ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 3, 2021
Р. 5-21, Bibliography 107 , English
Universal Decimal Classification: 577.112:577.322:576.342:615.36
https://doi.org/10.15407/biotech14.03.005
A. K. Gulevsky, Yu. S. Akhatova
Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
Human chorionic gonadotropin (hCG) is one of the key hormones needed for pregnancy sustaining. At the same time, it performs many other biological functions, which is due to the effect on the immune cells’ activity, the ability to bind to at least three types of receptors and activate various signaling cascades. Several structural forms of hCG and their combinations have been identified. This structural heterogeneity is the cause of variations not only in the degree and direction of the hormone functional activity, but in the mechanisms of its action, the degree of binding to other molecules and the conditions of dissociation as well.
Aim. To review the current understanding of the role and mechanisms of the biological activity of hCG and its isoforms, as well as the identification of physicochemical factors that affect the completeness of hCG release from biological raw materials and the stability of the isolated drug during further storage.
Methods. A computerized literature search was performed using three electronic databases from 1980 to 2020. Descriptive and comparative analyzes were performed for discovered studies in molecular biology, biochemistry and clinical practice.
Results. A detailed biochemical and physiological analysis of hCG and its related molecules are provided in this review. The features of measuring its content in tissues, isolation and purification methods, difficulties associated with low-temperature storage, as well as the spectrum of hCG preparations clinical use of and their proposed new therapeutic possibilities are considered.
Conclusions. HCG is characterized by a wide range of versatile functions, and its field of application in laboratory diagnostics and clinical practice is still expanding. At the same time, to elucidate the mechanisms of its multiple therapeutic effects, including antitumor action, as well as the mechanisms of dissociation under conditions of low-temperature storage, which can solve the problem of maintaining the stability of this hormone, it remains relevant.
Key words: chorionic gonadotropin, cord blood, α and β subunits of hCG, hCG storage.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Fournier T., Guibourdenche J., Evain-Brion D. Review: hCGs: different sources of production, different glycoforms and functions. Placenta. 2015, 36 (Suppl. 1), 60-65. https://doi.org/10.1016/j.placenta.2015.02.002 | ||||
2. Tsyirlina E. V., Poroshina T. E. Chorionic gonadotropin as a marker of trophoblastic disease. Practical oncology. 2008, 9 (3), 150-160. (In Russian). | ||||
3. Dukic-Stefanovic S., Walther J., Wosch S., Zimmermann G., Wiedemann P., Alexander H., Claudepierre T. Chorionic gonadotropin and its receptor are both expressed in human retina, possible implications in normal and pathological conditions. PLoS One. 2012, 7 (12), e52567. https://doi.org/10.1371/journal.pone.0052567 |
||||
4. Treshalina H. M., Smirnova G. B., Tsurkan S. A., Tcherkassova J. R., Lesnaya N. A. The role of alpha-fetoprotein receptor in the delivery of targeted preparations in oncology. Russian J. Oncol. 2017, 22 (1), 4-14. https://doi.org/10.18821/1028-9984-2017-22-1-4-14 |
||||
5. Nikolaeva L. B., Ushakova G. A. The first pregnancy and first birth: a guide for doctors. Moskva: GEOTAR-Media. 2013, 264 p. (In Russian). | ||||
6. Novikova О. Н., Trishkin A. G., Ushakova G. А., Artymuk N. V., Kiprina Е. С. Hormonal function of the placenta at the end of the pregnancy and the birth when infected with the prenatal infection. Mat' i ditja v Kubani. 2012, 3 (50), 22-26. (In Russian). | ||||
