ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 3, 2023
P .24-44, Bibliography 127, Engl.
UDC 612.233+612.176:577.151.6
DOI: https://doi.org/10.15407/biotech16.03.024
Full text: (PDF, in English)
O. M. KLYUCHKO 1, G. V. LIZUNOV 2, P. V. BELOSHITSKY 3
1National Aviation University, Kyiv, Ukraine
2 Space Research Institute of the National Academy of Sciences of Ukraine, Kyiv
3Tychyny Uman State Pedagogical University, Ukraine
Radiation is an essential and dangerous factor in contemporary reality in some regions of industrial countries after technological accidents with nuclear objects, chemical enterprises, etc. This is also the reality of some contemporary military activities and armed conflicts. Radiation damage to organisms can also arise due to natural reasons — aviation or space flights at high altitudes or even extended stays on mountain heights. Natural reasons for such effects have been studied insufficiently for today.
Purpose. To outline briefly some results of studies of the characteristics of ionizing radiation at different heights above the Earth. To describe briefly the influence of radiation factors on biological
organisms and main mechanisms of these effects. To describe effects that cause pathological changes in organisms of people exposed to the low doses of radiation for a long time and methods of post-radiation rehabilitation of affected people in highlands conditions.
Methods. Space satellites explore the Earth's atmosphere at various altitudes above sea level with measurements of different characteristics of solar and galactic radiation (mainly X-ray, gamma radiation, as well as other types of ionizing radiation in some other ranges). Comparative analysis of the results of long-term observation of patients in hospital conditions using many standard laboratory methods of their state examinations. The conducted scientific research consisted of a complex of methodological techniques and approaches: clinical and physiological studies of respiratory and cardiovascular systems, hematological and immunological states, and functional state of higher nervous activity, mental and neurotic state; administration of antihypoxants, histochemical, biophysical and other methods were used to evaluate oxybiotic processes.
Mathematical processing of the results, as well as methods of mathematical modeling, was applied.
Results. The results of the measurements of ionizing radiation levels during the satellite exploration of the Earth's atmosphere at different altitudes were analyzed and presented in schemes. The mechanisms of damaging radiation effects in organisms at the nano level were described: water radiolysis, “oxygen effect” as radio sensitizer, formation of various types of free radicals and peroxides with future consequences for organic compounds, cells, tissues, organs, and organisms. The results of medical treatment and rehabilitation at the EMBS of the persons irradiated by the low doses of radiation were presented, observed, and discussed. Many of the represented results were obtained thanks to the collective work of the great commands of our predecessors in science who searched for the possibilities of medical treatment and rehabilitation of patients who received low doses of radiation for a long time. The contemporary results of options of some developed pathological states' pharmacological corrections were discussed; practical recommendations were made.
Conclusions. Some of the results of fulfilled works, which can be valuable in the treatment and rehabilitation of people of various contingents exposed to low doses of radiation of different natures for a long time, were presented. The outlined recommendations can be offered to persons of various radiation risk contingents for their rehabilitation, in the practice of health care, etc.
Key words: radiation damage of organisms, high altitudes, adaptation, radioprotectors, correction.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2023
Refrences
1. Klyuchko O. M., Gonchar O. O., Lizunov G. V. Pilots’ organisms: effects of radiation, hypoxia and possible prospects of their pharmacological corrections. Mater. XVI International Congress “AVIA-23”, 18-20.04.2023, Kyiv, Ukraine, 7.46-7.52.
2. Lizunov G., Larkov S., Pipko S. Ionic blanket of the Earth. UNIVERSE. Space Tech. Popular Scientific Journal About Space, Innovations and Technologies. 2020, 4 (179), 76–81.
3. Lizunov G., Skorokhod T., Hayakawa M., Korepanov V. Formation of ionospheric pre cursors of earthquakes — probable mechanism and its substantiation. Open Journal of Earthquake Research. 2020, 9 (02), 142–169. https://doi.org/10.4236/ojer.2020.92009
4. Brooks D. H., Yardley S. L. The source of the major solar energetic particle events from super active region 11944. ScienceAdvances. 2021, 7 (10). https://doi.org/10.1126/sciadv.abf0068
