ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No 6, 2019
Р. 46-55, Bibliography 30, English
Universal Decimal Classification: 579.663
https://doi.org/10.15407/biotech12.06.046
POST-HARVEST TREATMENT OF VEGETABLES WITH EXOMETABOLITES OF Nocardia vaccinii IMV B-7405, Аcinetobacter calcoaceticus IMV В-7241 AND Rhodococcus erythropolis IMV Ас-5017
TO EXTEND THEIR SHELF LIFE
T. P. Pirog, B. S.Geichenko, A. O. Zvarych
National University of Food Technologies, Kyiv, Ukraine
The aim of the work was to study the possibility of Nocardia vaccinii IMV B-7405, Acinetobacter calcoaceticus IMV B-7241 and Rhodococcus erythropolis IMV Ac-5017 supernatants usage with various concentrations of surfactants for post-harvest processing of vegetables.
N. vaccinii IMV B-7405, A. calcoaceticus IMV B-7241 and R. erythropolis IMV Ac-5017 were grown on used sunflower oil and ethanol. For vegetables treatment, supernatants of the culture fluid with surfactant concentration of 0.01–0.5 g/l were used. The concentration of surfactants was determined by the gravimetric method after extraction with Folch mixture. The total number of heterotrophic bacteria and fungi on the surface of vegetables was determined by the Koch method on meat-peptone agar and wort agar, respectively.
It was shown that treatment of broccoli, Brussels sprouts, sweet pepper and tomatoes with N. vaccinii IMV B-7405, A. calcoaceticus IMV B-7241 and R. erythropolis IMV Ac-5017 supernatants was accompanied by 6–17 and 8–50 times decrease of bacteria and fungi number on their surface, respectively, compared with that on the surface of vegetables washed with tap water. The possibility of double use of the same supernatant for various batches of vegetables washing was established. Non-treated and water-washed vegetables spoiled faster than those treated with surfactant-containing supernatants did.
N. vaccinii IMV B-7405, R. erythropolis IMV Ac-5017 and A. calcoaceticus IMV B-7241 exometabolites used for treating vegetables to extend their shelf life have the following advantages in comparison with known microbial surfactants: they exhibit high antimicrobial activity when the surfactant concentration was sometimes lower and in the form of supernatant, which lets you exclude the expensive stage of isolation and purification of the target product from the technological process. In addition, surfactant-containing supernatants are highly effective in their repeated use.
Key words: storage of vegetables, microbial spoilage, surfactants.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Harjot P. K., Bhairav P., Sukhvir K. A review on application of biosurfactants produced from unconventional inexpensive wastes in food and agriculture industry. World J. Pharm. Res. 2015, 4 (8), 827–842.
2. Mnif I., Ghribi D. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J. Sci. Food Agric. 2016, 96 (13), 4310–4320. https://doi.org/10.1002/jsfa.7759
3. Vecino X., Cruz J. M., Moldes A. B., Rodrigues L. R. Biosurfactants in cosmetic formulations: trends and challenges. Crit. Rev. Biotechnol. 2017, 37 (7), 911–923. https://doi.org/10.1080/07388551.2016.1269053
4. De Graeve M., De Maeseneire S. L., Roelants S. L. K. W., Soetaert W. Starmerella bombicola, an industrially relevant, yet fundamentally underexplored yeast. FEMS Yeast Res. 2018, 18 (7). https://doi.org/10.1093/femsyr/foy072
5. Jimoh A. A., Lin J. Biosurfactant: A new frontier for greener technology and
environmental sustainability. Ecotoxicol. Environ. Saf. 2019, 184, 109607. https/doi.org/10.1016/j.ecoenv.2019.109607.
6. Naughton P. J., Marchant R., Naughton V., Banat I. M. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J. Appl. Microbiol. 2019, 127 (1), 12–28. https://doi.org/10.1111/jam.14243
7. Dengle-Pulate R., Joshi J., Bhagwat S., Prabhune A. Application of sophorolipids synthesized using lauryl alcohol as a germicide and fruit-vegetable wash. World J. Pharm. Res. 2015, 3 (7), 1630–1643.