7. Steier J. A., Myking O. L., Ulstein M. Human chorionic gonadotropin in cord blood and peripheral maternal blood in singleton and twin pregnancies at delivery. Acta Obstet. Gynecol. Scand. 1989, 68 (8), 689-692. https://doi.org/10.3109/00016348909006140 |
||||
8. Cole L. A. Immunoassay of human chorionic gonadotropin, its free subunits, and metabolites. Clin. Chem. 1997, 43 (12), 2233-2243. https://doi.org/10.1093/clinchem/43.12.2233 |
||||
9. Grenache D. G., Greene D. N., Dighe A. S., Fantz C. R., Hoefner D., McCudden C., Sokoll L., Wiley C. L., Gronowski A. M. Falsely decreased human chorionic gonadotropin (hCG) results due to increased concentrations of the free beta subunit and the beta core fragment in quantitative hCG assays. Clin. Chem. 2010, 56 (12), 1839-1844. https://doi.org/10.1373/clinchem.2010.143479 | ||||
10. Stenman U. H., Alfthan H. Determination of human chorionic gonadotropin. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27 (6), 783-793. https://doi.org/10.1016/j.beem.2013.10.005 |
||||
11. Cole L., Butler S. Detection of hCG in Trophoblastic disease. The USA hCg reference Service Experience. J. Reprod. Med. 2002, V. 47, P. 433-444. | ||||
12. Xing Y., Williams C., Campbell R. K., Cook S., Knoppers M., Addona T., Altarocca V., Moyle W. R. Threading of a glycosylated protein loop through a protein hole: implications for combination of human chorionic gonadotropin subunits. Protein Sci. 2001, 10 (2), 226-235. https://doi.org/10.1110/ps.25901 | ||||
13. Stenman U. H., Tiitinen A., Alfthan H., Valmu L. The classification, functions and clinical use of different isoforms of HCG. Hum. Reprod. Update. 2006, V. 12, P. 769-784. https://doi.org/10.1093/humupd/dml029 | ||||
14. Lustbader J. W., Lobel L., Wu H., Elliott M. M. Structural and molecular studies of human chorionic gonadotropin and its receptor. Recent. Prog. Horm. Res. 1998, V. 53, P. 395-424. | ||||
15. Cole L. A. HCG variants, the growth factors which drive human malignancies. Am. J. Cancer Res. 2012, 2 (1), 22-35. | ||||
16. Borisova M. A., Moiseenko D. Y., Smirnova O. V. Human chorionic gonadotropin: unknown about known. Fiziol. Cheloveka. 2017, 43 (1), 97-110. https://doi.org/10.7868/S0131164616060059 |
||||
17. Schwarz S., Krude H. Der humane chorion-gonadotropin (hCG)-rezeptor: eine neue klasse innerhalb der familie der GTP-protein-gekoppelten rezeptoren. Epitop-mapping an rezeptor-gebundenen agonistischen und antagonistischen formen des hCGs. Wien. Klin. Wochenschr. 1992, 104 (13), 369-390. | ||||
18. Puett D., Angelova K., da Costa M. R., Warrenfeltz S. W., Fanelli F. The luteinizing hormone receptor: insights into structure-function relationships and hormone-receptor-mediated changes in gene expression in ovarian cancer cells. Mol. Cell. Endocrinol. 2010, 329 (1-2), 47-55. https://doi.org/10.1016/j.mce.2010.04.025 |
||||
19. Kleinau G., Worth C. L., Kreuchwig A., Biebermann H., Marcinkowski P., Scheerer P., Krause G. Structural-functional features of the thyrotropin receptor: A class a G-protein-coupled receptor at work. Front. Endocrinol. 2017, V. 8, P. 86. https://doi.org/10.3389/fendo.2017.00086 |
||||
20. Bakhtyukov A. A., Shpakov A. O. The low-molecular-weight allosteric regulators of g-proteincoupled receptors of the polypeptide hormones. Russian J. Physiol. 2019, 105 (3), 269-283. https://doi.org/10.1134/S0869813919030014 | ||||
21. Van Koppen C. J., Zaman G. J. R., Timmers C. M., Kelder J., Mosselman S., van de Lagemaat R., Smit M. J., Hanssen R. G. A signaling-selective, nanomolar potent allosteric low molecular weight agonist for the human luteinizing hormone receptor. Naunyn-Schmiedeberg's Arch. Pharmacol. 2008, 378 (5), 503-514. https://doi.org/10.1007/s00210-008-0318-3 |
