglycemic agent against genotoxicity induced by ionizing radiation on human lymphocytes. Cardiovasc Hematol. Agents. Med. Chem., 2019, 17(1), 40–46. https://doi.org/10.2174/1871525717666190524092918
95. Mercantepe F., Topcu A., Rakici S., Tumkaya L., Yilmaz A. The effects of N-acetylcysteine on radiotherapy-induced small intestinal damage in rats. Exp Biol Med (Maywood). 2019, 244(5), 372–379. https://doi.org/10.1177/1535370219831225
96. Sharapov M. G., Novoselov V. I., Gudkov S. V. Radioprotective role of peroxiredoxin 6. Antioxidants (Basel). 2019, 5, 8(1), 15. https://doi.org/10.3390/antiox8010015
97. Vukmirovic D., Seymour C., Rollo D., Mothersill C. Cytotoxic profiling of endogenous metabolites relevant to chronic fatigue immune dysfunction syndrome (CFIDS) on p53 variant human colon carcinoma cell lines. Dose Response. 2018, 16(3), 1559325818790999. https://doi.org/10.1177/1559325818790999
98. Fernandes A. M. M., Vilela P. G. F., Valera M. C., Bolay C., Hiller K. A., Schweikl H., Schmalz G. Effect of bleaching agent extracts on murine macrophages. Clin Oral Investig., 2018, 22(4), 1771–1781. https://doi.org/10.1007/s00784-017-2273-1
99. Wang F., Gao P., Guo L., Meng P., Fan Y., Chen Y., Lin Y., Guo G., Ding G., Wang H. Radio-protective effect and mechanism of 4-Acetamido-2,2,6,6- tetramethylpiperidin-1-oxyl in HUVEC cells. Environ Health Prev Med., 2017, 22(1), 14. https://doi.org/10.1186/s12199-017-0616-9
100. Hofer M., Hoferová Z., Falk M. Pharmacolo gical modulation of radiation damage. Does it exist a chance for other substances than hematopoietic growth factors and cytokines? Int. J. Mol. Sci., 2017, 18(7), 1385. https://doi.org/10.3390/ijms18071385
01. Koohian F., Shanei A., Shahbazi-Gahrouei D., Hejazi S. H., Moradi M. T. The radioprotective effect of resveratrol against genotoxicity induced by ɣ-Irradiation in mice blood lymphocytes. Dose Response. 2017, 15(2). https://doi.org/10.1177/1559325817705699
102. MacVittie T. J., Farese A. M., Parker G. A., Bennett A. W., Jackson W. E. Acute Radiation-induced lung injury in the nonhuman primate: A review and comparison of mortality and co-morbidities using models of partial-body irradiation with marginal bone marrow sparing and whole
thorax lung irradiation. Health Phys. 2020,119(5), 559–587. https://doi.org/10.1097/HP.0000000000001346
103. Antsiferova A. A., Kopaeva M. Y., Kochkin V. N., Reshetnikov A. A., Kashkarov P. K. Neurotoxicity of silver nanoparticles and non-linear development of adaptive homeostasis with age. Micromachines (Basel). 2023, 14(5), 984. https://doi.org/10.3390/mi14050984
104. Komissarenko S. V., Zak K. P. Radiation and human immunity. Kyiv, 1994. 105. Spirichev V. B., Komissarenko S. V., Donchenko G. V., Blazheevich N. V., Aleĭnik S. I., Golubkina N. A., Vrzhesinskaia O. A., Isaeva V. A., Kodentsov V. M., Pereverzeva O. G., Alekseeva I. A., Sokol'nikov A. A., Lakushina L. M. To 20-years anniversary of Chernobyl catastrophe: an attempt to study the vitamin, calcium, iron and selenium status of children and adult population in Slavutich and to correct elicited deficiencies. Voprosy Pitaniia, 75 (1). P. 19–29.
105. Spirichev V. B., Komissarenko S. V., Donchenko G. V., Blazheevich N. V., Aleĭnik S. I., Golubkina N. A., Vrzhesinskaia O. A., Isaeva V. A., Kodentsov V. M., Pereverzeva O. G., Alekseeva I. A., Sokol'nikov A. A., Lakushina L. M. To 20-years anniversary of Chernobyl catastrophe: an attempt to study the vitamin, calcium, iron and selenium status of children and adult population in Slavutich and to correct elicited deficiencies. Voprosy Pitaniia, 75 (1). P. 19–29.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
ORCID.:
KlyuchkoO- 0000-0003-4982-7490 ;
LizunovG- 0000-0002-4922-1248 ;
Beloshitsky Pavlo- 0000-0002-6058-3602.