5. Stansby D., Baker D., Brooks D. H., Owen C. J. Directly comparing coronal and solar wind elemental fractionation. Astron. Astrophys., 2020, 640, A28. https://doi.org/10.1051/0004-6361/202038319
6. Castellanos Durán J. S., Lagg A., Solanki S. K., van Noort M. Detection of the strongest magnetic field in a sunspot light bridge. Astrophys. J. , 2020, 895, 129. https://doi.org/10.3847/1538-4357/ab83f1a
7. Chernogor L. F. Possible Generation of Quasi-Periodic Magnetic Precursors of Earthquakes. Geomagnetism and Aeronomy. 2019, 59, 374–382. https://doi.org/10.1134/S001679321903006X
8. Yang S.-S., Asano T., Hayakawa M. Abnormal Gravity Wave Activity in the Stratosphere Prior to the 2016 Kumamoto Earthquakes. Journal of Geophysical Research: Space Physics. 2019, 124, 1410–1425. https://doi.org/10.1029/2018JA026002
9. Hayakawa M., Asano T., Rozhnoi A., Solovieva M. Very-Low and Low-Frequency Sounding of Ionospheric Perturbations and Possible Association with Earthquakes. In: Ouzounov, D., et al., Eds., Pre-Earthquake Process: A Multidisciplinary Approach to Earthquake Prediction Studies, Washington DC: “AGU”, 2018. 277–-304. https://doi.org/10.1002/9781119156949.ch16
10. Yang Z., Bethge C., Tian H., Tomczyk S., Morton R., ..., Wang L. Global maps of the magnetic field in the solar corona. Science , 2020, 369, 694–697. https://doi.org/10.1126/science.abb4462
11. Clancy W. James, Jaime Alvarez-Muñiz, Justin D. Bray, Stijn Buitink, Rustam D. Dagkesamanskii, Tobias Winchen. Overview of lunar detection of ultra-high energy particles and new plans for the SKA. Cornell University. arXiv:1704.05336 . EPJ Web Conf., 2017, 04001. https://doi.org/10.1051/epjconf/201713504001
12. Müller D., St. Cyr O. C., Zouganelis I., Gilbert H. R., Marsden R., Nieves-Chinchilla T., Antonucci E., Auchère F., Berghmans D., Horbury T. S., Howard R. A., Krucker S., Maksimovic M., Owen C. J., Rochus P., Rodriguez-Pacheco J., Romoli M. Solanki S. K., Bruno R., Carlsson M., Fludra A., Harra L., Hassler D. M., Livi S., Louarn P., Peter H., Schühle U., Teriaca L., del Toro Iniesta J. C., Wimmer-Schweingruber R. F., Marsch E., Velli M., De Groof A., Walsh A., Williams D. The Solar Orbiter mission. Science overview. Astron. Astrophys., 2020, 642, A1. https://doi.org/10.1051/0004-6361/202038467
13. Bale S. D., Badman S. T., Bonnell J. W., Bowen T. A., Burgess D., Case A. W., Cattell C. A., Chandran B. D. G., Chaston C. C., C. Chen H. K., Drake J. F., de Wit T. D., Eastwood J. P., Ergun R. E., Farrell W. M., Fong C., Goetz K., Goldstein M., Goodrich K. A., Harvey P. R., Horbury T. S., Howes G. G., Kasper J. C., Kellogg P. J., Klimchuk J. A., Korreck K. E., Krasnoselskikh V. V., Krucker S., Laker R., Larson D. E., MacDowall R. J., Maksimovic M., Malaspina D. M., Martinez-Oliveros J., McComas D. J., Meyer-Vernet N., Moncuquet M., Mozer F. S., Phan T. D., Pulupa M., Raouafi N. E., Salem C., Stansby D., Stevens M., Szabo A., Velli M., Woolley T., Wygant J. R. Highly structured slow solar wind emerging from an equatorial coronal hole. Nature , 2019, 576, 237–242. https://doi.org/10.1038/s41586-019-1818-7
14. Badman S. T., Bale S. D., Martínez J. C. Oliveros, Panasenco O., Velli M., Stansby D., Buitrago-Casas J. C., Réville V., Bonnell J. W., Case A. W. , de Wit T. D., Goetz K., Harvey P. R., Kasper J. C., Korreck K. E., Larson D. E., Livi R., MacDowall R. J., Malaspina D. M., Pulupa M., Stevens M. L., Whittlesey P. L. Magnetic connectivity of the ecliptic plane within 0.5 au: Potential field source surface modeling of the first Parker Solar Probe encounter. Astrophys. J. Suppl. Ser., 2020, 246, 23. https://doi.org/10.3847/1538-4365/ab4da7
15. Fox N. J., Velli M. C., Bale S. D., Decker R., Driesman A., Howard R. A., Kasper J. C., Kinnison J., Kusterer M., Lario D., Lockwood M. K., McComas D. J., Raouafi N. E., Szabo A. The Solar Probe Plus mission: Humanity’s first visit to our star. Space Sci. Rev., 2016, 204, 7–48. https://doi.org/10.1007/s11214-015-0211-6
16. Dudkin F., Korepanov V., Dudkin D., Pili- penko V., Pronenko V., Klimov S. Electric Field of the Power Terrestrial Sources Observed by Microsatellite Chibis-M in the Earth’s Ionosphere in Frequency Range 1-60 Hz. Geophysical Research Letters. 2015, 42, 5686–5693. https://doi.org/10.1002/2015GL064595
17. Yang Z., Bethge C., Tian H., Tomczyk S., Morton R., Del Zanna G., McIntosh S. W., Karak B. B., Gibson S., Samanta T., He J., Chen Y., Wang L. Global maps of the magnetic field in the solar corona. Science, 2020, 369, 694–697. https://doi.org/10.1126/science.abb4462
18. Lizunov G., Skorokhod T. On the Selection of Wave Disturbances against the Background of Trends in Satellite Thermosphere Observations. Space Science and Technology. 2018, 24, 57–68. https://doi.org/10.15407/knit2018.06.057