||||
22. Derkach K. V., Bakhtyukov A. A., Shpakov A. A., Dar'in D. V., Shpakov A. O. Specificity of heterotrimeric G protein regulation by human chorionic gonadotropin and low-molecular agonist of luteinizing hormone receptor. Cell Tissue Biol. 2017, 11 (6), 475-482. https://doi.org/10.1134/S1990519X17060037 | ||||
23. Van de Lagemaat R., Raafs B. C., van Koppen C., Timmers C. M., Mulders S. M., Hanssen R. G. Prevention of the onset of ovarian hyperstimulation syndrome (OHSS) in the rat after ovulation induction with a low molecular weight agonist of the LH receptor compared with hCG and recLH. Endocrinol. 2011, 152 (11), 4350-4357. https://doi.org/10.1210/en.2011-1077 | ||||
24. Gerrits M., Mannaerts B., Kramer H., Addo S., Hanssen R. First evidence of ovulation induced by oral LH agonists in healthy female volunteers of reproductive age. J. Clin. Endocrinol. Metab. 2013, 98 (4), 1558-1566. https://doi.org/10.1210/jc.2012-3404 |
||||
25. Newton C. L., Anderson R. C. Pharmacoperones for Misfolded Gonadotropin Receptors. Handb. Exp. Pharmacol. 2018, V. 245, P. 111-134. https://doi.org/10.1007/164_2017_64 |
||||
26. Ulloa-Aguirre A., Conn P. M. Pharmacoperones as a new therapeutic approach: in vitro identification and in vivo validation of bioactive molecules. Curr. Drug Targets. 2016, 17 (13), 1471-1481. https://doi.org/10.2174/1389450117666160307143345 |
||||
27. Cruz R. I., Anderson D. M., Armstrong E. G., Moyle W. R. Nonreceptor binding of human chorionic gonadotropin (hCG): detection of hCG or a related molecule bound to endometrial tissue during pregnancy using labeled monoclonal antibodies that bind to exposed epitopes on the hormone. J. Clin. Endocrinol. Metab. 1987, 64 (3), 433-440. https://doi.org/10.1210/jcem-64-3-433 | ||||
28. Chambers A. E., Stanley P. F., Randeva H., Banerjee S. Microvesicle-mediated release of soluble LH/hCG receptor (LHCGR) from transfected cells and placenta explants. Reprod. Biol. Endocrinol. 2011, V. 9, P. 64. https://doi.org/10.1186/1477-7827-9-64 |
||||
29. Chambers A. E., Nayini K. P., Mills W. E., Lockwood G. M., Banerjee S. Circulating LH/hCG receptor may identify pre-treatment IVF patients at risk of OHSS and poor implantation. Reprod. Biol. Endocrinol. 2011, V. 9, P. 161. https://doi.org/10.1186/1477-7827-9-161 |
||||
30. Chambers A. E., Griffin C., Naif S. A. Mills I., Mills W. E., Syngelaki A., Nicolaides K. H., Banerjee S. Quantitative ELISAs for serum soluble LHCGR and hCG-LHCGR complex: potential diagnostics in first trimester pregnancy screening for stillbirth, Down's syndrome, preterm delivery and preeclampsia. Reprod. Biol. Endocrinol. 2012, V. 10, P. 113. https://doi.org/10.1186/1477-7827-10-113 | ||||
31. Kratzsch J. Other miscellaneous hormone binding proteins: attempt at an epilogue. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29 (5), 811-814. https://doi.org/10.1016/j.beem.2015.10.007 |
||||
32. Valadi H., Ekstrom K., Bossios A., Sj?strand M., Lee J. J., L?tvall J. O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol. 2007, V. 9, P. 654-659. https://doi.org/10.1038/ncb1596 |
||||
33. Mincheva-Nilsson L., Baranov V. The role of placental exosomes in reproduction. Am. J. Reprod. Immunol. 2010, 63 (6), 520-533. https://doi.org/10.1111/j.1600-0897.2010.00822.x |
||||
34. Pokrovskiy V. M., Korot'ko G. F. Human physiology. 2nd ed. Moskva: Meditsina. 2003, Р. 211-212. ISBN 5-225-04729-7. (In Russian). | ||||
35. Angioni S., Spedicato M., Rizzo A. Cosola C., Mutinati M., Minoia G., Sciorsci R. L. In vitro activity of human chorionic gonadotropin (hCG) on myometrium contractility. Gynecol. Endocrinol. 2011, 27 (3), 180-184. https://doi.org/10.3109/09513590.2010.488780 |
||||
