ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 4, 2021
Р. 70-79, Bibliography 42, English
Universal Decimal Classification: 579.695
https://doi.org/10.15407.biotech14.04.070
TWO-STAGE DEGRADATION OF SOLID ORGANIC WASTE AND LIQUID FILTRATE
Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
The accumulation of solid and liquid organic waste requires their treatment to develop energy biotechnologies and prevent environment pollution.
Aim. The goal of the work was to study the efficiency of the purification of the filtrate from dissolved organic compounds by aerobic oxidation and methane fermentation.
Methods. The standard methods were used to determine рН and redox potential (Eh), the gas composition, the content of short-chain fatty acids, the concentration of dissolved organic compounds counting to the total сarbon. The efficiency of two types of microbial metabolism for the degradation of soluble organic compounds of filtrate was compared.
Results. The aerobic oxidation was established to provide 1.9 times more efficient removal of dissolved organic compounds, compared with the anaerobic methane fermentation. However, it provided CH4 yield 1 L/dm3 of filtrate (сarbon concentration — 1071 mg/L). The necessity to optimize the methods for purifying filtrate to increase the efficiency of the process was determined.
Conclusions. The obtained results will be the basis to develop complex biotechnology providing not only the production of environmentally friendly energy H2 via the fermentation of solid food waste, but also the purification of filtrate to solve the ecological and energy (CH4 production) problem of society.
Key words: solid organic waste, soluble organic compounds, environmental biotechnologies, hydrogen, methane, fermentation, aerobic oxidation.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Curry N., Pillay P. Biogas prediction and design of a food waste to energy system for the urban environment. Renewable Energy. 2012, V. 41, P. 200–209. https://doi.org/10.1016/j.renene.2011.10.019
2. Pagliano G., Ventorino V., Panico A., Pepe O. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol. Biofuels. 2017, 10 (1), 113–137. https://doi.org/10.1186/s13068-017-0802-4
3. Algapani D., Wang J., Qiao W., Su M., Goglio A., Wandera S. M., Jiang M., Pan X., Adani F., Dong R. Improving methane production and anaerobic digestion stability of food waste by extracting lipids and mixing it with sewage sludge. Biores. Technol. 2017, V. 244. https://doi.org/10.1016/j.biortech.2017.08.087
4. Algapani D. E., Qiao W., Ricci M., Bianchi D., Wandera S. M., Adani F., Dong R. Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation. Renewable Energy. 2019, V. 130, P. 1108–1115, https://doi.org/10.1016/j.renene.2018.08.079
5. Pagliaccia P., Gallipoli A., Gianico A., Montecchio D., Braguglia C. M. Single stage anaerobic bioconversion of food waste in mono and co-digestion with olive husks: Impact of thermal pretreatment on hydrogen and methane production. Int. J. Hydrogen Energy. 2016, 41 (2), 905–915. https://doi.org/10.1016/j.ijhydene.2015.10.061
6. Paritosh K., Kushwaha S. K., Yadav M., Pareek N., Chawade A., Vivekanand V. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed. Res. Int. 2017, V. 2017, P. 1–19. https://doi.org/10.1155/2017/2370927
7. Yasin N. H. M., Mumtaz T., Hassan M. A., Abd Rahman N. Food waste and food processing waste for biohydrogen production: A review. J. Environ. Management. 2013, V. 130, P. 375–385. https://doi.org/10.1016/j.jenvman.2013.09.009
8. U?kun Kiran E., Trzcinski A. P., Ng W. J., Liu Y. Bioconversion of food waste to energy: A review. Fuel. 2014, V. 134, P. 389–399, https://doi.org/10.1016/j.fuel.2014.05.074
