ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 4, 2020
Р. 5-13, Bibliography 39, English
Universal Decimal Classification: 579.088
https://doi.org/10.15407/biotech13.04.005
PROMISING AREAS OF BIOFUEL CELL USE
D. Koltysheva, K. Shchurska, Y. Kuzminskyi
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
A biofuel cell (BFС) is a bioelectrochemical device that can directly produce electricity or biohydrogen as a result of highly efficient “cold” fuel combustion. Nowadays there is no unified definitive classification and terminology, because BFCs are complex devices and they are still at research stage.
Ukrainian scientists have proposed a classification of BFCsbased on nature of the biological component in the anode chamber, type of enzymes, presence of mediators, etc. Such classification is still relevant today, but due to the expansion of research areas and promising fields of BFC implementation and creation of hybrid and integrated systems there is a need to expand the review of existing BFC. The aim of the work was to study the current state of development of different BFC types and prospects for their implementation.
Results of the analysis of modern publications in the field of BFC research have revealed a wide range of variations and possible promising fields of BFC application.
Further research and implementation of these devices as environmentally friendly fuel for autonomous operation of robots, in biosensors and for wastewater treatment etc. should be based on the study of biotechnological parameters of biofilm formation and operation of BFC.
Key words: biofuel cell, biofilm, biosensor, microbial fuel cell, biocathodes.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2020
References
1. Shchurska K., Zubchenko L., Kuzminskyi Ye. Investigation of the influence of exoelectrogen cultivation conditions on the bioelectrochemical process of hydrogen evolution. KPI Sci. News. 2012, N 3, P. 88–92. (In Ukrainian).
2. Kuzminskyi Ye., Shchurska K., Samarukha I. Fuel cells. I. The current state of development. Renewable energy. 2013, N 1, P. 90–96. (In Ukrainian).
3. Pandey P., Shinde V., Deopurkar R., Kale S., Patil S., Pant D. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energy. 2016, V. 168, P. 706–723. https://doi.org/10.1016/j.apenergy.2016.01.056
4. Kuzminskyi Ye., Hvozdiak P., Holub N. Biofuel elements-problems and prospects of development II. Microbial fuel cells. Microbiol. Biotechnol. 2009, 1 (5), 6–21. (In Ukrainian). https://doi.org/10.18524/2307-4663.2009.1(5).102094
5. Vogl A. Studies on the microbial fuel cell for the energetic use of highly concentrated wastewater. 2016 Oct 16 [cited 2020 Jun 12]; Available from: https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/5016.(In German).
6. Zebda A., Alcaraz J.-P., Vadgama P., Shleev S., Minteer S., Boucher F., Cinquin P., Martina D. K. Challenges for successful implantation of biofuel cells. Bioelectrochem. 2018, V. 5, P. 124. https://doi.org/10.1016/j.bioelechem.2018.05.011
7. Bollella P., Fusco G., Stevar D., Gorton L., Ludwig R., Ma S., Boer H., Koivula A., Tortolini C., Favero G., Antiochia R., Mazzei F. A Glucose/Oxygen Enzymatic Fuel Cell based on Gold Nanoparticles modified Graphene Screen-Printed Electrode. Proof-of-Concept in Human Saliva. Sensors and Actuators B: Chemical. 2018, V. 256, P. 921–30. https://doi.org/10.1016/j.snb.2017.10.025
8. Teravest M. A., Li Z., Angenent L. T. Bacteria-based biocomputing with Cellular Computing Circuits to sense, decide, signal, and act. Energy Environ Sci. 2011, 4 (12), 4907–4916. https://doi.org/10.1039/c1ee02455h
9. Singh A., Yakhmi J. Microbial fuel cells – Applications for generation of electrical power and beyond. Critical rev. microbiol. 2014, V. 42, P. 1–17. https://doi.org/10.3109/1040841X.2014.905513
