ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 3, 2021
Р.22-29, Bibliography 48 , English
Universal Decimal Classification: 57.047:57.022:57.043:57.044
https://doi.org/10.15407/biotech14.03.021
RESISTANCE TO ANTIBIOTICS AND THEIR UTILIZATION BY MICROORGANISMS
Golub N.B.1, Shi Xinhua 2, Levtun I.I.1
1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine
2Advanced Materials Institute of SDAS, China
With the development of antibiotics application, their spread in the natural environment increases dramatically. The presence of antibiotics in the environment changes microorganism and other living beings ratio and composition, which causes a negative impact on biochemical processes that take place in the environment. The spread of antibiotic resistance genes in environmental microorganisms is a growing problem of environmental safety and human health.
Aim. The objective of the work was to analyze the adaptation mechanisms of microorganisms to the influence of antibiotics and methods for antibiotics utilization.
Results. The mechanisms of microorganisms’ adaptation to antibiotics are shown. The conditions for utilization of different antibiotics classes by microorganisms are provided.
Conclusions. Methods of antibiotics destruction depend on its structure and physicochemical properties. Physico-chemical methods are used for local waste purification and are not suitable for antibiotics disposal in the natural environment. The decomposition products can also have a negative effect on the microorganisms’ cells.
Depending on the class of antibiotics, their biodegradation occurs by different types of microorganisms. It has been shown that sulfonamides and amphinecoles are easily destroyed by many heterotrophic bacteria; biodegradation of aminoglycosides occurs by a strain of Pseudomonas spp.; tetracyclines - mushrooms; β-lactams - through the microorganisms’ association including: Burkholderiales, Pseudomonadales, Enterobacteriales, Actinomycetales, Rhizobiales, Sphingobacteriales. A consortium of destructors must be created to dispose of a specific classes of antibiotics.
Key words: Antibiotics utilization; microorganisms resistance; tetracycline; norfloxancin; resistance factors.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Grenni P., Ancona V., Caracciolo A. B. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2017. https://doi.org/10.1016/j.microc.2017.02.006 |
||||
2. Ruicheng Wei, Tao He, Shengxin Zhang, Lei Zhu, Bin Shang, Zhaojun Li, Ran Wang. Occurrence of seventeen veterinary antibiotics and resistant bacterias in manure fertilized vegetable farm soil in four provinces of China. Chemosphere. 2018, V. 215, P. 234-240. https://doi.org/10.1016/j.chemosphere.2018.09.152 |
||||
3. Houpu Zhang, Shiyu Chen. Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil. Environ. Pollution. 2020, V. 259, P. 113877. https://doi.org/10.1016/j.envpol.2019.113877 |
||||
4. Muhammad J., Khan S., Su J. Q., Hesham A. E.-L. Antibiotics in poultry manure and their associated health issues: a systematic review. J. Soils Sediments Springer. 2019, 1-12 p. https://doi.org/10.1007/s11368-019-02360-0 | ||||
5. Checcucci A., Trevisi P., Luise D., Mattarelli P. Exploring the Animal Waste Resistome: The Spread of Antimicrobial Resistance Genes Through the Use of Livestock Manure, Frontiers in Microbiology. 2020, V. 11, P. 1-9. https://doi.org/10.3389/fmicb.2020.01416 |
||||
6. Conde-Cid M., Ferreira-Coelho G. Adsorption/desorption of three tetracycline antibiotics on different soils in binary competitive systems. J. Environ. Management. 2020, V. 262, P. 110337. https://doi.org/10.1016/j.jenvman.2020.110337 |
||||
7. Kobaa O., Golovko O. Antibiotics degradation in soil: A case of clindamycin, trimethoprim, sulfamethoxazole and their transformation products. Environ. Pollution. 2017, V. 220, P. 1251-1263. https://doi.org/10.1016/j.envpol.2016.11.007 |
||||
8. Gothwal R., Shashidhar T. Antibiotic Pollution in the Environment: A Review. Clean-Soil Air Water. 2015, 43 (4), 463-620. https://doi.org/10.1002/clen.201300989 |
||||
