ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 16, No. 1 , 2023
P.,57-66, Bibliogr. 38, Engl.
UDC: 571.27; 612.017.11; 612.112.3; 616.894-053.8
DOI: https://doi.org/10.15407/biotech16.01.057
Full text: (PDF, in English)
MICROGLIAL PHAGOCYTIC ACTIVITY IN RATS WITH DIFFERENT MODELS OF ALZHEIMER'S DISEASE
A. Nefedova, M.Rudyk, R.Dovhyi, L.Skivka
Taras Shevchenko National University of Kyiv, Ukraine
Neuroinflammation is a key feature of Alzheimer's disease (AD), a progressive neurodegenerative disorder. Microglia, the resident immune cells of the central nervous system, play a crucial role in the pathogenesis of AD and are active participants in neuroinflammation. Adequate reproduction of neuroinflammation in animal models is one of the main methodological approaches for studying AD pathogenesis and pathophysiology.
The aim of the study was to conduct a comparative assessment of the phagocytic activity of microglia in rats with AD induced by intrahippocampal administration of beta-amyloid (Aβ) 1-40 and Aβ25-35.
Materials and methods. Wistar male rats were used in the study. Intact and sham-operated animals were used as controls. The development of the disease was confirmed by the assessment of cognitive impairment in the Barnes maze behavioral test, as well as by the level of dopaminergic neurons (DN). The phagocytic activity of microglia, as well as oxidative metabolism and the expression of phenotypic markers CD80 and CD206 were determined by flow cytometry.
Results. In animals with Aβ 1-40-induced AD, significant impairment of cognitive activity and loss of DN were registered, microglial cells were characterized by an increase in the proportion of phagocytic cells and an increase in their endocytic activity, augmented oxidative metabolism and overexpression of CD86 and CD206. In animals with Aβ 25-35-induced AD, moderate impairment of cognitive activity was observed, microglial cells were characterized only by an increase in the number of phagocytizing cells without changes in their endocytic activity, oxidative metabolism, and expression of phenotypic markers.
Conclusion. Thus, in animals with Aβ1–40-induced AD, the pro-inflammatory functional profile of microglia, which is characteristic for neuroinflammation in the clinical course of the disease, is more adequately reproduced.
Key words: Alzheimer's disease, microglia, phagocytosis, inflammation.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2023
References
...
1. Alzheimer's disease facts and figures. Alzheimer's & Dementia. 2023, 19(4), 1598–1695. https://doi.org/10.1002/alz.13016
2. Chung SC, Providencia R, Sofat R, Pujades-Rodriguez M, Torralbo A, Fatemifar G, Fitzpatrick NK, Taylor J, Li K, Dale C, Rossor M, Acosta-Mena D, Whittaker J, Denaxas S. Incidence, morbidity, mortality and disparities in dementia: A population linked electronic health records study of 4.3 million individuals. Alzheimers Dement. 2023, 19(1), 123-135. https://doi.org/10.1002/alz.12635
3. Aranda MP, Kremer IN, Hinton L, Zissimopoulos J, Whitmer RA, Hummel CH, Trejo L, Fabius C. Impact of dementia: Health disparities, population trends, care interventions, and economic costs. J Am Geriatr Soc. 2021, 69(7), 1774-1783. https://doi.org/10.1111/jgs.17345
4. Chesworth R., Gamage R., Ullah F., Sonego S., Millington C., Fernandez A., Liang H., Karl T., Münch G., Niedermayer G., & Gyengesi E. Spatial memory and microglia activation in a mouse model of chronic neuroinflammation and the anti-inflammatory effects of apigenin. Frontiers in Neuroscience. 2021, 15. https://doi.org/10.3389/fnins.2021.699329
5. Gonzalez-Ortiz F., Turton M., Kac P. R., Smirnov D., Premi E., Ghidoni R., Benussi L., Cantoni V., Saraceno C., Rivolta J., Ashton N. J., Borroni B., Galasko D., Harrison P., Zetterberg H., Blennow K., Karikari T. K. Brain-derived Tau: A Novel Blood-based biomarker for alzheimer’s disease-type neurodegeneration. Brain. 2022, 146(3), 1152–1165. https://doi.org/10.1093/brain/awac407