10. Zhou M., Wang H., Hassett D. J., Gu T. Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J. Chem. Technol. Biotechnol. 2013, 88 (4), 508–518. https://doi.org/10.1002/jctb.4004
11. Morris J. M., Jin S., Crimi B., Pruden A. Microbial fuel cell in enhancing anaerobic biodegradation of diesel. Chem. Engineering J. 2009, 146 (2), 161–167. https://doi.org/10.1016/j.cej.2008.05.028
12. Chiranjeevi P., Chandra R., Mohan S. V. Ecologically engineered submerged and emergent macrophyte based system: An integrated eco-electrogenic design for harnessing power with simultaneous wastewater treatment. Ecol. Engineering. 2013, V. 51, P. 181–190. https://doi.org/10.1016/j.ecoleng.2012.12.014
13. Tender L. M., Reimers C. E., Stecher H. A., Holmes D. E., Bond D. R., Lowy D. A., Pilobello K., Fertig S. J., Lovley D. R. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 2002, 20 (8), 821–825. https://doi.org/10.1038/nbt716
14. Oon Y.-L., Ong S.-A., Ho L.-N., Wong Y.-S., Dahalan F. A., Oon Y.-S., Lehl H. K., Thung W.-E., Nordin N. Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Biores. Technol. 2017, V. 224, P. 265–75.https://doi.org/10.1016/j.biortech.2016.10.079
15. Nevin K. P., Hensley S. A., Franks A. E., Summers Z. M., Ou J., Woodard T. L., Snoeyenbos-West O. L., Lovley D. R. Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms. Appl. Environ. Microbiol. 2011, 77 (9), 2882–2886. https://doi.org/10.1128/AEM.02642-10
16. Agler-Rosenbaum M., Schr?der U., Harnisch F. Microbes under power: from wastewater treatment to bioelectrotechnology. Biology in our time. 2013, 43 (2), 96–103.(In German). https://doi.org/10.1002/biuz.201310502
17. Kim J. R., Zuo Y., Regan J. M., Logan B. E. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol. Bioeng. 2008, 99 (5), 1120–1127. https://doi.org/10.1002/bit.21687
18. Zubchenko L. Biotechnological production of hydrogen in a biofuel cell with a photoelectrochemical cathode. 2019 [cited 2020 Jun 12]. Available from: https://ela.kpi.ua/handle/123456789/26318
19. Slate A. J., Whitehead K. A., Brownson D. A. C., Banks C. E. Microbial fuel cells: An overview of current technology. Renewable and Sustainable Energy Rev. 2019, V. 101, P. 60?81. https://doi.org/10.1016/j.rser.2018.09.044
20. Yousefi V., Mohebbi-Kalhori D., Samimi A. Ceramic-based microbial fuel cells (MFCs): A review. Inter. J. Hydrogen Energy. 2017, 42 (3), 1672–1690.https://doi.org/10.1016/j.ijhydene.2016.06.054
21. Rabaey K., Keller J. Microbial fuel cell cathodes: from bottleneck to prime opportunity? Water Sci. Technol. 2008, 57 (5), 655–659. https://doi.org/10.2166/wst.2008.103
22. Hays S., Zhang F., Logan B. E. Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. J. Power Sources. 2011, 196 (20), 8293–8300. https://doi.org/10.1016/j.jpowsour.2011.06.027
23. Gude V. G. Wastewater treatment in microbial fuel cells – an overview. J. Cleaner Production. 2016, V. 122, P. 287–307. https://doi.org/10.1016/j.jclepro.2016.02.022
24. Rismani-Yazdi H., Carver S. M., Christy A. D., Tuovinen O. H. Cathodic limitations in microbial fuel cells: An overview. J. Power Sources. 2008, 180 (2), 683–694. https://doi.org/10.1016/j.jpowsour.2008.02.074
25. Oh S. T., Kim J. R., Premier G. C., Lee T. H., Kim C., Sloan W. T. Sustainable wastewater treatment: How might microbial fuel cells contribute. Biotechnol. Advances. 2010, 28 (6), 871–881. https://doi.org/10.1016/j.biotechadv.2010.07.008
26. Bhaumik A. From AI to robotics: mobile, social, and sentient robots. Boca Raton: CRC Press, Taylor & Francis Group, CRC Press is an imprint of the Taylor & Francis Group, an informa business. 2018, 403 p.