19. Reames D. V. Abundances, ionization states, temperatures, and FIP in solar energetic particles. Space Sci. Rev. , 2018, 214, 61. https://doi.org/10.1007/s11214-018-0495-4
20. Laming J. M. , Vourlidas A. , Korendyke C. , Chua D. , Cranmer S. R. , Ko Y.-K. , Kuroda N., Provornikova E. , Raymond J. C. , Raouafi N.-E., Strachan L. , Tun-Beltran S. , Weberg M., Wood B. E. Element abundances: A new diagnostic for the solar wind. Astrophys. J., 2019, 879, 124. https://doi.org/10.3847/1538-4357/ab23f1
21. Kihara K., Huang Y., Nishimura N., Nitta N. V., Yashiro S., Ichimoto K., Asai A. Statistical analysis of the relation between coronal mass ejections and solar energetic particles. Astrophys. J, 2020, 900(1), 75. https://doi.org/10.3847/1538-4357/aba621
22. Desai M., Giacalone J. Large gradual solar energetic particle events. Living Rev. Sol. Phys. 2016, 13(1). https://doi.org/10.1007/s41116-016-0002-5
23. WarrenH. P., ReepJ. W., CrumpN. A., Ugarte-Urra I., Brooks D. H., Winebarger A. R., Savage S., De Pontieu B., Peter H., Cirtain J. W., Golub L., Kobayashi K., McKenzie D., Morton R., Rachmeler L., Testa P., Tiwari S., Walsh R. Observation and modeling of high-temperature solar active region emission during
the high-resolution coronal imager flight of 2018 May 29. Astrophys. J. 2020, 896, 51. https://doi.org/10.3847/1538-4357/ab917c
24. Desai M. I., Mason G. M., Dayeh M. A., Ebert R. W., Mccomas D. J., Li G., Cohen C. M. S., Mewaldt R. A., Schwadron N. A., Smith C. W. Spectral properties of large gradual solar energetic particle events. I. Fe, O, and seed material. Astrophys. J. 2016, 816(2), 68–87 https://doi.org/10.3847/0004-637X/828/2/106
25. Okamoto T. J., Sakurai T. Super-strong magnetic field in sunspots. Astrophys. J. Lett., 2018, 852, L16. https://doi.org/10.3847/2041-8213/aaa3d8
26. Mareev, E. A. Achievements and Prospects of Research on the Global Electrical Circuit. Advances in Physical Sciences. 2010, 180, 527–534. https://doi.org/10.3367/UFNr.0180.201005h.0527
27. Li W., Grumer J., Y. Yang, Bra ge T., Yao K., Chen C., Watanabe T., Jönsson P., Lundstedt H., Hutton R., Zou Y. A novel method to determine magnetic fields in low-density plasma facilitated through accidental degeneracy of quantum states in Fe9+. Astrophys. J. , 2015, 807(1), 69. https://doi.org/10.1088/0004-637X/807/1/69
28. Si R., Brage T., Li W., Grumer J., Li M., Hutton R. A first spectroscopic measurement of the magnetic-field strength for an active region of the solar corona. Astrophys. J. Lett. 2020, 898, L34. https://doi.org/10.3847/2041-8213/aba18c
29. Stansby D., Baker D., Brooks D. H., Owen C. J. Directly comparing coronal and solar wind elemental fractionation. Astron. Astrophys., 2020, 640, A28. https://doi.org/10.1051/0004-6361/202038319
30. Landi E., Hutton R., Brage T., Li W. Hinode/EIS measurements of active-region magnetic fields. Astrophys. J. 2020, 904(2), 87. https://doi.org/10.3847/1538-4357/abbf54
31. Korepanov V., Hayakawa M., Yampolski Yu., Lizunov G. AGW as Seismo-Ionospheric Coupling Response. Physics and Chemistry of the Earth. 2009, 34, 485–495. https://doi.org/10.1016/j.pce.2008.07.014
32. Testa P., De Pontieu B., Martínez-Sykora J., DeLuca E., Hansteen V., Cirtain J., Winebarger A., Golub L., Kobayashi K., Korreck K., Kuzin S., Walsh R., DeForest C., Title A., Weber M. Observing coronal nanoflares in active region moss. Astrophys. J. Lett., 2013, 770(1), L1. https://doi.org/10.1088/2041-8205/770/1/L1
33. Barnes W. T., Bobra M. G., Christe S. D., Freij N., Hayes L. A., Ireland J., Mumford S., Perez-Suarez D., Ryan D. F., Shih A. Y., Chanda P., Glogowski K., Hewett R., Hughitt V. K., Hill A., Hiware K., Inglis A., Kirk M. S. F., Konge S., Mason J. P., Maloney S. A., Murray S. A., Panda A., Park J., Pereira T. M. D., Reardon K., Savage S., Sipőcz B. M., Stansby D., Jain Y., Taylor G., Yadav T., Rajul, Dang T. K. The SunPy project: Open source development and status of the version 1.0 core package. Astrophys. J. 2020, 890, 68. https://doi.org/10.3847/1538-4357/ab4f7a.
34. Tronin A. A. Atmosphere-Lithosphere Coupling. Thermal Anomalies on the Earth Surface in Seismic Processes. In: Hayakawa, M. and Molchanov, O. A., Eds., Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling. Tokyo: “TERRAPUB”, 2002. 173–176.
35. Brooks D. H., Winebarger A. R., Savage S., Warren H. P., De Pontieu B., Peter H., Cirtain J. W., Golub L., Kobayashi K., McIntosh S. W., McKenzie D., Morton R., Rachmeler L., Testa P., Tiwari S., Walsh R. The drivers of active region outflows into the slow solar wind. Astrophys. J. 2020, 894(2), 144. https://doi.org/10.3847/1538-4357/ac7219
36. Mareev E. A., Iudin D. I. Molchanov O. A. Mosaic Source of Internal Gravity Waves Associated with Seismic Activity. In: Hayakawa M., Molchanov O.A., Eds., Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling. Tokyo: “TERRAPUB”, 2002. 335–342.