36. Norris W., Nevers T., Sharma S., Kalkunte S. Review: hCG, preeclampsia and regulatory T cells. Placenta. 2011, 32 (Suppl. 2), 182-185. https://doi.org/10.1016/j.placenta.2011.01.009 |
||||
37. Cole L. A., Khanlian S. A., Riley J. M., Butler S. A. Hyperglycosylated hCG in gestational implantation and in choriocarcinoma and testicular germ cell malignancy tumorigenesis. J. Reprod. Med. 2006, 51 (11), 919-929. | ||||
38. Shpakov A. O. Glycosilation of gonadotropins, as the most important mechanism of regulation of their activity. Russian J. Physiol. 2017, 103 (9), 1004-1021. (In Russian). | ||||
39. Ibeto L., Antonopoulos A., Grassi P., Pang P. C., Panico M., Bobdiwala S., Al-Memar M., Davis P., Davis M., Norman Taylor J., Almeida P., Johnson M. R., Harvey R., Bourne T., Seckl M., Clark G., Haslam S. M., Dell A. Insights into the hyperglycosylation of human chorionic gonadotropin revealed by glycomics analysis. PLoS One. 2020, 15 (2), e0228507. https://doi.org/10.1371/journal.pone.0228507 |
||||
40. Nwabuobi C., Arlier S., Schatz F., Guzeloglu-Kayisli O., Lockwood C. J., Kayisli U. A. hCG: Biological Functions and Clinical Applications. Int. J. Mol. Sci. 2017, 18 (10), 2037. https://doi.org/10.3390/ijms18102037 | ||||
41. Bansal A. S., Bora S. A., Saso S., Smith J. R., Johnson M. R., Thum M. Y. Mechanism of human chorionic gonadotrophin mediated immunomodulation in pregnancy. Expert. Rev. Clin. Immunol. 2012, 8 (8), 747-753. https://doi.org/10.1586/eci.12.77 |
||||
42. Tsampalas M., Gridelet V., Berndt S., Foidart J. M., Geenen V., Perrier d'Hauterive S. Human chorionic gonadotropin: a hormone with immunological and angiogenic properties. J. Reprod. Immunol. 2010, 85 (1), 93-98. https://doi.org/10.1016/j.jri.2009.11.008 |
||||
43. Fuchs T., Hammarstr?m L., Smith C. I., Brundin J. In vitro induction of murine suppressor T-cells by human chorionic gonadotropin. Acta Obstet. Gynecol. Scand. 1980, 59 (4), 355-359. https://doi.org/10.3109/00016348009154093 |
||||
44. Fuchs T., Hammarstr?m L., Smith C. I., Brundin J. In vitro induction of human suppressor T cells by a chorionic gonadotropin preparation. J. Reprod. Immunol. 1981, 3 (2), 75-84. https://doi.org/10.1016/0165-0378(81)90012-7 |
||||
45. Yamauchi S., Izumi S., Shiotsuka Y., Watanabe K., Ozawa A. Demonstration of HCG on the surface of maternal lymphocytes and discrimination of T and B cells by esterase cytochemistry. Tokai J. Exp. Clin. Med. 1983, 8 (4), 333-337. | ||||
46. Lin J., Lojun S., Lei Z. M., Wu W. X., Peiner S. C., Rao C. V. Lymphocytes from pregnant women express human chorionic gonadotropin/luteinizing hormone receptor gene. Mol. Cell. Endocrinol. 1995, 111 (1), 13-17. https://doi.org/10.1016/0303-7207(95)03565-O |
||||
47. Khil L. Y., Jun H. S., Kwon H., Yoo J. K., Kim S., Notkins A. L., Yoon J. W. Human chorionic gonadotropin is an immune modulator and can prevent autoimmune diabetes in NOD mice. Diabetologia. 2007, 50 (10), 2147-2155. https://doi.org/10.1007/s00125-007-0769-y |
||||
48. Ueno A., Cho S., Cheng L., Wang J., Hou S., Nakano H., Santamaria P., Yang Y. Transient upregulation of indoleamine 2,3-dioxygenase in dendritic cells by human chorionic gonadotropin downregulates autoimmune diabetes. Diabetes. 2007, 56 (6), 1686-1693. https://doi.org/10.2337/db06-1727 | ||||
49. Segerer S. E., M?ller N., van den Brandt J., Kapp M., Dietl J., Reichardt H. M., Rieger L., K?mmerer U. Impact of female sex hormones on the maturation and function of human dendritic cells. Am. J. Reprod. Immunol. 2009, 62 (3), 165-173. https://doi.org/10.1111/j.1600-0897.2009.00726.x |
||||
50. Wan H., Versnel M. A., Leijten L. M. van Helden-Meeuwsen C. G., Fekkes D., Leenen P. J., Khan N. A., Benner R., Kiekens R. C. Chorionic gonadotropin induces dendritic cells to express a tolerogenic phenotype. J. Leukoc. Biol. 2008, 83 (4), 894-901. https://doi.org/10.1189/jlb.0407258 | ||||
