ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 4, 2020
Р. 14-25, Bibliography 24, English
Universal Decimal Classification: 581.192:58.081
https://doi.org/10.15407/biotech13.04.014
PROFILING OF HORMONES IN PLANT TISSUES: HISTORY, MODERN APPROACHES, USE IN BIOTECHNOLOGY
І. V. Kosakivska, M. M. Shcherbatiuk, L. V. Voytenko
Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv
The review analyzes and summarizes the latest literature on the history of development and the current state of methodological approaches to the identification and quantification of phytohormones in plant tissues. Phytohormones play a key role in the regulation of physiological processes throughout the life cycle of plants – from seed germination to aging. In tissues of plants, their concentrations are very low (from 10-9 M to 10-6 M), so the development of fast, highly efficient, comprehensive, and at the same time reliable approaches to the determination of phytohormones is extremely urgent. The article gives a brief description of the main classes of phytohormones, describes their functional activity. The substantiated and checked sequence of procedures on the extraction of plant hormones, their separation from interfering substances, quantification methodology for indol-3-acetic, abscisic, gibberellic (GA3), salicylic acids and five cytokinins that combines a high-performance liquid chromatography with mass spectrometry are presented. The article describes four chromatographic methods of profiling, gives the conditions for detecting phytohormones of different classes and ionization of these substances in a mass spectrometer. The importance of phytohormones profiling in plant tissues for further applied in biotechnological approaches, in particular in metabolic engineering, for the formation of stress resistance in crops is discussed.
Key words: high-performance liquid chromatography, mass spectrometry, phytohormones, biotechnology.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2020
References
1. Enders T. A., Strader, L. C. Auxin activity: past, present, and future. Am. J. Bot. 2015, V. 102, P. 180–196. https://doi.org/10.3732/ajb.1400285
2. Dobrev P. I., Vankova R. “Quantification of Abscisic Acid, Cytokinin, and Auxin Content in Salt-Stressed Plant Tissues”. Methods Mol. Biol. 2012, V. 913, P. 251–261. https://doi.org/10.1007/978-1-61779-986-0_17
3. Vedenichova N. P., Kosakivska I. V. Cytokinins in ontogenesis and adaptation of cereals. Fiziolohia rastenii i henetyka. 2020, 52 (1), 3–30. (In Ukrainian). https://doi.org/10.15407/frg2020.01.003
4. Gantait S., Sinniah U. R., Ali M. N., Sahu N. C. Gibberellins – multifaceted hormone in plant growth regulatory network. Curr. Protein Pept. Sci. 2015, V. 16, P. 406–412. https://doi.org/10.2174/1389203716666150440125439https://doi.org/10.2174/1389203716666150440125439
5. Voytenko L. V., Kosakivska I. V. Polyfunctional phytohormone abscisic acid. Visn. Khark. nats. ahrar. univ. Ser. Biol. 2016, 1 (37), 27–41. (In Ukrainian).
6. Dempsey A. D., Klessig D. F. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biology. 2017, V. 15, P. 23. https://doi.org/10.1186/s12915-017-0364-8
7. Abreu M. E., Munné-Bosch S. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J. Exp. Botany. 2009, 60 (4), 1261–1271. https://doi.org/10.1093/jxb/ern363
8. Holopainen J. K., Blande J. D. Molecular plant volatile communication. Adv. Exp. Med. Biol. 2012, V. 739, P. 17–31. https://doi.org/10.1007/978-1-4614-1704-0_2
9. Song S., Qi T., Wasternack C., Xie D. Jasmonate signaling and crosstalk with gibberellin and ethylene. Curr. Opin. Plant Biol. 2014, V. 21, P. 112–119. https://doi.org/10.1016/j.pbi.2014.07.005https://doi.org/10.1016/j.pbi.2014.07.005
10. Erland L. A. E., Shukla M. R., Glover W. B., Saxena P. K. A simple and efficient method for analysis of plant growth regulators: a new tool in the chest to combat recalcitrance in plant tissue culture. Plant Cell. Tiss. Organ. Cult. 2017, V. 131, P. 459–470. https://doi.org/10.1007/s11240-017-1297-1
11. Dörfling K. Das Hormonsystem der Pflanzen. Stuttgart; New York: Georg Thieme Verlag. 1983, 236 p. https://doi.org/10.1002/jpln.19831460416
12. Metodicheskie rekomendatsii po opredeleniyu fitogormonov. Kyiv: Naukova dumka. 1988, 78 p. (In Russian).
13. Mertens R., Deusneumann B., Weiler E. W. Monoclonal-antibodies for the detection and quantitation of the endogenous plant-growth regulator, abscisic acid. FEBS Let. 1983, 160 (1–2), 269–272. https://doi.org/10.1016/0014-5793(83)80980-6
14. Müller A., Duchting P., Weiler E. W. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta. 2002, 216 (1), 44–56. https://doi.org/10.1007/s00425-002-0866-6
15. Pan X., Wang X. Profiling of plant hormones by mass spectrometry. J. Chromatography. 2009, 877 (26), 2806–2813. https://doi.org/10.1016/j.jchromb.2009.04.024
16. Chiwocha S. D., Abrams S. R., Ambrose S. J., Cutler A. J., Loewen M., Ross A. R., Kermode A. R. A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J. 2003, 35 (3), 405–417. https://doi.org/10.1046/j.1365-313x.2003.01800.x
17. Pan X., Welti R., Wang X. Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography tandem mass spectrometry. Phytochem. 2008, 69 (8), 1773–1781. https://doi.org/10.1016/j.phytochem.2008.02.008
18. Kojima M., Kamada-Nobusada T., Komatsu H., Takei K., Kuroha T., Mizutani M., Ashikari M., Ueguchi-Tanaka M., Matsuoka M., Suzuki K., Sakakibara H. Highly sensitive and high-throuput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol. 2009, 50 (7), 1201–1214. https://doi.org/10.1093/pcp/pcp057
19. Dobrev P., Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatography. 2002, V. 950, P. 21–29. https://doi.org/10.1016/s0021-9673(02)00024-9
20. Müller M., Munné-Bosch S. Rapid and Sensitive Hormonal Profiling of Complex Plant Samples by Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry. Plant Methods. 2011, V. 7, P. 37. https://doi.org/10.1186/1746-4811-7-37
21. Kosakivska I. V. Ecological direction in plant physiology: achievements and prospects. Physiol. i biokhim. kult. rastenii. 2007, 39 (4), 279–290. (In Ukrainian).
22. FAO. World Food Situation // Food and agriculture organization of the United Nations 2017. Available at: http://www.fao.org/worldfoodsituation/csdb/en/
23. Raza A., Mehmood S. S., Tabassum J., Batool R. Targeting Plant Hormones to Develop Abiotic Stress Resistance in Wheat. Wheat Production in Changing Environments. Hasanuzzaman M., Nahar K., Hossain M. (Eds.) Springer, Singapore. 2019, P. 557–579. https://doi.org/10.1007/978-981-13-6883-7_22
24. Wani S. H., Kumar V., Shriram V., Sah S. K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016, V. 4, P. 162–176. https://doi.org/10.1016/j.cj.2016.01.010