ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 2, 2021
Р. 28-36, Bibliography 24, English
Universal Decimal Classification: 612.617.1:615.014.41:539.21-022.532
https://doi.org/10.15407/biotech14.02.028
N. O Volkova, M. S. Yukhta, L. V. Sokil, L. G. Chernyschenko, L. V. Stepanyuk, A. M. Goltsev
Institute for Problems of Cryobiology and Cryomedicineof the National Academy of Sciences of Ukraine, Kharkiv
An optimal approach to the recovery of testicular tissue fragments after cryopreservation is critical for their further use in order to successful fertility restoration.
Aim. The purpose of this study was to investigate the effect of bovine serum albumin (BSA) addition to the rehabilitation medium on the morphofunctional characteristics of fragments of seminiferous tubules of testes (FSTT) of immature rats after cryopreservation.
Methods. The object of the study was cryopreserved by slow cooling and vitrified FSTT. Warmed samples were incubated for 30 min in Leibovitz medium supplemented with BSA at concentrations of 0, 2, 5 or 10%. After that, morphological characteristics, the activity of the metabolic and antioxidant systems were evaluated.
Results. It was found that in the samples cryopreserved by slow cooling, the use of 5% BSA contributed to the increase in the safety of spermatogenic epithelium cells, in the levels of metabolic and antioxidant activities. In case of vitrified FSTT samples, it was observed that the addition of 5% BSA to the medium promoted the repair of minor tissue damage and increased metabolic activity level, but did not affect the state of the antioxidant defense system.
Conclusions. The obtained data can be used to develop an effective rehabilitation medium for cryopreserved fragments of the seminiferous tubules of testes using BSA.
Key words: bovine serum albumin, rehabilitation, cryopreservation, fragments of the seminiferous tubules of testes.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Braye A., Tournaye H., Goossens E. Setting up a cryopreservation programme for immature testicular tissue: lessons learned after more than 15 years of experience. Clin. Med. Insights. Reprod. Health. Available at https://journals.sagepub.com/doi/pdf/10.1177/1179558119886342 (accessed, March, 2021). | ||||
2. Poganitsch-Korhonen M., Masliukaite I., Nurmio M., L?hteenm?ki P., van Wely M., van Pelt A. M. M., Jahnukainen K., Stukenborg J. B. Decreased spermatogonial quantity in prepubertal boys with leukemia treated with alkylating agents. Leukemia. 2017, 31 (6), 1460-1463. https://doi.org/10.1038/leu.2017.76 |
||||
3. Onofre J., Kadam P., Baert Y., Goossens E. Testicular tissue cryopreservation is the preferred method to preserve spermatogonial stem cells prior to transplantation. Reprod. Biomed. Online. 2020, 40 (2), 261-269. https://doi.org/10.1016/j.rbmo.2019.10.016 |
||||
4. Silva A. M. D., Pereira A. F., Comizzoli P., Silva A. R. Cryopreservation and culture of testicular tissues: an essential tool for biodiversity preservation. Biopreserv. Biobank. 2020, 18 (3), 235-243. https://doi.org/10.1089/bio.2020.0010 |
||||
5. Giudice M. G., Michele F., Poels J., Vermeulen M., Wyns C. Update on fertility restoration from prepubertal spermatogonial stem cells: How far are we from clinical practice? Stem Cell Res. 2017, 21 (5), 171-177. https://doi.org/10.1016/j.scr.2017.01.009 |
||||
6. Finkel T., Holbrook N. J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000, V. 408, P. 239-247. https://doi.org/10.1038/35041687 |
||||
7. Amani H., Habibey R., Hajimiresmail S. J., Latifi S., Pazoki-Toroudi H., Akhavan O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J. Mater. Chem. B. 2017, V. 5, P. 9452-9476. https://doi.org/10.1039/C7TB01689A |
||||
8. Lintz J. A., Dalio M. B., Joviliano E. E, Piccinato C. E. Ischemic pre and postconditioning in skeletal muscle injury produced by ischemia and reperfusion in rats. Acta Cir. Bras. 2017, 28 (6), 441-446. https://doi.org/10.1590/S0102-86502013000600007 |
||||