9. Cheng J., Ding L., Lin R., Yue L., Liu J., Zhou J., Cen K. Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: Effects of physiochemical properties and mix ratios on fermentation performance. Applied Energy. 2016, V. 184, P. 1–8, https://doi.org/10.1016/j.apenergy.2016.10.003
10. Meena R. A. A., Banu J. R., Kannah R. Y., Yogalakshmi K. N., Kumar G. Biohythane production from food processing wastes – Challenges and perspectives. Biores. Technol. 2020, V. 298, P. 122449, https://doi.org/10.1016/j.biortech.2019.122449
11. Hobbs S. R., Landis A. E., Rittmann B. E., Young M. N., Parameswaran P. Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios. Waste Manag. 2018, V. 71, P. 612–617. https://doi.org/10.1016/j.wasman.2017.06.029
12. Han W., Hu Y., Li S., Li F., Tang J. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate. Biores. Technol. 2016, V. 218, P. 589–594. hhttps://doi.org/10.1016/j.biortech.2016.07.009
13. Han M. J., Behera S. K., Park H.-S. Anaerobic co-digestion of food waste leachate and piggery wastewater for methane production: statistical optimization of key process parameters. J. Chem. Technol. Biotechnol. 2012, 87 (11), 1541–1550. hhttps://doi.org/10.1002/jctb.3786
14. Polprasert C. Organic Waste Recycling: Technology and Management – Third Edition. IWA Publishing. 2007. https://library.oapen.org/handle/20.500.12657/30981
15. Levin D. Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy. 2004, 29 (2), 173–185, https://doi.org/10.1016/S0360-3199(03)00094-6
16. Show K. Y., Lee D. J., Tay J. H., Lin C. Y., Chang J. S. Biohydrogen production: Current perspectives and the way forward. Int. J. Hydrogen Energy. 2012, 37 (20), 15616–15631, https://doi.org/10.1016/j.ijhydene.2012.04.109
17. Nanda S., Berruti F. A technical review of bioenergy and resource recovery from municipal solid waste. J. Hazardous Materials. 2021, V. 403, P. 123970. https://doi.org/10.1016/j.jhazmat.2020.123970
18. Gottschalk G. Bacterial metabolism, 2nd Edition. New York: Springer-Verlag. 1986, 359 p. https://doi.org/10.1007/978-1-4612-1072-6
19. Kleidon A., Lorenz R.D. Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Springer Science & Business Media. 2005, 264 p. https://doi.org/10.1007/b12042
20. Kekacs D., Drollette B. D., Brooker M., Plata D. L., Mouser P. J. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids. Biodegradation. 2015, 26 (4), 271–287, https://doi.org/10.1007/s10532-015-9733-6
21. Thauer R. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiol. 1998, 144 (9), 2377–2406, https://doi.org/10.1099/00221287-144-9-2377
22. Berezkin V. G., Drugov Y. S. Gas Chromatography in Air Pollution Analysis. 1st Edition. Elsevier. 1991, 210 p. Available: https://www.elsevier.com/books/gas-chromatography-in-air-pollution-analysis/berezkin/978-0-444-98732-7
23. Suslova О., Govorukha V., Brovarskaya О., Matveeva N., Tashyreva H., Tashyrev O. Method for Determining Organic Compound Concentration in Biological Systems by Permanganate Redox Titration. Int. J. Bioautomation. 2014, 18 (1), 45–52. http://www.biomed.bas.bg/bioautomation/
24. Ghimire A., Frunzo L., Pirozzi F., Trably E., Escudie R., Lens P., Esposito G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy. 2015, V. 144, P. 73–95, https://doi.org/10.1016/j.apenergy.2015.01.045
25. Hovorukha V., Tashyrev O., Matvieieva N., Tashyreva H., Havryliuk O., Bielikova O., Sioma I. Integrated Approach for Development of Environmental Biotechnologies for Treatment of Solid Organic Waste and Obtaining of Biohydrogen and Lignocellulosic Substrate. Environ. Res., Engineering and Management. 2018, 74 (4), 31–42. https://doi.org/10.5755/j01.erem.74.4.20723