37. Del Zanna G., Dere K. P., Young P. R., Landi E., Mason H. E. CHIANTI - An atomic database for emission lines. Version 8. Astron. Astrophys. , 2015, 582, A56. https://doi.org/10.1051/0004-6361/201526827
38. Nakamura T., Korepanov V., Kasahara Y., Hobara Y., Hayakawa M. An Evidence on the Lithosphere-Ionosphere Coupling in Terms of Atmospheric Gravity Waves on the Basis of a Combined Analysis of Surface Pressure, Ionospheric Perturbations and Ground-Based ULF Variations. Journal of Atmospheric Electricity. 2013, 33, 53–68. https://doi.org/10.1541/jae.33.53
39. Fedorenko A. Reproduction of the Characteristics of Atmospheric Gravity Waves in the Polar Regions on the Basis of Satellite Mass Spectrometric Measurements. Radio-Physics and Radio-Astronomy. 2009, 14, 254–265. [In Ukrainian].
40. Dere K. P., Del Zanna G., Young P. R., Landi E., Sutherland R. S. CHIANTI—An atomic database for emission lines. XV. Version 9, Improvements for the x-ray satellite lines. Astrophys. J. Suppl. Ser., 2019, 241, 22. https://doi.org/10.3847/1538-4365/ab05cf
41. Lizunov G., Leontiev A. Ranges of AGW Propagation in the Earth’s Atmosphere. Geomagnetism and Aeronomy. 2014, 54, 841–848. https://doi.org/10.1134/S0016793214050089
42. Del Zanna G. A revised radiometric calibration for the Hinode/EIS instrument. Astron. Astrophys. 2013, 555, A47. https://doi.org/10.1051/0004-6361/201220810
43. Vadas S. L., Fritts D. C. Thermospheric Responses to Gravity Waves: Influences of Increasing Viscosity and Thermal Diffusivity. Journal of Geophysical Research, 2005, 110, D15103. https://doi.org/10.1029/2004JD005574
44. Li M., Parrot M. Statistical Analysis of an Ionospheric Parameter as a Base for Earthquake Prediction. Journal of Geophysical Research. 2013, 118, 3731–3739. https://doi.org/10.1002/jgra.50313
45. Warren H. P., Ugarte-Urra I., Landi E., The absolute calibration of the EUV Imaging Spectrometer ONHINODE. Astro phys. J. Suppl. Ser. 2014, 213, 11. https://doi.org/10.1088/0067-0049/213/1/114
46. Landi E., Hutton R., Brage T., Li W. SUMER measurement of the Fe X 3p43d 4D5/2,7/2 energy difference. Astrophys. J. , 2020, 902, 21. https://doi.org/10.3847/1538-4357/abb2a6
47. Yampolsky Yu., Zalizovsky A., Litvinenko L., Lizunov G., Groves K., Moldvin, M. Magnetic Field Variations in the Antarctic and the Conjugated Region (New England) Stimulated by Cyclonic Activity. Radio-Physics and Radio-Astronomy. 2004. 9, 130–151.
48. Müller D., Nicula B., Felix S., Verstringe F., Bourgoignie B., Csillaghy A., Berghmans D., Jiggens P., García-Ortiz J. P., Ireland J., Zahniy S., Fleck B. J Helioviewer – Timedependent 3D visualisation of solar and heliospheric data. Astron. Astrophys. , 2017, 606, A10. https://doi.org/10.1051/0004-6361/201730893
49. Buitink S., Corstanje A., Falcke H., Hare B. M., Hörandel J. R., Huege T., James C., Krampah G., Mulrey K., Mitra P., Nelles A., Pandya H., Rachen J. P., Scholten O., ter Veen S., Thoudam S. , Trinh G. , Winchen T. Performance of SKA as an air shower observatory. Proceedings Of Science. 37th International Cosmic Ray Conference (ICRC2021) — CRI —Cosmic Ray Indirect. 2022, 395. https://doi.org/10.22323/1.395.0415
50. Bray J. D., Williamson A., Schelfhout J., James C. W., Specer R. E., Chen H., Cropper B. D., Emrich D., Gould K. M. L., Haungs A., Hodder W., Howland T., Huege T., Kenney D., McPhail A., Mitchell S., Niţu I. C., Roberts P., Tawn R., Tickner J., Tingay S. J. The SKA Particle Array Prototype: The First Particle Detector at the Murchison Radio-astronomy Observatory. Cornell University. ArXiv-Labs. 2020, 2. ArXiv: 2005.07273. https://doi.org/10.1016/j.nima.2020.164168
51. Bray J. D., Williamson A., Schelfhout J., James C. W., Spencer R. E., Chen H., Cropper B. D., Emrich D., Gould K. M. L., Haungs A., Hodder W., Howland T., Huege T., Kenney D., McPhail A., Mitchell S., Niţu I. C., Roberts P., Tawn R., Tickner J., Tingay S. J. The. The SKA Particle Array Prototype: The First Particle Detector at the Murchison Radio-astronomy Observatory. Nuclear Instruments and Methods in Physics Research 2020. 973 (Section A), 164168. https://doi.org/10.1016/j.nima.2020.164168
52. Walterscheid R. L., Hickey M. P. Group Velocity and Energy Flux in the Thermosphere: Limits on the Validity of Group Velocity in a Viscous Atmosphere. Journal of Geophysical Research. 2011, 116, D12101. https://doi.org/10.1029/2010JD014987
53. Astafyeva E. I., Afraimovich E. L. Long Distance Travelling Ionospheric Disturbances Caused by the Great Sumatra’ Andaman Earthquake on 26 December 2004. Earth Planets Space. 2006, 58, 1025–1031. https://doi.org/10.1186/BF03352607
54. Fritts D. C., Lund T. X. Gravity Wave Influences in the Thermosphere and Ionosphere: Observations and Recent Modeling. Aeronomy of the Earth’s Atmosphere and Ionosphere. IAGA Special Sopron Book Series. 2011, 2, 109–130. https://doi.org/10.1007/978-94-007-0326-1_8
55. Laming J. M. The FIP and inverse FIP effects in solar and stellar coronae. Living Rev. Sol. Phys. 2015, 12, 2. https://doi.org/10.1007/lrsp-2015-2
56. Molchanov A., Hayakawa M. Seismo Electromagnetics and Related Phenomena: History and Latest Results. Tokyo:”TERRAPUB”, 2008.