6. Dubois B., Villain N., Frisoni G. B., Rabinovici G. D., Sabbagh M., Cappa S., Bejanin A., Bombois S., Epelbaum S., Teichmann M., Habert M.-O., Nordberg A., Blennow K., Galasko D., Stern Y., Rowe C. C., Salloway S., Schneider L. S., Cummings J. L., Feldman H. H. Clinical diagnosis of alzheimer's disease: Recommendations of the International Working Group. The Lancet Neurology. 2021, 20(6), 484–496. https://doi.org/10.1016/s1474-4422(21)00066-1
7. Parajuli B., Koizumi S. Strategies for manipulating microglia to determine their role in the healthy and diseased brain. Neurochemical Research. 2022, 48(4), 1066–1076. https://doi.org/10.1007/s11064-022-03742-6
8. Li Q., Barres B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 2017, 18(4), 225–242. https://doi.org/10.1038/nri.2017.125
9. Bivona G., Iemmolo M., Agnello L., Lo Sasso B., Gambino C. M., Giglio R. V., Scazzone C., Ghersi G., Ciaccio M. Microglial activation and priming in alzheimer’s disease: State of the art and future perspectives. International J. Mol. Sci. 2023, 24(1), 884. https://doi.org/10.3390/ijms24010884
10. Wolf S. A., Boddeke H. W. G. M., Kettenmann H. Microglia in physiology and disease. Ann. Rev. Physiol. 2017, 79(1), 619–643. https://doi.org/10.1146/annurev-physiol-022516-034406
11. Doens D., Fernández, P. L. Microglia receptors and their implications in the response to amyloid β for alzheimer’s disease pathogenesis. Journal of Neuroinflammation. 2014, 11(1), 48. https://doi.org/10.1186/1742-2094-11-48
12. Prakash P., Jethava K. P., Korte N., Izquierdo P., Favuzzi E., Rose I. V., Guttenplan K. A., Manchanda P., Dutta S., Rochet J.-C., Fishell G., Liddelow S. A., Attwell D., Chopra G. Monitoring phagocytic uptake of amyloid β into glial cell lysosomes in real time. Chemical Science. 2021, 12(32), 10901–10918. https://doi.org/10.1039/D1SC03486C
13. Zhang G., Wang Z., Hu H., Zhao M., Sun L. Microglia in alzheimer’s disease: A target for therapeutic intervention. Frontiers in Cellular Neuroscience. 2021, 15. https://doi.org/10.3389/fncel.2021.749587
14. Chatila Z. K., Bradshaw E. M. Alzheimer’s disease genetics: A dampened microglial response? The Neuroscientist. 2021, 29(2), 245–263. https://doi.org/10.1177/10738584211024531
15. Shobin E., Bowley M. P., Estrada L. I., Heyworth N. C., Orczykowski M. E., Eldridge S. A., Calderazzo S. M., Mortazavi F., Moore T. L., Rosene D. L. Microglia activation and phagocytosis: Relationship with aging and cognitive impairment in the rhesus monkey. GeroScience. 2017, 39(2), 199–220. https://doi.org/10.1007/s11357-017-9965-y
16. Wei Y., Li X. Different phenotypes of microglia in animal models of alzheimer disease. Immunity & Ageing. 2022, 19(1). https://doi.org/10.1186/s12979-022-00300-0
17. Stancu I.-C., Vasconcelos B., Terwel D., Dewachter I. Models of β-amyloid induced tau-pathology: The long and “folded” road to understand the mechanism. Molecular Neurodegeneration. 2014, 9(1). https://doi.org/10.1186/1750-1326-9-51
18. Gouras G. K., Tampellini D., Takahashi R. H., Capetillo-Zarate E. Intraneuronal β-amyloid accumulation and synapse pathology in alzheimer’s disease. Acta Neuropathologica. 2010, 119(5), 523–541. https://doi.org/10.1007/s00401-010-0679-9
19. Castillo C. A., Ballesteros-Yáñez I., León-Navarro D. A., Albasanz J. L., Martín M. Early effects of the soluble amyloid Β25-35 peptide in rat cortical neurons: Modulation of signal transduction mediated by adenosine and group I metabotropic glutamate receptors. Int. J Mol. Sci. 2021, 22(12), 6577. https://doi.org/10.3390/ijms22126577
20. Mudò G, Frinchi M, Nuzzo D, Scaduto P, Plescia F, Massenti MF, Di Carlo M, Cannizzaro C, Cassata G, Cicero L, Ruscica M, Belluardo N, Grimaldi LM. Anti-inflammatory and cognitive effects of interferon-β1a (IFNβ1a) in a rat model of Alzheimer's disease. J Neuroinflammation. 2019, 16(1), 44. https://doi.org/10.1186/s12974-019-1417-4
21. Schimidt HL, Garcia A, Izquierdo I, Mello-Carpes PB, Carpes FP. Strength training and running elicit different neuroprotective outcomes in a β-amyloid peptide-mediated Alzheimer's disease model. Physiol Behav. 2019, 206, 206-212. https://doi.org/10.1016/j.physbeh.2019.04.012