26. Hovorukha V., Tashyrev O., Havryliuk O., Iastremska L. High Efficiency of Food Waste Fermentation and Biohydrogen Production in Experimental-industrial Anaerobic Batch Reactor. The Open Agriculture J. 2020, 14 (1), 174–186. https://doi.org/10.2174/1874331502014010174
27. Tashyrev O., Govorukha V., Havryliuk O. The effect of mixing modes on biohydrogen yield and spatial pH gradient at dark fermentation of solid food waste. EEEP. 2017, P. 53–62, https://doi.org/10.32006/eeep.2017.2.5362
28. Hovorukha V., Havryliuk O., Gladka G., Tashyrev O., Kalinichenko A., Sporek M., Dolhanczuk-Srodka A. Hydrogen Dark Fermentation for Degradation of Solid and Liquid Food Waste. Energies. 2021, 14 (7), https://doi.org/10.3390/en14071831
29. Hovorukha V., Tashyrev O., Tashyreva H., Havryliuk O., Bielikova O., Iastremska L. Increase in efficiency of hydrogen production by optimization of food waste fermentation parameters. Energetika. 2019, 65 (1), 85–94. https://doi.org/10.6001/energetika.v65i1.3977
30. Ababouch L., Chaibi A., Busta F. F. Inhibition of Bacterial Spore Growth by Fatty Acids and Their Sodium Salts. J. Food Prot. 1992, 55 (12), 980–984. https://doi.org/10.4315/0362-028X-55.12.980
31. Herrero A. A. End-product inhibition in anaerobic fermentations. Trends in Biotechnol. 1983, 1 (2), 49–53, https://doi.org/10.1016/0167-7799(83)90069-0
32. Sivagurunathan P., Sen B., Lin C.-Y. Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy. Int. J. Hydrogen Energy. 2014, 39 (33), 19232–19241, https://doi.org/10.1016/j.ijhydene.2014.03.260
33. Ziemi?ski K., Fr?c M. Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. African J. Biotechnol. 2012, 11 (18). https://doi.org/10.5897/AJBX11.054
34. Poeschl M., Ward S., Owende P. Environmental impacts of biogas deployment – Part II: life cycle assessment of multiple production and utilization pathways. J. Cleaner Production. 2012, V. 24, P. 184–201. https://doi.org/10.1016/j.jclepro.2011.10.030
35. Wu X., Zhu J., Dong Ch., Miller C., Li Y., Wang L., Yao W. Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor. Int. J. Hydrogen Energy. 2009, 34 (16), 6636–6645, https://doi.org/10.1016/j.ijhydene.2009.06.058
36. Ren N., Li J., Li B., Wang Y., Liu S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int. J. Hydrogen Energy. 2006, 31 (15), 2147–2157, https://doi.org/10.1016/j.ijhydene.2006.02.011
37. Zhang M.-L., Fan Y.-T., Xing Y., Pan C.-M., Zhang G.-S., Lay J.-J. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass and Bioenergy. 2007, 31 (4), 250–254, https://doi.org/10.1016/j.biombioe.2006.08.004
38. Hawkes F. R., Hussy I., Kyazze G., Dinsdale R., Hawkes D. L. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy. 2007, 32 (2), 172–184. hhttps://doi.org/10.1016/j.ijhydene.2006.08.014
39. Ike M., Inoue D., Miyano T., Liu T. T., Sei K., Soda S., Kadoshin Sh. Microbial population dynamics during startup of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project. Biores. Technol. 2010, 101 (11), 3952–3957, https://doi.org/10.1016/j.biortech.2010.01.028
40. Kondusamy D., Kalamdhad A. S. Pre-treatment and anaerobic digestion of food waste for high rate methane production – A review. J. Environ. Chem. Engineering. 2014, 2 (3), 1821–1830, hhttps://doi.org/10.1016/j.jece.2014.07.024
41. Ferry J. G. Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol. Rev. 1999, 23 (1), 13–38. https://doi.org/10.1111/j.1574-6976.1999.tb00390.x
42. Karhadkar P. P., Audic J.-M., Faup G. M., Khanna P. Sulfide and sulfate inhibition of methanogenesis. Water Res. 1987, 21 (9), 1061–1066, https://doi.org/10.1016/0043-1354(87)90027-3