57. Innis J. L., Conde M. Characterization of Acoustic-Gravity Waves in the Upper Thermosphere Using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) Data. Journal of Geophysical Research. 2002, 107, 1418–1439. https://doi.org/10.1029/2002JA009370
58. Menzel W. P., Tobin D. C., Revercomb H. E. Infrared Remote Sensing with Meteorological Satellites. Advances In Atomic, Molecular And Optical Physics. 2016, 65, 193–264. https://doi.org/10.1016/bs.aamop.2016.04.001
59. Ferencz Cs., Lizunov G., POPDAT Team. Ionosphere Waves Service (IWS): A Problem-Oriented Tool in Ionosphere and Space Weather Research Produced by POPDAT Project. Journal of Space Weather and Space Climate,. 2014, 4, A17. https://doi.org/10.1051/swsc/2014013
60. Nickolaenko A.P., Hayakawa M. Schumann Resonances for Tyros: Essentials of Global Electromagnetic Resonance in the Earth-Ionosphere Cavity. Tokyo: “Springer”, 2014. https://doi.org/10.1007/978-4-431-54358-9
61. Rolland L. M., Lognonne P., Astafyeva E., Kherani E. A., Kobayashi N., Mann M., Munekane H. The Resonant Response of the Ionosphere Imaged after the 2011 Off the Pacific Coast of Tohoku Earthquake. Earth Planets Space. 2011, 63, 853–857. https://doi.org/10.5047/eps.2011.06.020
62. Kato S. Thermosphere. In: Kamide Y. and Chian A.C.-L., Eds., Handbook of the Solar-Terrestrial Environment. Berlin Heidelberg: “Springer-Verlag”, 2007. 222–249.
63. Biloshitsky P. V., Klyuchko O. M. Post-radiation rehabilitation in mountainous conditions. Modern Problems of Science and Education: Mater. Of 11 Intl. Conference. Yalta-Kharkiv: KhNU, 2011. P. 160–161. [In Ukrainian].
64. Biloshitsky P. V., Klyuchko O. M., Onopchuk Yu. M. Radiation damages of organism and their corrections in conditions of adaptation to high-altitude meteorological factors. Bull. of NAU. 2010, 1, 224–231. https://doi.org/10.18372/2306-1472.42.1839
65. Beloshitsky P. V., Baraboy V. A., Krasyuk A. N., Korkach V. I., Torbin V. F. Postradiation rehabilitation in mountain conditions. Kyiv: “VIPOL”, 1996. 230 p.
66. Klyuchko O. M., Klyuchko Z. F. Electronic information systems for monitoring of populations and migrations of insects. Biotechnologia Acta. 2018, 11 (5), 5–25. https://doi.org/10.15407/biotech11.05.005
67. Klyuchko O. M. Electronic expert systems for biology and medicine. Biotechnologia Acta. 2018. 11 (6), 5–28. https://doi.org/10.15407/biotech11.06.005
68. Klyuchko O. M., Pashkivsky A. O., Sheremet D. Yu. Computer modelling of some nanoelements for radiotechnic and television systems. Electr. Contr. Syst. 2012, 33 (3), 102–107. https://doi.org/10.18372/1990-5548.33.5589
69. Klyuchko O. M., Hayrutdinov R. R. Modeling of electrical signals propagation in neurons and its nanostructures. Electr. Contr. Syst. 2011, 28 (2), 120–124. https://www.researchgate.net/publication/361510790
70. Klyuchko O. M. Biotechnical information systems for monitoring of chemicals in environment: biophysical approach. Biotechnologia Acta. 2019, 12 (1), 5–28. https://doi.org/10.15407/biotech12.01.005
71. Klyuchko O. M. Electronic information systems in biotechnology. Biotechnologia Acta. 2018, 11 (2), 5–22. https://doi.org/10.15407/biotech11.02.005
72. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. Method of application of biotechnical monitoring system with expert subsystem and biosensor. Patent UA 131863 U; G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27.04.18, u201804663, Issued: 11.02.2019, Bull. 3. [in Ukrainian].
73. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. O. Method of bio-sensor test system application. Patent UA 129923 U, G01N33/00, G01N33/50, C12Q 1/02. Priority: 22.03.2018, u201802896, Issued: 26.11.2018, Bull. 22, 7p. [In Ukrainian].
74. Klyuchko Z. F. Noctuidae family, or moths, — Noctuidae. Pests of crops and forest plantations. 1988, 2, 334–381. [In Ukrainian].
75. Klyuchko Z. F. To the study of moths (Lepidoptera: Noctuidae) of the Sumy region. Proceedings of the Kharkov Entomological Society. 2004, 11(1–2), 86–88 [In Ukrainian].