51. Zamorina S. A., Kochurova S. V. Immunopharmacological aspects of the chorionic gonadotropin application. Vestn. Permskogo un-ta. Biologija. 2019, N 4, P. 471-481. (In Russian). https://doi.org/10.17072/1994-9952-2019-4-471-481 | ||||
52. Zamorina S. A., Litvinova L. S., Yurova K. A., Dunets N. A., Khaziakhmatova O. G., Timganova V. P., Bochkova M. S., Khramtsov P. V., Rayev M. B. Human chorionic gonadotropin as a factor regulating functional activity of immune memory t-cells. Immunol. 2017, 38 (4), 179-184. (In Russian). http://dx.doi.org/10.18821/0206-4952-2017-38-4-179-184 | ||||
53. Zamorina S. A. Mechanisms of the Immunomodulatory Activity of Chorionic Gonadotropin. Perm': Stil' MG. 2017, 168 p. ISBN 978-5-8131-0138-0. (In Russian). | ||||
54. Licht P., Russu V., Wildt L. On the role of human chorionic gonadotropin (hCG) in the embryo-endometrial microenvironment: implications for differentiation and implantation. Semin. Reprod. Med. 2001, 19 (1), 37-47. https://doi.org/10.1055/s-2001-13909 |
||||
55. Kratzsch J. Other miscellaneous hormone binding proteins: Attempt at an epilogue. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29 (5), 811-814. https://doi.org/10.1016/j.beem.2015.10.007 |
||||
56. Mintziori G., Anagnostis P., Toulis K. A., Goulis D. G. Thyroid diseases and female reproduction. Minerva Med. 2012, 103 (1), 47-62. | ||||
57. Wu Z., Cai Y., Xia Q., Liu T., Yang H., Wang F., Wang N., Yu Z., Yin C., Wang Q., Zhu D. Hashimoto's thyroiditis impairs embryo implantation by compromising endometrial morphology and receptivity markers in euthyroid mice. Reprod. Biol. Endocrinol. 2019, 17 (1), 94. https://doi.org/10.1186/s12958-019-0526-3 | ||||
58. J?lving L. R., Larsen M. D., Fedder J., Friedman S., N?rg?rd B. M. The chance of a live birth after assisted reproduction in women with thyroid disorders. Clin. Epidemiol. 2019, V. 11, P. 683-694. https://doi.org/10.2147/CLEP.S208574 | ||||
59. Bansal A. S., Bajardeen B., Shehata H., Thum M. Y. Recurrent miscarriage and autoimmunity. Expert Rev. Clin. Immunol. 2011, 7 (1), 37-44. https://doi.org/10.1586/eci.10.84 |
||||
60. Zou S. H., Yang Z. Z., Zhang P., Song D. P., Li B., Wu R. Y., Cong X. Autoimmune disorders affect the in vitro fertilization outcome in infertile women. Zhonghua Nan Ke Xue. 2008, 14 (4), 343-346. | ||||
61. Wang W. J., Hao C. F., Yi-Lin Yin G. J., Bao S. H., Qiu L. H., Lin Q. D. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J. Reprod. Immunol. 2010, 84 (2), 164-170. https://doi.org/10.1016/j.jri.2009.12.003 | ||||
62. Toulis K. A., Goulis D. G., Venetis C. A., Kolibianakis E. M., Tarlatzis B. C., Papadimas I. Thyroid autoimmunity and miscarriages: the corpus luteum hypothesis. Med. Hypotheses. 2009, 73 (6), 1060-1062. https://doi.org/10.1016/j.mehy.2009.05.012 |
||||
63. Moncayo H., Moncayo R., Benz R., Wolf A., Lauritzen C. Ovarian failure and autoimmunity. Detection of autoantibodies directed against both the unoccupied luteinizing hormone/human chorionic gonadotropin receptor and the hormonereceptor complex of bovine corpus luteum. J. Clin. Invest. 1989, 84 (6), 1857-1865. https://doi.org/10.1172/JCI114372 | ||||
64. Ska?ba P., Gajewska K., Bednarska-Czerwi?ska A. Choriogonadotropin measurements - critical assessment of new diagnostic possibilities. Ginekol. Pol. 2004, 75 (3), 221-227. | ||||
65. Fan J., Wang M., Wang C., Cao Y. Advances in human chorionic gonadotropin detection technologies: a review. Bioanalysis. 2017, 9 (19), 1509-1529. https://doi.org/10.4155/bio-2017-0072 |
||||
66. Cole L. A., Kardana A. Discordant results in human chorionic gonadotropin assays. Clin. Chem. 1992, 38 (2), 263-270. https://doi.org/10.1093/clinchem/38.2.263 |
||||