9. Xie W. Y., Shen Q. Antibiotics and antibiotic resistance from animal manures to soil: a review. Eur. J. Soil Sci. 2018, V. 69, P. 181-195. https://doi.org/10.1111/ejss.12494 |
||||
10. Munir M., Xagoraraki I. Levels of Antibiotic Resistance Genes in Manure, Biosolids, and Fertilized Soil. J. Environ. Qual. 2011, V. 40, P. 248-255. https://doi.org/10.2134/jeq2010.0209 |
||||
11. Lingxi Han, Lin Cai. Development of antibiotic resistance genes in soils with ten successive treatments of chlortetracycline and cipro?oxacin. Environ. Pollution. 2019, V. 253, P. 152-160. https://doi.org/10.1016/j.envpol.2019.07.031 |
||||
12. Baquero F., Ana P. Tedim, Teresa M. Coque. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol. 2013, V. 4, P. 15. PMID: 23508522]. https://doi.org/10.3389/fmicb.2013.00015 | ||||
13. D'Costa V. M., McGrann K. M., Hughes D. W., Wright G. D. Sampling the antibiotic resistome. Science. 2006, 311 (5759), 374-377. https://doi.org/10.1126/science.1120800 |
||||
14. Munita J. M., Arias C. A. Mechanisms of Antibiotic Resistance. Microbiol. spectrum. 2016, 4 (2), 1128-1152. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015 |
||||
15. Li X. Z., Nikaido H. Efflux-Mediated Drug Resistance in Bacteria: an Update (англ.) // Drugs J. - Adis Inter. 2009, 69 (12), 1555-1623. PMID 19678712. https://doi.org/10.2165/11317030-000000000-00000 |
||||
16. Aminov R. I., Mackie R. I. Evolution and ecology of antibiotic resistance genes. Microbiol. Letters. 2007, 271 (2), 147-161. https://doi.org/10.1111/j.1574-6968.2007.00757.x |
||||
17. Dzidic S., Suskovic J., Kos B. Antibiotic Resistance Mechanisms in Bacteria: мBiochemical and Genetic Aspects. Food Technol. Biotechnol. 2008, 46 (1), 11-21. | ||||
18. Blair J. M. A., Webber M. A., Baylay A. J., Ogbolu D. O., Piddock L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2014, V. 13, P. 42-51. https://doi.org/10.1038/nrmicro3380 |
||||
19. Vargiu A. V., Pos K. M., Poole K., Nikaido H. Editorial: bad bugs in the XXIst century: resistance mediated by multi-drug efflux pumps in Gram-negative bacteria. Front. Microbiol. 2016, V. 7, P. 833-836. https://doi.org/10.3389/fmicb.2016.00833 |
||||
20. Alekshun M. N., Levy S. B. The escherichia coli mar locus - antibiotic resistance and more. ASM News. 2004, V. 70, P. 451-456. | ||||
21. Wiese A., Brandenburg K., Ulmer A. J., Seydel U., M?ller-Loennies S. The dual role of lipopolysaccharide as effector and target molecule. Biol. Chem. 1999, V. 380, P. 767-784. https://doi.org/10.1515/BC.1999.097 |
||||
22. Collin F., Karkare S., Maxwell A. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl. Microbiol. Biotechnol. 2011, 92 (3), 479-497. https://doi.org/10.1007/s00253-011-3557-z |
||||
23. Monserrat-Martinez A., Gambin Y., Sierecki E. Thinking Outside the Bug: Molecular Targets and Strategies to Overcome Antibiotic Resistance. Int. J. Mol. Sci. 2019, 20 (6), 1-23. https://doi.org/10.3390/ijms20061255 |
||||
24. Spratt B. G., Bowler L. D., Zhang Q. Y., Zhou J., Smith J. M. Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J. Mol. Evol. 1992, V. 34, P. 115-125. https://doi.org/10.1007/BF00182388 |
||||
25. Bondarchuk Y. Antibiotic resistance: what solutions are offered by the world's largest organizations? 2018, № 8 (1129). https://www.apteka.ua/article/447433 | ||||
26. Solliec M., Roy-Lachapelle A. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment. Sci. Total Environ. 2016, V. 543, P. 524-535. https://doi.org/10.1016/j.scitotenv.2015.11.061 |
||||
27. Zeyou Chen, Wei Zhang. Antibiotic resistance genes and bacterial communities in corn field and pasture soils receiving swine and dairy manures. Environ. Pollution. 2019, V. 248, P. 947-957. https://doi.org/10.1016/j.envpol.2019.02.093 |
||||
28. Sun W., Qian X., Gu J., Wang X. J., Duan M. L. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure. Sci. Rep. 2016, 6 (30237). https://doi.org/10.1038/srep30237 |
||||
29. Hang Liu, Yongkui Yang. Fate of tetracycline in enhanced biological nutrient removal process. Chemosphere. 2018, V. 193, P. 998-1003. https://doi.org/10.1016/j.chemosphere.2017.11.136 |
||||
