ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 3, 2021
Р. 30-38, Bibliography 24 , English
Universal Decimal Classification: 577.112
https://doi.org/10.15407/biotech14.03.030
I. I. Patalakh, T. F. Drobotko, A. A. Tykhomyrov
Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
Current large-scale production of blood-derived pharmacological preparations is aimed at expanding the list of products and deeper extraction of target proteins especially at the pre-purification stage. In particular, this problem becomes critical for the isolation of proteins like protein C (PC), which is present in plasma in trace amounts.
Aim. We aimed to improve the buffer composition to minimize the interaction of PC with other proteins and lipids that are inevitably present in the stock material.
Methods. The content of protein C in plasma and its derivatives was assessed by the amidolytic activity to the chromogenic substrate S2366. A decrease in homologous impurities and plasma enrichment with protein C was provided by selective bulk adsorption on DEAE-cellulose.
Results. Here we describe that an equimolar mixture of two amino acids (L-arginine and L-glutamic acid) essentially increased the content of protein C at the stage of cryo-depleted plasma pre-purification, including initial dilution and subsequent enrichment of plasma with protein C due to selective bulk adsorption on DEAE- cellulose. Additionally, it was revealed that solutions of these amino acids, when combined, inhibit the induced amidolytic activity of protein C and increase its solubility (in contrast to other plasma proteases).
Conclusion. Pre-adding of a mixture of amino acids L-arginine and L-glutamic acid to cryo-depleted plasma significantly optimizes the pre-purification stage of protein C, providing a 5-fold increase in its yield after elution from DEAE-cellulose.
Key words: Protein C, donor plasma, fractionation, L-arginine, L-glutamic acid
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Weiler H. Inflammation-associated activation of coagulation and immune. Thromb. Res. 2014, 133 (01), S. 32-34. https://doi.org/10.1016/j.thromres.2014.03.015 | ||||
2. Amar A. P., Sagare A. P., Zhao Z., Wang Y., Nelson A. R., Griffin J. H., Zlokovic B. V. Can adjunctive therapies augment the efficacy of endovascular thrombolysis? A potential role for activated protein C. Neuropharmacology. 2018, V. 134, P. 293-301. https://doi.org/10.1016/j.neuropharm.2017.09.021 | ||||
3. Fern?ndez J. A., Xu X., Liu D., Zlokovic B. V., Griffin J. H. Recombinant murine-activated protein C is neuroprotective in a murine ischemic stroke model. Blood. Cells, Mol. Dis. 2003, 30 (3), 271-276. https://doi.org/10.1016/S1079-9796(03)00034-2 |
||||
4. Guo H., Singh I., Wang Y., Deane R., Barrett T., Fern?ndez A., Chow N., Griffin J. H., Zlokovic B. V. Neuroprotective activities of activated protein C mutant with reduced anticoagulant activity. Eur. J. Neurosci. 2009, 29 (6), 1119-1130. https://doi.org/10.1111/j.1460-9568.2009.06664.x |
||||
5. Iba T., Nagakari K. The effect of plasma-derived activated protein C on leukocyte cell-death and vascular endothelial damage. Thromb. Res. 2015, 135 (5), 963-969. https://doi.org/10.1016/j.thromres.2015.03.012 |
||||
6. Mosnier L. O., Griffin J. H. Protein C anticoagulant activity in relation to anti-inflammatory and anti- apoptotic activities. Frontiers in Bioscience. 2006, V. 11, P. 2381-2399. https://doi.org/10.2741/1977 | ||||
7. Healy L. D., Puy C., Fern?ndez J. A., Mitrugno A., Keshari R. S., Taku N. A., Chu T. T., Xu X., Gruber A., Lupu F., Griffin J. H., McCarty O. J. T. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J. Biol. Chem. 2017, 292 (21), 8616-8629. https://doi.org/10.1074/jbc.M116.768309 | ||||