8. Yan F., Xu S., Chen Y., Zheng X. Effect of rhamnolipids on Rhodotorula glutinis biocontrol of Alternaria alternata infection in cherry tomato fruit. Postharvest Biol. Technol. 2014, 97, 32–35. https://doi.org/10.1016/j.postharvbio.2014.05.017
9. Sharma V., Garg M., Devismita T., Thakur P., Henkel M., Kumar G. Preservation of microbial spoilage of food by biosurfactantbased coating. Asian J. Pharm. Clin. Res. 2018, 11 (2), 98–101. https://doi.org/10.22159/ajpcr.2018.v11s2.28592
10. Romanazzi G., Feliziani E., Ba?os S. B., Sivakumar D. Shelf life extension of fresh fruit and vegetables by chitosan treatment. Crit. Rev. Food Sci. Nutr. 2017, 57 (3), 579–601. https://doi.org/10.1080/10408398.2014.900474
11. Romanazzi G., Feliziani E., Sivakumar D. Chitosan, a biopolymer with thrice action on postharvest decay of fruit and vegetables: eliciting, antimicrobial and film-forming properties. Front. Microbiol. 2018, 9, 2745. https://doi.org/10.3389/fmicb.2018.02745
12. Barbosa A. A. T., Mantovani H. C., Jain S. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Crit. Rev. Biotechnol. 2017, 37 (7), 852–864. https://doi.org/10.1080/07388551.2016.1262323
13. Sinumvayo J. P., Ishimwe N. Agriculture and food applications of rhamnolipids and its production by Pseudomonas aeruginosa. J. Chem. Eng. Process. Technol. 2015, 6 (2), 223. https://doi.org/10.4172/2157-7048.1000223
14. Pirog T., Beregova K., Geichenko B., Stabnikov V. Application of surface-active substances produced by Nocardia vaccinii ІМV В-7405 for the treatment of vegetables. Ukrainian food journal. 2019, 8 (1), 99–109. https://doi.org/10.24263/2304-974X-2019-8-1-11
15. Pirog T. P., Konon A. D., Sofilkanich A. P., Iutinskaia G. A. Effect of surface-active substances of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017, and Nocardia vaccinii K-8 on phytopathogenic bacteria. Appl. Biochem. Microbiol. 2013, 49 (4), 360–367. https://doi.org/10.1134/S000368381304011X
16. Pirog T. P., Lutsay D. A., Kliuchka L. V., Beregova K. A. Antimicrobial activity of surfactants of microbial origin. Biotechnologia Acta. 2019, 12 (1), 39–57. https://doi.org/10.15407/biotech12.01.039
17. Pirog T. P., Shevchuk T. A., Voloshina I. N., Grechirchak N. N. Use of clayditeimmobilized oiloxidizing microbial cells for purification of water from oil. Appl. Biochem. Microbiol. 2005, 41 (1), 51–55. https://doi.org/10.1007/s10438-005-0010-z
18. Pirog T., Sofilkanych A., Konon A., Shevchuk T., Ivanov S. Intensification of surfactants’ synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV В-7241 and Nocardia vaccinii K-8 on fried oil and glycerol containing medium. Food. Bioprod. Proces. 2013, 91 (2), 149–157. https://doi.org/10.1016/j.fbp.2013.01.001
19. Dilarri G., da Silva V.L., Pecora H. B., Montagnolli R. N., Corso C. R., Biddia E. D. Electrolytic treatment and biosurfactants applied to the conservation of Eugenia unflora fruit. Food Sci. Technol. 2016, 36 (3). https://doi.org/10.1590/1678-457X.00516
20. Shi J., Gao L., Zuo J., Wang Q., Wang Q., Fan L. Exogenous sodium nitroprusside treatment of broccoli florets extends shelf life, enhances antioxidant enzyme activity, and inhibits chlorophyll-degradation. Postharv. Biol. Technol. 2016, 116, 98–104.https://doi.org/10.1016/j.postharvbio.2016.01.007
21. Mart?nez-Hern?ndez B. G., Art?s-Hern?ndez F., G?mez P. A., Formica A. C., Arles F. Combination of electrolysed water, UV-C and superatmospheric O2 packaging for improving fresh-cut broccoli quality. Postharv. Biol. Technol. 2013, 76, 125–134. https://doi.org/10.1016/j.ifset.2013.11.004
22. Ben-Fadhel Y., Ziane N., Salmieri S., Lacroix M. Combined post-harvest treatments for improving quality and extending shelf-life of minimally processed broccoli florets (Brassica oleracea var. italica). Food Bioprocess. Technol. 2017, 11 (1), 84–95. https://doi.org/10.1007/s11947-017-1992-2
23. Waewthongrak W., Pisuchpen S., Leelasuphakul W. Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit. Postharv. Biol. Technol. 2015, 99, 44–49. https/doi.org/10.1016/j.postharvbio.2014.07.016 https://doi.org/10.1016/j.postharvbio.2014.07.016
24. Calvo H., Marco P., Blanco D., Oria R., Venturini M. E. Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiol. 2017, 63, 101–110. https://doi.org/10.1016/j.fm.2016.11.004
25. Zhang B., Li Y., Zhang Y., Qiao H., He J., Yuan Q., Chen X., Fan J. High-cell-density culture enhances the antimicrobial and freshness effects of Bacillus subtilis S1702 on table grapes (Vitis vinifera cv. Kyoho). Food Chem. 2019, 286, 541–549. https://doi.org/10.1016/j.foodchem.2019.02.050
26. Dukare A. S., Paul S., Nambi V. E., Gupta R. K., Singh R., Sharma K., Vishwakarma R. K. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit. Rev. Food Sci. Nutr. 2019, 59 (9), 1498–1513. https://doi.org/10.1080/10408398.2017.1417235
27. Lastochkina O., Seifikalhor M., Aliniaeifard S., Baymi ev A., Pusenkova L., Garipova S., Kulabuhova D., Maksimov I. Bacillus spp.: efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants (Basel). 2019, 8 (4), pii: E97. https://doi.org/10.3390/plants8040097
28. Pierce D., Heilman T. J. Germicidal composition. World Patent 9816192. Publ. 23. 04. 1998.
29. Jing C., Bingbing Y. Sophorolipid fruit preservative and use thereof in fruit preservation. Chinese Patent CN 101886047. Publ. 17. 11. 2010.
30. Toral L., Rodr?guez M., B?jar V., Sampedro I. Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Front. Microbiol. 2018, 9, 1315. https://doi.org/10.3389/fmicb.2018.01315