30. Huijun Ding, Yixiao Wu. Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption. J. Hazardous Materials. 2016, V. 307, P. 350-358. https://doi.org/10.1016/j.jhazmat.2015.12.062 |
||||
31. Zhendong Zhao, Tiantian Nie, Wenjun Zhou. Enhanced biochar stabilities and adsorption properties for tetracycline by synthesizing silica-composited biochar. Environ. Pollution. 2019, V. 113015, P. 254-260. https://doi.org/10.1016/j.envpol.2019.113015 |
||||
32. G?mez-Pacheco C. V., S?nchez-Polo M., Rivera-Utrilla J., L?pez-Pe?alver J. J. Tetracycline degradation in aqueous phase by ultraviolet radiation, Author links open overlay panel. Chem. Engin. J. 2012, V. 187, P. 89-95. https://doi.org/10.1016/j.cej.2012.01.096 |
||||
33. Seong Ho Yun, Eun Hea Jho. Photodegradation of tetracycline and sulfathiazole individually and in mixtures. Food Chem. Toxicol. 2018, V. 116, P. 108-113. https://doi.org/10.1016/j.fct.2018.03.037 |
||||
34. Mass? D. I., Saady N. M. C., Gilbert Y. Potential of biological processes to eliminate antibiotics in livestock manure: an overview. Animals. 2014, 4 (2), 146-163. https://doi.org/10.3390/ani4020146 |
||||
35. Chu-Wen Yang, Chien Liu, Bea-Ven Chang. Biodegradation of Amoxicillin, Tetracyclines and Sulfonamides in Wastewater Sludge. Water. 2020, 12 (2147), 1-18. https://doi.org/10.3390/w12082147 |
||||
36. Jianfei Chen, Shuguang Xie. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms. Sci. Total Environ. 2018, V. 640, P. 1465-1477. https://doi.org/10.1016/j.scitotenv.2018.06.016 |
||||
37. Bing Li, Tong Zhang. Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process. Environ. Sci. Technol. 2010, V. 44, P. 3468-3473 https://doi.org/10.1021/es903490h |
||||
38. Mingeot-Leclercq M.-P., Glupczynski Y., Tulkens P. M. Antimicrob Agents Chemother. Aminoglycosides: Activity and Resistance. 1999, 43 (4), 727-737. https://doi.org/10.1128/AAC.43.4.727 |
||||
39. Mitchell S. M., Ullman J. L., Teel A. L., Watts R. J. Hydrolysis of amphenicol and macrolide antibiotics: Chloramphenicol, florfenicol, spiramycin, and tylosin. Chemosphere. 2015, 08 (50), 134-140. https://doi.org/10.1016/j.chemosphere.2014.08.050 |
||||
40. Xianghua Wen, Yannan Jia, Jiaxi Li. Degradation of Tetracycline and Oxytetracycline by Crude Lignin Peroxidase Prepared from Phanerochaete chrysosporium - A White Rot Fungus. Chemosphere. 2009, 75 (8), 1003-1007. https://doi.org/10.1016/j.chemosphere.2009.01.052 |
||||
41. Batt A. L., Kim S., Aga D. S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere. 2007, 68 (3), 428-435. https://doi.org/10.1016/j.chemosphere.2007.01.008 |
||||
42. Kim S., Eichhorn P., Jensen J. N., Weber A. S., Aga D. S. Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ. Sci. Technol. 2005, 39 (15), 5816-5823. https://doi.org/10.1021/es050006u |
||||
43. Forsberg K. J., Patel S., Wencewicz T. A., Dantas G. The tetracycline destructases: a novel family of tetracycline-inactivating enzymes. Chem. Biol. 2015, V. 22, P. 888-897. https://doi.org/10.1016/j.chembiol.2015.05.017 | ||||
44. Dantas G., Sommer M. O. A., Oluwasegun R. D., Church G. M. Bacteria subsisting on antibiotics. Science. 2008, 320 (5872), 100-103. https://doi.org/10.1126/science.1155157 |
||||
45. Drillia P., Dokianakis S. N., Fountoulakis M. S., Kornaros M., Stamatelatou K., Lyberatos G. On the occasional biodegradation of pharmaceuticals in the activated sludge process: The example of the antibiotic sulfamethoxazole. J. Hazard. Mater. 2005, 122 (3), 259-265. https://doi.org/10.1016/j.jhazmat.2005.03.009 |
||||
46. Gartiser S., Elke U., Radka A., K?mmerer K. Ultimate biodegradation and elimination of antibiotics in inherent tests. Chemosphere. 2007, 67 (3), 604-613. https://doi.org/10.1016/j.chemosphere.2006.08.038 |
||||
47. Wang Q.-Q., Bradford S. A., Zheng W., Yates S. R. Sulfadimethoxine Degradation Kinetics in Manure as Affected by Initial Concentration, Moisture, and Temperature. J. Environ. Qual. 2006, V. 35, P. 2162-2169. https://doi.org/10.2134/jeq2006.0178 |
||||
48. Karthikeyan K. G., Meyer M. T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci. Total Environ. 2006, 361 (1-3), 196-207. https://doi.org/10.1016/j.scitotenv.2005.06.030 |