76. Rishbeth H. Ionoquakes: Earthquake Precursors in the Ionosphere. EoS. 2006, 87, 316–316. https://doi.org/10.1029/2006EO320008
77. Pulinets S. A., Ouzounov D. P., Karelin A. V., Davidenko D. V. Physical Bases of the Generation of Short-Term Earthquake Precursors: a Complex Model of Ionization-Induced Geophysical Processes in the Lithosphere-Atmosphere-Ionos-phere-Magnetosphere System. Geomagnetism and Aeronomy. 2015, 55, 521–538. https://doi.org/10.1134/S0016793215040131
78. Rothkaehl H., Parrot M. Electromagnetic Emissions Detected in the Topside Ionosphere Related to the Human Activity. Journal of Atmospheric and Solar-Terrestrial Physics. 2005, 67, 821–828. https://doi.org/10.1016/j.jastp.2005.02.003
79. Denisenko V., Pomozov E. Penetration of an Electric Field from the Surface Layer of the Atmosphere into the Ionosphere. Solar-Terrestrial Physics, 2010, 16, 70–75. https://doi.org/10.1016/j.jastp.2013.05.019
80. Skorokhod T., Lizunov G.V. Localized Packets of Acoustic Gravity Waves in the Ionosphere. Geomagnetism and Aeronomy 2012, 52(1), 88–93. https://doi.org/10.15407/knit2020.03.055
81. Frenkel Ya. The Theory of the Atmospheric Electricity Phenomenon. 2nd Edition. M:”KomKniga”, 2007. 160 p.
82. Lizunov G. V., Leont’ev A. Yu. Ranges of AGW Propagation in the Earth’s Atmosphere. Geomagnetism and Aeronomy 2014. 54(6), 841–848 https://doi.org/10.1134/S0016793214050089
83. Yu B. P. Cellular Defenses Against Damage from Reactive Oxygen Species. Phys Rev. 1994, 74, 139–162. https://doi.org/10.1152/physrev.1994.74.1.139
84. Halliwell B., Gutteridge J. M. C. Free Radicals in Biology and Medicine, 3rd ed. Oxford: “Oxford University Press”, 1999.
85. Weiss J. F., Landauer M. R. Radioprotection by antioxidants. Ann N Y Acad Sci. 2000, 899, 44–60. PMID: 10863528 https://doi.org/10.1111/j.1749-6632.2000.tb06175.x
86. Macneil A. R., Owen C. J., Baker D., Brooks D. H., Harra L. K., Long D. M., Wicks R. T. Active region modulation of coronal hole solar wind. Astrophys. J. 2019, 887, 146. https://doi.org/10.3847/1538-4357/ab5586
87. Kopaeva M. Y., Alchinova I. B., Cherepov A. B., Demorzhi M. S., Nesterenko M. V., Zarayskaya I. Y., Karganov M. Y. New Properties of a Well-Known Antioxidant: Pleiotropic Effects of Human Lactoferrin in Mice Exposed to Gamma Irradiation in a Sublethal Dose. Antioxidants (Basel). 2022 Sep 18;11(9):1833. https://doi.org/10.3390/antiox11091833.
88. Brackett C. M., Greene K. F., Aldrich A. R., Trageser N. H., Pal S., Molodtsov I., Kandar B. M., Burdelya L. G., Abrams S. I., Gudkov A. V. Signaling through TLR5 mitigates lethal radiation damage by neutrophil-dependent release of MMP-9. Cell Death Discov. 2021, 7(1), 266. https://doi.org/10.1038/s41420-021-00642-6.
89. Feng Y., Feng Y., Gu L., Liu P., Cao J., Zhang S. The Critical Role of Tetrahydrobiopterin (BH4) Metabolism in Modulating Radiosensitivity: BH4/NOS Axis as an Angel or a Devil. Front Oncol. 2021, 11, 720632. https://doi.org/10.3389/fonc.2021.720632
90. Eid A. M., Hawash M., Amer J., Jarrar A., Qadri S., Alnimer I., Sharaf A., Zalmoot R., Hammoudie O., Hameedi S., Mousa A. Synthesis and Biological Evaluation of Novel Isoxazole-Amide Analogues as Anticancer and Antioxidant Agents. Biomed Res Int. 2021, 9, 6633297. https://doi.org/10.1155/2021/6633297.
91. Khalil A., Al-Massarani G., Aljapawe A., Ekhtiar A., Bakir M.A. Resveratrol Modulates the Inflammatory Profile of Immune Responses and Circulating Endothelial Cells’ (CECs’) Population During Acute Whole Body Gamma Irradiation. Front Pharmacol. 2020, 11, 528400. https://doi.org/10.3389/fphar.2020.528400.
92. Ungurianu A., Margina D., Borsa C., Ionescu C., von Scheven G., Oziol L., Faure P., Artur Y., Bürkle A., Gradinaru D., Moreno-Villanueva M. The Radioprotective Effect of Procaine and Procaine-Derived Product Gerovital H3 in Lymphocytes from Young and Aged Individuals. Oxid Med Cell Longev. 2020, 3580934. https://doi.org/10.1155/2020/3580934
93. Antropova I. G., Revina A. A., Kurakina E. S., Magomedbekov E. P. Radiation Chemical Investigation of Antioxidant Activity of Biologically Important Compounds from Plant Materials. ACS Omega. 2020, 11, 5(11), 5976–5983. https://doi.org/10.1021/acsomega.9b04335
94. Pouri M., Shaghaghi Z., Ghasemi A., Hosseinimehr S. J. Radioprotective Effect of Gliclazide as an Anti-Hyperglycemic Agent Against Genotoxicity Induced by Ionizing Radiation on Human Lymphocytes. Cardiovasc Hematol Agents Med Chem. 2019, 17(1), 40–46. https://doi.org/10.2174/1871525717666190524092918.