27. Babadi A. A., Bagheri S., Hamid S. B. A. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement. Biosensors and Bioelectronics. 2016, V. 79, P. 850–860. https://doi.org/10.1016/j.bios.2016.01.016
28. Freguia S., Rabaey K., Yuan Z., Keller J. Sequential anode–cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res. 2008, 42 (6–7), 1387–1396. https://doi.org/10.1016/j.watres.2007.10.007
29. Kokabian B., Ghimire U., Gude V. G. Water deionization with renewable energy production in microalgae – microbial desalination process. Renewable Energy. 2018, V. 122, P. 354–361. https://doi.org/10.1016/j.renene.2018.01.061
30. Xu L., Zhao Y., Doherty L., Hu Y., Hao X. The integrated processes for wastewater treatment based on the principle of microbial fuel cells: A review. Critical Rev. Environ. Sci. Technol. 2016, 46 (1), 60–91. https://doi.org/10.1080/10643389.2015.1061884
31. Burrows W., Cordon T. The in?uence of the decomposition of organic matter on the oxidation-reduction potential of soils. Soil Sci. 1936, 42 (1), 1–10. https://doi.org/10.1097/00010694-193607000-00001
32. Lee S. H., Lee K.-S., Sorcar S., Razzaq A., Grimes C. A., In S.-I. Wastewater treatment and electricity generation from a sunlight-powered single chamber microbial fuel cell. J. Photochem. Photobiol. A: Chem. 2018, V. 358, P. 432–440. https://doi.org/10.1016/j.jphotochem.2017.10.030
33. Kadier A., Kalil M. S., Abdeshahian P., Chandrasekhar K., Mohamed A., Azman N. F., Logro?o W., Simayi Y., Hamid A. A. Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renewable and Sustainable Energy Rev. 2016, V. 61, P. 501–525.https://doi.org/10.1016/j.rser.2016.04.017
34. Rinaldi A., Mecheri B., Garavaglia V., Licoccia S., Di Nardo P., Traversa E. Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ. Sci. 2008, 1 (4), 417. https://doi.org/10.1039/b806498a
35. Kuzminskyy Y., Shchurska K. Priority Directions of Development of Ecobiotechnology. 1. Environmental Biotechnology. Innov. Biosyst. Bioeng. 2018, 2 (1), 22–32. (In Ukrainian). https://doi.org/10.20535/ibb.2018.2.1.119233
36. Wilkinson S. “Gastrobots” – Benefits and Challenges of Microbial Fuel Cells in Food Powered Robot Applications. Autonomous Robots. 2000, 9 (2), 99–111. https://doi.org/10.1023/A:1008984516499https://doi.org/10.1023/A:1008984516499
37. Nandy A., Kundu P. P. Configurations of Microbial Fuel Cells. In: Progress and Recent Trends in Microbial Fuel Cells [Internet]. Elsevier; 2018 [cited 2020 Jun 12]. P. 25–45. Available from: https://doi.org/10.1016/B978-0-444-64017-8.00003-8
38. He W., Zhang X., Liu J., Zhu X., Feng Y., Logan B. E. Microbial fuel cells with an integrated spacer and separate anode and cathode modules. Environ. Sci: Water Res. Technol. 2016, 2 (1), 186–195.https://doi.org/10.1039/C5EW00223K
39. Rodenas Motos P., ter Heijne A., van der Weijden R., Saakes M., Buisman C. J. N., Sleutels T. H. J. A. High rate copper and energy recovery in microbial fuel cells. Front Microbiol [Internet]. 2015, V. 6. Available from: https://doi.org/10.3389/fmicb.2015.00527