67. Pani?-Jankovi? T., Mitulovi? G. Human chorionic gonadotrophin pharmaceutical formulations of urinary origin display high levels of contaminant proteins-A label-free quantitation proteomics study. Electrophoresis. 2019, 40 (11), 1622-1629. https://doi.org/10.1002/elps.201900087 | ||||
68. Prasad P. V., Chaube S. K., Shrivastav T. G., Kumari G. L., Duraiswami S., Muralidhar K. Isolation of hCG and its characterization by radioimmunoassay, enzyme-immunoassay, and radio-receptor assay. J. Immunoassay Immunochem. 2005, 26 (4), 325-344. https://doi.org/10.1080/15321810500220951 | ||||
69. Lunenfeld B., Bilger W., Longobardi S., Alam V., D'Hooghe T., Sunkara S. K. The development of gonadotropins for clinical use in the treatment of infertility. Front. Endocrinol. 2019, V. 10, P. 429. https://doi.org/10.3389/fendo.2019.00429 | ||||
70. Albert A. Human Pituitary Gonadotropins, Workshop Conference. Thomas: Springfield, IL. 1961, 434 р. ISBN 9780398000233 | ||||
71. Bassett R., De Bellis C., Chiacchiarini L., Mendola D., Micangeli E., Minari K., Grimaldi L., Mancinelli M., Mastrangeli R., Bucci R. Comparative characterisation of a commercial human chorionic gonadotrophin extracted from human urine with a commercial recombinant human chorionic gonadotrophin. Curr. Med. Res. Opin. 2005, 21 (12), 1969-1976. https://doi.org/10.1185/030079905X75005 | ||||
72. Yarram S. J., Jenkins J., Cole L. A., Brown N. L., Sandy J. R., Mansell J. P. Epidermal growth factor contamination and concentrations of intact human chorionic gonadotropin in commercial preparations. Fertil. Steril. 2004, 82 (1), 232-233. https://doi.org/10.1016/j.fertnstert.2003.11.051 | ||||
73. Danilkovich A., Freze K., Romashkova J., Valujskikh A., Makarov E., Targoni O., Makarova N., Kushch A. Influence of synthetic peptides on the proliferation of lymphoblastoid cells in vitro. Growth inhibition and receptor's binding. FEBS Let. 1995, 369 (2-3), 161-164. https://doi.org/10.1016/0014-5793(95)00731-N | ||||
74. Shen Q. X., Li C. L., Shen H., Liu H. H., Xiang C. Q., Ding X. C. Expression of cDNA of human chorionic gonadotropin beta-subunit (beta-hCG) cDNA in insect cells and effect of expressed product on mouse lymphocytes in vitro. Shi Yan Sheng Wu Xue Bao. 1996, 29 (1), 95-100. | ||||
75. Valu?skikh A. N., Romashkova Iu. A., Danilkovich A. V., Freze K. V., Sukhikh G. T., Makarov E. V. Synthetic peptide - a fragment of beta-subunit of chorionic gonadotropin inhibits mitogen-stimulated proliferation of human lymphocytes in vitro. Biull. Eksp. Biol. Med. 1997, 123 (3), 319-322. https://doi.org/10.1007/BF02445425 |
||||
76. Van Dorsselaer A., Carapito C., Delalande F., Schaeffer-Reiss C., Thierse D., Diemer H., McNair D. S., Krewski D., Cashman N. R. Detection of prion protein in urine-derived injectable fertility products by a targeted proteomic approach. PLoS One. 2011, 6 (3), e17815. https://doi.org/10.1371/journal.pone.0017815 | ||||
77. Lempi?inen A., Hotakainen K., Alfthan H., Stenman U. H. Loss of human chorionic gonadotropin in urine during storage at -20 °C. Clin. Chim. Acta. 2012, 413 (1-2), 232-236. https://doi.org/10.1016/j.cca.2011.09.038 | ||||
78. Page K., Gomez J., Smith N. Increasing hCG concentrations during storage at (+)4 degrees C with the Bayer Centaur Total hCG method. Ann. Clin. Biochem. 2004, 41 (6), 479-481. https://doi.org/10.1258/0004563042466910 | ||||
79. De Medeiros S. F., Amato F., Norman R. J. Stability of immunoreactive beta-core fragment of hCG. Obstet. Gynecol. 1991, 77 (1), 53-59. | ||||
80. Robinson N., Sottas P. E., Saugy M. Evaluation of two immunoassays for the measurement of human chorionic gonadotropin in urine for anti-doping purposes. Clin. Lab. 2010, 56 (5-6), 197-206. | ||||
81. Kardana A., Cole L. A. The stability of hCG and free beta-subunit in serum samples. Prenat. Diagn. 1997, 17 (2), 141-214. https://doi.org/10.1002/(SICI)1097-0223(199702)17:2<141::AID-PD47>3.0.CO;2-I |