22. Walsh S, Finn DP, Dowd E. Time-course of nigrostriatal neurodegeneration and neuroinflammation in the 6-hydroxydopamine-induced axonal and terminal lesion models of Parkinson's disease in the rat. Neuroscience. 2011, 175, 251-61. https://doi.org/10.1016/j.neuroscience.2010.12.005
23. Gholipour P, Komaki A, Parsa H, Ramezani M. Therapeutic Effects of High-Intensity Interval Training Exercise Alone and Its Combination with Ecdysterone Against Amyloid Beta-Induced Rat Model of Alzheimer's Disease: A Behavioral, Biochemical, and Histological Study. Neurochem Res. 2022, 47(7), 2090-2108. https://doi.org/10.1007/s11064-022-03603-2
24. Oliynyk Z, Rudyk M, Dovbynchuk T, Dzubenko N, Tolstanova G, Skivka L. Inflammatory hallmarks in 6-OHDA- and LPS-induced Parkinson's disease in rats. Brain Behav Immun Health. 2023, 30, 100616. https://doi.org/10.1016/j.bbih.2023.100616
25. JinY., Dixon B., Jones L., Gorbet M. The Differential Reactive Oxygen Species Production of Tear Neutrophils in Response to Various Stimuli In Vitro. Int. J. Mo.l Sci. 2021, 22(23), 12899. https://doi.org/10.3390/ijms222312899
26. Woo JM, Shin DY, Lee SJ, Joe Y, Zheng M, Yim JH, Callaway Z, Chung HT, J. M. W. Curcumin protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase-1 expression and reduction of reactive oxygen. Molecular vision. 2012, 18, 901-908. https://pubmed.ncbi.nlm.nih.gov/22539869
27. Henríquez G., Méndez L., Castañeda E., Wagler A., Jeon S., Narayan M. Preclinical model to evaluate outcomes of amyloid cross-toxicity in The rodent brain. ACS Chemical Neuroscience. 2022, 13(20), 2962–2973. https://doi.org/10.1021/acschemneuro.2c00419
28. Le Page A., Dupuis G., Frost E. H., Larbi A., Pawelec G., Witkowski J. M., Fulop T. Role of the peripheral innate immune system in the development of alzheimer's disease. Exp Gerontol. 2018, 107, 59–66. https://doi.org/10.1016/j.exger.2017.12.019
29. Nefodova A., Rudyk M., Pasichnichenko M., Dovhyi R., Dovbynchuk T., Tolstanova G., Skivka L.
30. Oliynyk Zh., Rudyk M., Kalachniuk L., Dovbynchuk T., Tolstanova G., Skivka L. Long-term effects of sham surgery on phagocyte functions in rats. Biotechnologia Acta. 2022, 15(2), 35-44. https://doi.org/10.15407/biotech15.02.037
31. Deczkowska A., Keren-Shaul H., Weiner A., Colonna M., Schwartz M., Amit, I. Disease-associated microglia: A universal immune sensor of neurodegeneration. Cell. 2018, 173(5), 1073–1081. https://doi.org/10.1016/j.cell.2018.05.003
32. Schetters S. T., Gomez-Nicola D., Garcia-Vallejo J. J., Van Kooyk Y. Neuroinflammation: Microglia and T cells get ready to Tango. Front Immunol. 2018, 8, 1905. https://doi.org/10.3389/fimmu.2017.01905
33. Swanson M. E., Scotter E. L., Smyth L. C., Murray H. C., Ryan B., Turner C., Faull R. L., Dragunow M., Curtis, M. A. Identification of a dysfunctional microglial population in human alzheimer’s disease cortex using novel single-cell histology image analysis. Acta Neuropathologica Communications. 2020, 8(1), 170. https://doi.org/10.1186/s40478-020-01047-9
34. Xu Z.-J., Gu Y., Wang C.-Z., Jin Y., Wen X.-M., Ma J.-C., Tang L.-J., Mao Z.-W., Qian J., Lin J. The M2 macrophage marker cd206: A novel prognostic indicator for acute myeloid leukemia. OncoImmunology. 2019, 9(1), 1683347. https://doi.org/10.1080/2162402x.2019.1683347
35. Larvie M., Shoup T., Chang W.-C., Chigweshe L., Hartshorn K., White M. R., Stahl G. L., Elmaleh D. R., Takahashi K. Mannose-binding lectin binds to amyloid protein and modulates inflammation. J Biomed Biotechnol. 2012, 2012, 929803. https://doi.org/10.1155/2012/929803
36. François M., Karpe A. V., Liu J.-W., Beale D. J., Hor M., Hecker J., Faunt J., Maddison J., Johns S., Doecke J. D., Rose S., Leifert W. R. Multi-omics, an integrated approach to identify novel blood biomarkers of alzheimer’s disease. Metabolites. 2022, 12(10), 949. https://doi.org/10.3390/metabo12100949
37. Simpson D. S., Oliver P. L. Ros generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants. 2020, 9(8), 743. https://doi.org/10.3390/antiox9080743
38. Kanyilmaz S., Hepguler S., Atamaz F.C., Gokmen N.M., Ardeniz O., Sin A. Phagocytic and oxidative burst activity of neutrophils in patients with spinal cord injury. Arch. Phys. Med. Rehabil. 2013, 94(2), 369-374. https://doi.org/10.1016/j.apmr.2012.09.015