95. Mercantepe F., Topcu A., Rakici S., Tumkaya L., Yilmaz A. The effects of N-acetylcysteine on radiotherapy-induced small intestinal damage in rats. Exp Biol Med (Maywood). 2019, 244(5), 372–379. https://doi.org/10.1177/1535370219831225
96. Sharapov M.G., Novoselov V.I., Gudkov S.V. Radioprotective Role of Peroxiredoxin 6. Antioxidants (Basel). 2019, 5, 8(1), 15. https://doi.org/10.3390/antiox8010015
97. Vukmirovic D., Seymour C., Rollo D., Mother sill C. Cytotoxic Profiling of Endogenous Metabolites Relevant to Chronic Fatigue Immune Dysfunction Syndrome (CFIDS) on p53 Variant Human Colon Carcinoma Cell Lines. Dose Response. 2018, 16(3), 1559325818790999. https://doi.org/10.1177/1559325818790999
98. Fernandes A. M. M., Vilela P. G. F., Valera M. C., Bolay C., Hiller K. A., Schweikl H., Schmalz G. Effect of bleaching agent extracts on murine macrophages. Clin Oral Investig. 2018, 22(4), 1771–1781. https://doi.org/10.1007/s00784-017-2273-1
99. Wang F., Gao P., Guo L., Meng P., Fan Y., Chen Y., Lin Y., Guo G., Ding G., Wang H. Radio-protective effect and mechanism of 4-Acetamido-2,2,6,6-tetramethylpiperidin-1-oxyl in HUVEC cells. Environ Health Prev Med. 2017 Mar 24;22(1):14. https://doi.org/10.1186/s12199-017-0616-9
100. Hofer M., Hoferová Z., Falk M. Pharmacological Modulation of Radiation Damage. Does It Exist a Chance for Other Substances than Hematopoietic Growth Factors and Cytokines? Int. J. Mol. Sci. 2017 Jun 28, 18(7), 1385. https://doi.org/10.3390/ijms18071385
101. Koohian F., Shanei A., Shahbazi-Gahrouei D., Hejazi S. H., Moradi M. T. The Radioprotective Effect of Resveratrol Against Genotoxicity Induced by ꓬ-Irradiation in Mice Blood Lymphocytes. Dose Response. 2017, 15(2), 1559325817705699. https://doi.org/10.1177/1559325817705699
102. Hofer M., Hoferová Z., Falk M. Combining Pharmacological Countermeasures to Attenuate the Acute Radiation Syndrome-A Concise Review. Molecules. 2017, 22(5), 834. https://doi.org/10.3390/molecules22050834
103. Puspitasari I. M., Yamazaki C., Abdulah R., Putri M., Kameo S., Nakano T., Koyama H. Protective effects of sodium selenite supplementation against irradiation-induced damage in non-cancerous human esophageal cells. Oncol Lett. 2017, 13(1), 449–454. https://doi.org/10.3892/ol.2016.5434
104. MacVittie T. J., Farese A. M., Parker G. A., Bennett A. W., Jackson W. E. Acute Radiation- induced Lung Injury in the Non-human Primate: A Review and Comparison of Mortality and Co-morbidities Using Models of Partial-body Irradiation with Marginal Bone Marrow Sparing and Whole Thorax Lung Irradiation. Health Phys. 2020, 119(5), 559–587. https://doi.org/10.1097/HP.0000000000001346
105. Antsiferova A. A., Kopaeva M. Y., Koch kin V. N., Reshetnikov A. A., Kashkarov P. K. Neuro toxicity of Silver Nanoparticles and Non-Linear Development of Adaptive Homeostasis with Age. Micromachines (Basel). 2023, 14(5), 984. https://doi.org/10.3390/mi14050984
106. Antsiferova A., Kopaeva M., Kashkarov P. Effects of Prolonged Silver Nanoparticle Exposure on the Contextual Cognition and Behavior of Mammals. Materials (Basel). 2018, 11(4), 558. https://doi.org/10.3390/ma11040558
107. Antsiferova A. A., Kopaeva M. Y., Kochkin V. N., Kashkarov P. K. Kinetics of Silver Accumulation in Tissues of Laboratory Mice after Long-Term Oral Administration of Silver Nanoparticles. Nanomaterials (Basel). 2021, 11(12), 3204. https://doi.org/10.3390/nano11123204
108. Węsierska M., Dziendzikowska K., Gromadzka-Ostrowska J., Dudek J., Polkowska-Motrenko H., Audinot J. N., Gutleb A. C., Lan koff A., Kruszewski M. Silver ions are responsible for memory impairment induced by oral administration of silver nanoparticles. Toxicol Lett. 2018, 290, 133–144. https://doi.org/10.1016/j.toxlet.2018.03.019
109. Dziendzikowska K., Węsierska M., Gromadzka- Ostrowska J., Wilczak J., Oczkowski M., Męczyńska-Wielgosz S., Kruszewski M. Silver Nanoparticles Impair Cognitive Functions and Modify the Hippocampal Level of Neurotransmitters in a Coating-Dependent Manner. Int. J. Mol. Sci. 2021, 22(23), 2706. https://doi.org/10.3390/ijms222312706
110. Dziendzikowska K., Wilczak J., Grodzicki W., Gromadzka-Ostrowska J., Węsierska M., Kruszewski M. Coating-Dependent Neurotoxicity of Silver Nanoparticles An In Vivo Study on Hippocampal Oxidative Stress and Neurosteroids. Int. J. Mol. Sci. 2022, 23(3), 1365. https://doi.org/10.3390/ijms23031365