8. Healy L. D., Rigg R. A., Griffin J. H., McCarty O. J. T. Regulation of immune cell signaling by activated protein C. J. Leukoc. Biol. 2018, 103 (6), 1197-1203. https://doi.org/10.1002/JLB.3MIR0817-338R |
||||
9. Melga?o J. G., Brito D., Azamor T., Marques A., Tubar?o L. N., Gon?alves R. B., Monteiro. R. Q., Missailidis S., da Costa Neves P. C., Bom A. P. D. A. Cellular and Molecular Immunology Approaches for the Development of Immunotherapies against the New Coronavirus ( SARS-CoV-2 ): Challenges to Near-Future Breakthroughs. J. Immunol. Res. 2020, 2020. https://doi.org/10.1155/2020/8827670 |
||||
10. Griffin J. H., Lyden P. COVID-19 hypothesis: Activated protein C for therapy of virus-induced pathologic thromboinflammation. Res. Pract. Thromb. Haemost. 2020, 4 (4), 506-509. https://doi.org/10.1002/rth2.12362 | ||||
11. Mazzeffi M., Chow J. H., Amoroso A., Tanaka K. Revisiting the protein C pathway: An opportunity for adjunctive intervention in COVID-19? Anesth. Analg. 2020, 131 (3), 690-693. https://doi.org/10.1213/ANE.0000000000005059 | ||||
12. Burnouf T. Chromatography in plasma fractionation: benefits and future trends. J. Chromatogr. B Biomed. Appl. 1995, 664 (1), 3-15. https://doi.org/10.1016/0378-4347(94)00532-A |
||||
13. Orthner C. L., Ralston A. H., Gee D., Kent R., Kolen B., McGriff J. D., Drohan W. N. Large-Scale Production and Properties of Immunoaffinity-Purified Human Activated Protein C Concentrate. Vox Sang. 1995, 69 (4), 309-318. https://doi.org/10.1111/j.1423-0410.1995.tb00366.x |
||||
14. Rezania S., Ahn D. G., Kang K. A. Separation of protein C from Cohn fraction IV-1 by mini-antibody. Adv. Exp. Med. Biol. 2008, V. 599, P. 125-131. https://doi.org/10.1007/978-0-387-71764-7_17 |
||||
15. Shukla D., Trout B. L. Understanding the synergistic effect of arginine and glutamic acid mixtures on protein solubility. J. Phys. Chem. B. 2011, 115 (41), 11831-11839. https://doi.org/10.1021/jp204462t | ||||
16. Golovanov A. P., Hautbergue G. M., Wilson S. A., Lian L. Y. A simple method for improving protein solubility and long-term stability. J. Am. Chem. Soc. 2004, 126 (29), 8933-8939. https://doi.org/10.1021/ja049297h | ||||
17. Fazeli B., Akbari V., Barkhordari A., Mir Mohammad Sadeghi H. Improvement of Soluble Production of Reteplase in Escherichia Coli by Optimization of Chemical Chaperones in Lysis Buffer. Adv. Biomed. Res. 2019, 8 (1), 65. https://doi.org/10.4103/abr.abr_212_18 |
||||
18. Qiao B., Jim?nez-?ngeles F., Nguyen T. D., De La Cruz M. O. Water follows polar and nonpolar protein surface domains. Proc. Natl. Acad. Sci. U S A. 2019, 116 (39), 19274-19281. https://doi.org/10.1073/pnas.1910225116 | ||||
19. Scopes R. K. Protein purification: principles and practice. 3rd ed. Springer. 1994, 380 p. https://doi.org/10.1007/978-1-4757-2333-5 | ||||
20. Mather T., Oganessyan V., Hof P., Huber R., Foundling S., Esmon C., Bode W. The 2.8 ? crystal structure of Gla-domainless activated protein C. EMBO J. 1996, 15 (24), 6822-6831. PMCID: PMC452507. https://doi.org/10.1002/j.1460-2075.1996.tb01073.x |
||||
21. Griffin J. H., Fernandes J. A., Gale A. J., Mosnier L. O. Activated protein C. J. Thromb. Haemost. 2007, 5 (Suppl. 1), 73-80. https://doi.org/10.1111/j.1538-7836.2007.02491.x |
||||
22. Hemker H. C. Handbook of Synthetic Substrates. Springer, Netherlands. 1983, P. 1-26. https://doi.org/10.1007/978-94-009-6690-1 | ||||
23. Sinauridze E. I., Gorb A. S., Seregina E. A., Lipets E. N. Moderate plasma dilution using artificial plasma expanders shifts the haemostatic balance to hypercoagulation. Scientific reports. 2017, 7 (843), 1-12. https://doi.org/10.1038/s41598-017-00927-w |
||||
24. Kisiel W., Davie E. W. Protein C. Methods in Enzymology. 1981, V. 80, P. 320-332. https://doi.org/10.1016/S0076-6879(81)80028-6 |