||||
82. Shpakov A. O. Gonadotropins - from theory to clinical practice. SPb: PolitehPress. 2018, 347 P. ISBN 978-5-7422-6330-2 | ||||
83. Filicori M., Fazleabas A. T., Huhtaniemi I., Licht P., Rao Ch V., Tesarik J., Zygmunt M. Novel concepts of human chorionic gonadotropin: Reproductive system interactions and potential in the management of infertility. Fertil. Steril. 2005, V. 84, P. 275-284. https://doi.org/10.1016/j.fertnstert.2005.02.033 | ||||
84. Nwabuobi C., Arlier S., Schatz F., Guzeloglu-Kayisli O., Lockwood C. J., Kayisli U. A. hCG: biological functions and clinical applications. Int. J. Mol. Sci. 2017, 18 (10), 2037. https://doi.org/10.3390/ijms18102037 | ||||
85. Tesarik J., Hazout A., Mendoza C. Luteinizing hormone affects uterine receptivity independently of ovarian function. Reprod. Biomed. 2003, V. 7, P. 59-64. https://doi.org/10.1016/S1472-6483(10)61729-4 | ||||
86. Casarini L., Lispi M., Longobardi S., Milosa F., La Marca A., Tagliasacchi D., Pignatti E., Simoni M. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS ONE. 2012, V. 7, P. e46682. https://doi.org/10.1371/journal.pone.0046682 | ||||
87. Riccetti L., Yvinec R., Klett D., Gallay N., Combarnous Y., Reiter E., Simoni M., Casarini L., Ayoub M. A. Human luteinizing hormone and chorionic gonadotropin display biased agonism at the LH and LH/CG receptors. Sci. Rep. 2017, V. 7, P. 940. https://doi.org/10.1038/s41598-017-01078-8 | ||||
88. Casarini L., Brigante G., Simoni M., Santi D. Clinical applications of gonadotropins in the female: assisted reproduction and beyond. Prog. Mol. Biol. Transl. Sci. 2016, V. 143, P. 85-119. https://doi.org/10.1016/bs.pmbts.2016.08.002 | ||||
89. Santi D., Casarini L., Alviggi C., Simoni M. Efficacy of follicle-stimulating hormone (FSH) alone, FSH+ luteinizing hormone, human menopausal gonadotropin or FSH+ human chorionic gonadotropin on assisted reproductive technology outcomes in the "Personalized" medicine era: a meta-analysis. Front. Endocrinol. 2017, V. 8, P. 114. https://doi.org/10.3389/fendo.2017.00114 | ||||
90. Wenker E. P., Dupree J. M., Langille G. M., Kovac J., Ramasamy R., Lamb D., Mills J. N., Lipshultz L. I. The use of HCG-based combination therapy for recovery of spermatogenesis after testosterone use. J. Sex. Med. 2015, 12 (6), 1334-1337. https://doi.org/10.1111/jsm.12890 |
||||
91. Kravtsova N. S., Rozhivanov R. V., Kurbatov D. G. Stimulation of a spermatogenesis at men gonadotrophins and an antiestrogen at a pathospermia and infertility. Probl. Endocrinol. 2016, 62 (2), 37-41. (In Russian). https://doi.org/10.14341/probl201662237-41 |
||||
92. Efremov E. A., Hizriev H. Z., Kastrikin Yu. V., Butov A. O., Tolstov I. S. Use of chorionic gonadotropin as a hormonal stimulating therapy in patients with pathospermia. Exp. Clin. Urol. 2017, N 4, P. 62-68. (In Russian). | ||||
93. Nieschlag E., Bouloux P. G., Stegmann B. J., Shankar R. R., Guan Y., Tzontcheva A., McCrary Sisk C., Behre H. M. An open-label clinical trial to investigate the efficacy and safety of corifollitropin alfa combined with hCG in adult men with hypogonadotropic hypogonadism. Reprod. Biol. Endocrinol. 2017, 15 (1), 17. https://doi.org/10.1186/s12958-017-0232-y | ||||
94. Amirzargar M., Yavangi M., Basiri A., Moghaddam S., Babbolhavaeji H., Amirzargar N., Amirzargar H., Moadabshoar L. Comparison of recombinant human follicle stimulating hormone (rhFSH), human chorionic gonadotropin (HCG) and human menopausal gonadotropin (HMG) on semen parameters after varicocelectomy: a randomized clinical trial. Iran. J. Reprod. Med. 2012, 10 (5), 441-452. | ||||