9. Erkut B., ?zyaz?c?o?lu A., Karapolat B. S., Ko?o?ullar? C. U., Keles S., Ate? A., Gundogdu C., Kocak H. Effects of ascorbic acid, alpha-tocopherol and allopurinol on ischemia-reperfusion injury in rabbit skeletal muscle: an experimental study. Drug Target Insights. (Accessed March, 2021). Available at https://doi.org/10.4137/DTI.S303 |
||||
10. Su L. J., Zhang J. H., Gomez H., Murugan R., Hong X., Xu D., Jiang F., Peng Z. Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell Longev. (Accessed March, 2021). Available at https://doi.org/10.1155/2019/5080843 |
||||
11. Alahmar A. T. Role of oxidative stress in male infertility: An updated review. J. Hum. Reprod. Sci. 2019, 12 (1), 4-18. https://doi.org/10.4103/jhrs.JHRS_150_18 |
||||
12. Sar??zkan S., T?rk G., Cant?rk F., Yay A., Eken A., Ak?ay A. The effect of bovine serum albumin and fetal calf serum on sperm quality, DNA fragmentation and lipid peroxidation of the liquid stored rabbit semen. Cryobiol. 2013, 67 (1), 1-6. https://doi.org/10.1016/j.cryobiol.2013.04.002 |
||||
13. Volkova N. O., Yukhta M. S., Chernyshenko L. G., Stepanyuk L. V., Sokol L. V., Goltsev A. M. Exposure of seminiferous tubules of immature rats to cryoprotective media of various compositions. Probl. Cryobiol. Cryomed. 2017, 27 (3), 203-218. https://doi.org/10.15407/cryo27.03.203 |
||||
14. Volkova N. O., Yukhta M. S., Chernyshenko L. G., Stepanyuk L. V., Sokil L. V., Goltsev A. M. Cryopreservation of rat seminiferous tubules using biopolymers and slow non-controlled rate cooling. Probl. Cryobiol. Cryomed. 2018, 28 (4), 278-292. https://doi.org/10.15407/cryo28.04.278 |
||||
15. Volkova N. O., Yukhta M. S., Goltsev A. M. Vitrification of rat testicular tissue using biopolymers. Biopolym. Cell. 2020, 36 (2), 122-132. https://doi.org/10.7124/bc.000A26 |
||||
16. Dom?nguez-V?as G., Segarra A. B., Mart?nez-Ca?amero M., Ram?rez-S?nchez M., Prieto I. Influence of a virgin olive oil versus butter plus cholesterol-enriched diet on testicular enzymatic activities in adult male rats. Int. J. Mol. Sci. 2017, 18 (8), 1701. https://doi.org/10.3390/ijms18081701 |
||||
17. Meroni S. B., C?nepa D. F., Pellizzari E. H., Schteingart H. F., Cigorraga S. B. Effects of purinergic agonists on aromatase and gamma-glutamyl transpeptidase activities and on transferrin secretion in cultured Sertoli cells. J. Endocrinol. 1998, V. 157, Р. 275-283. https://doi.org/10.1677/joe.0.1570275 |
||||
18. Agrawal Y. P., Vanha-Perttula T. Gamma-glutamyl transpeptidase; glutathione; and L-glutamic acid in the rat epididymis during postnatal development. Biol. Reprod. 1988, V. 38, Р. 996-1000. https://doi.org/10.1095/biolreprod38.5.996 |
||||
19. De Leeuw F. E., De Leeuw A. M., Den Daas J. H., Colenbrander B., Verkleij A. J. Effects of various cryoprotective agents and membrane-stabilizingcompounds on bull sperm membrane integrity after cooling and freezing. Cryobiol. 1993, 30 (1), 32-44. https://doi.org/10.1006/cryo.1993.1005 |
||||
20. Dobretsov G. Ye. Fluorescent probes in the study of cells, membranes and lipoproteins. Moskva: Nauka. 1989, 277 p. (In Russian). | ||||
21. Blesbois E., Caffin J. P. 'Serum like' albumin of foul seminal plasma and effects of albumin on foul spermatozoa stored at 4°C. Br. Poult. Sci. 1992, 33 (3), 663-670. https://doi.org/10.1080/00071669208417504 |
||||
22. Risopatron J., Catalan S., Miska W., Schill W. B., S?nchez R. Effect of albumin and polyvinyl alcohol on the vitality, motility and acrosomal integrity of canine spermatozoa incubated in vitro. Reprod. Domest. Anim. 2002, 37 (6), 347-351. https://doi.org/10.1046/j.1439-0531.2002.t01-1-00380.x |
||||
23. Matsuoka T., Imai H., Kohno H., Fukui Y. Effects of bovine serum albumin and trehalose in semen diluents for improvement of frozen-thawed ram spermatozoa. J. Reprod. Dev. 2006, 52 (5), 675-683. https://doi.org/10.1262/jrd.18033 |
||||
24. Yokouchi Y., Tsunoda T., Imura T., Yamauchi H., Yokoyama S., Sakai H., Abe M. Effect of adsorption of bovine serum albumin on liposomal membrane characteristics. Colloids Surf. B Biointerfaces. 2001, 20 (2), 95-103. https://doi.org/10.1016/S0927-7765(00)00176-4 |