111. Carrola J., Bastos V., Jarak I., Oliveira-Silva R., Malheiro E., Daniel-da-Silva A. L., Oliveira H., Santos C., Gil A. M., Duarte I. F. Metabolomics of silver nanoparticles toxicity in HaCaT cells: structure-activity relationships and role of ionic silver and oxidative stress. Nanotoxicology. 2016, 10(8), 1105–1117. https://doi.org/10.1080/17435390.2016.1177744
112. Flores-López L.Z., Espinoza-Gómez H., Somanathan R. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative
stress, beneficial and toxicological effects. Mini review. J Appl Toxicol. 2019, 39(1), 16–26. https://doi.org/10.1002/jat.3654
113. Awashra M., Młynarz P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. Nanoscale Adv. 2023. 5(10), 2674–2723. https://doi.org/10.1039/D2NA00534D
114. Gonchar O. A., Mankovska I. N. Time-dependent effect of severe hypoxia/reoxygenation on oxidative stress level, antioxidant capacity and p53 accumulation in heart mitochondria. Ukr. Biochem. J. 2017, 89(6), 41–49. https://doi.org/10.15407/ubj89.06.039
115. Gonchar O., Mankovska I. Hypoxia/Reoxygenation modulates Oxidative Stress Level and Antioxidative Potential in Lung Mitochondria: Possible participation of P53 and NF-KB Target Proteins. Archю Pulmonolю Respirю Care. 2017, 3(2), 035–043. https://doi.org/10.17352/aprc.000022
116. Prylutskyy Y. I., Vereshchaka I. V., Maznychenko A. V., Bulgakova N. V., Gonchar O. O., Kyzyma O. A., Ritter U., Scharff P., Tomiak T., Nozdrenko D. M., Mishchenko I. V., Kostyukov A. I. C60 fullerene as promising therapeutic agent for correcting and preventing skeletal muscle fatigue. J Nanobiotechnol. 2017, 15(8), 1–12. https://doi.org/10.1186/s12951-016-0246-1
117. Gonchar O., Maznychenko A., Bulgakova N., Vereschaka I., Tomiak T., Ritter U., Prylutskyy Y., Mankovska I., Kostyukov A. C60 Fullerene prevents restraint stressinduced oxidative disorders in rat tissues: possible involvement of the Nrf2/ARE-antioxidant pathway. Oxidative
Medicine and Cellular Longevity, 2018, Article ID 2518676, 17. https://doi.org/10.1155/2018/2518676
118. Gonchar O., Maznychenko A., Klyuchko O., Mankovska I., Butowska K., Borowik A., Piosik Ja., Sokolowska I. C60 Fullerene educes 3-Nirtopropionic Acid-Induced Oxidative Stress Disorders and Mitochondrial Dysfunction in Rats by Modulation of P53, Bcl-2 and Nrf2 Targeted Proteins. International Journal of Molecular Sciences. 2021, 22(11), 5444–5468. https://doi.org/10.3390/ijms22115444
119. Karaban I., Mankovska I, Gonchar O., Rozova K., Bratus L. Pharmacological targeting of mitochondrial dysfunction in Parkinson’s disease: approaches and perspectives. Drug Target Review, 2018, 3, 49–53.
120. Gonchar O., Mankovska I., Rozova K., Bratus L., Karaban I. Novel approaches to correction of mitochondrial dysfunction and oxidative disorders in Parkinson’s disease. Fiziol J. 2019, 65, 25–35. https://doi.org/10.15407/fz65.03.061
121. Gonchar O., Mankovska I. Pharmacological correction of mitochondrial dysfunction in rotenone model of Parkinson’s disease: potential participation of P53, NF-B and Nrf2. International Conference on Parkinson’s, Huntington’s & Movement Disorders. Frankfurt, Germany April 17–18, 2019, Processing Book; p. e-25
122. Gonchar O. O., Maznychenko A. V., Bulgakova N. V., Vereshchaka I. V., Tomiak T., Ritter U., Prylutskyy Y. I., Mankovska I. M., Kostyukov I. Modulation of Nrf2/AREAntioxidant Pathway by Nanoparticles Attenuates Oxidative Stress- Induced Disturbance in Rat Tissues. Top 5 Contributions in Oxidative Medicine: 2nd Edition. “Avid Science”, 2019, 2–43.
123. Gonchar O. O., Klymenko O. O., Drevytska T. I., Bratus L. V., Mankovska I. M. Oxidative stress in rat heart mitochondria under a rotenone model of Parkinson’ diseasease: corrective effect of capicor treatment. Ukr. Biochem. J., 2021, 93, 5, 21–30. https://doi.org/10.15407/ubj93.05.021
124. Feng L., Li J., Qin L., Guo D., Ding H., Deng D. Radioprotective effect of lactoferrin in mice exposed to sublethal X-ray irradiation. Exp Ther Med. 2018, 16(4). 3143-3148. https://doi.org10.3892/etm.2018.6570
125. Brooks D. H., Ugarte-Urra I., Warren H. P. Full-Sun observations for identifying the source of the slow solar wind. Nat. Commun. 2015, 6, 5947. https://doi.org10.1038/ncomms6947
126. Tan R., He Y., Zhang S., Pu D., Wu J. Effect of transcutaneous electrical acupoint stimulation on protecting against radiotherapy- induced ovarian damage in mice. J. Ovarian. Res. 2019. 12(1). 65. htttps://doi.org10.1186/s13048-019-0541-1
127. Wei Y. L., Xu J. Y., Zhang R., Zhang Z., Zhao L., Qin LQ. Effects of lactoferrin on Xray- induced intestinal injury in Balb/C mice.
Appl Radiat Isot. 2019, 146. 72–77. htttps://doi.org10.1016/j.apradiso.2019.01.014