95. Van den Berg H. R., Khan N. A., van der Zee M., Bonthuis F., IJzermans J. N., Dik W. A., de Bruin R. W., Benner R. Synthetic oligopeptides related to the [beta]-subunit of human chorionic gonadotropin attenuate inflammation and liver damage after (trauma) hemorrhagic shock and resuscitation. Shock. 2009, 31 (3), 285-291. https://doi.org/10.1097/SHK.0b013e31817fd62a |
||||
96. Van den Berg J. W., Dik W. A., van der Zee M., Bonthuis F., van Holten-Neelen C., Dingjan G. M., Benner R., Ijzermans J. N., Khan N. A., de Bruin R. W. The ?-human chorionic gonadotropin-related peptide LQGV reduces mortality and inflammation in a murine polymicrobial sepsis model. Crit. Care Med. 2011, 39 (1), 126-134. https://doi.org/10.1097/CCM.0b013e3181fa3a93 | ||||
97. Khan N. A., Vierboom M. P., van Holten-Neelen C., Breedveld E., Zuiderwijk-Sick E., Khan A., Kondova I., Braskamp G., Savelkoul H. F., Dik W. A., 't Hart B. A., Benner R. Mitigation of septic shock in mice and rhesus monkeys by human chorionic gonadotrophin-related oligopeptides. Clin. Exp. Immunol. 2010, 160 (3), 466-478. https://doi.org/10.1111/j.1365-2249.2010.04112.x | ||||
98. Khan N. A., Benner R. Human chorionic gonadotropin: a model molecule for oligopeptide-based drug discovery. Endocr. Metab. Immune Disord. Drug Targets. 2011, 11 (1), 32-53. https://doi.org/10.2174/187153011794982031 | ||||
99. Van Groenendael R., Kox M., Leijte G., Koeneman B., Gerretsen J., van Eijk L., Pickkers P. A randomized double-blind, placebo-controlled clinical phase IIa trial on safety, immunomodulatory effects and pharmacokinetics of EA-230 during experimental human endotoxaemia. Br. J. Clin. Pharmacol. 2019, 85 (7), 1559-1571. https://doi.org/10.1111/bcp.13941 | ||||
100. Gueler F., Shushakova N., Mengel M., Hueper K., Chen R., Liu X., Park J. K., Haller H., Wensvoort G., Rong S. A novel therapy to attenuate acute kidney injury and ischemic allograft damage after allogenic kidney transplantation in mice. PLoS One. 2015, 10 (1), e0115709. https://doi.org/10.1371/journal.pone.0115709 | ||||
101. Zamorina S. A., Shirshev S. V. Oligopeptides of chorionic gonadotropin ?-subunit in induction of T-cell differentiation into Treg and Th17. Bull. Exp. Biol. Med. 2015, 160 (1), 72-75. https://doi.org/10.1007/s10517-015-3101-8 | ||||
102. Filatova E. N. The effect of chorionic gonadotropin on cell proliferation and apoptosis in rats with Pliss lymphosarcoma. Ph. D. dissertation. Nizhny Novgorod State University N. I. Lobachevsky, Novgorod. 2010. (In Russian). | ||||
103. Liao X. H., Wang Y., Wang N., Yan T. B., Xing W. J., Zheng L., Zhao D. W., Li Y. Q., Liu L. Y., Sun X. G., Hu P., Zhang T. C. Human chorionic gonadotropin decreases human breast cancer cell proliferation and promotes differentiation. IUBMB Life. 2014, 66 (5), 352-360. https://doi.org/10.1002/iub.1269 | ||||
104. Rao C. V. Protective effects of human chorionic gonadotropin against breast cancer: how can we use this information to prevent/treat the disease? Reprod. Sci. 2017, 24 (8), 1102-1110. https://doi.org/10.1177/1933719116676396 | ||||
105. Iezzi M., Quaglino E., Cappello P., Toto V., Sabatini F., Curcio C., Garotta G., Musiani P., Cavallo F. HCG hastens both the development of mammary carcinoma and the metastatization of HCG/LH and ERBB-2 receptor-positive cells in mice. Int. J. Immunopathol. Pharmacol. 2011, 24 (3), 621-630. https://doi.org/10.1177/039463201102400308 |
||||
106. Takashi Y., Kinoshita Y., Emoto Y., Yoshizawa K., Tsubura A. Human chorionic gonadotropin suppresses human breast cancer cell growth directly via p53-mediated mitochondrial apoptotic pathway and indirectly via ovarian steroid secretion. Anticancer Res. 2014, 34 (3), 1347-1354. | ||||
107. Sch?ler-Toprak S., Treeck O., Ortmann O. Human chorionic gonadotropin and breast cancer. Int. J. Mol. Sci. 2017, 18 (7), 1587. https://doi.org/10.3390/ijms18071587 |