ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No 6, 2019
Р. 56-64 , Bibliography 29, English
Universal Decimal Classification: 577.21+632.78+57.084.1
https://doi.org/10.15407/biotech12.06.056
1Institute of Cell Biology and Genetic Engineeringof the National Academy of Sciences of Ukraine, Kyiv
2Institute of Plant Physiology and Genetics of thr National Academy of Sciences of Ukraine, Kyiv
The research was aimed to develop genetic constructs for Agrobacterium-mediated plant transformation, containing the synthetic cry1Ab gene, and their testing through the transformation of tobacco, followed by a molecular genetic analysis of the obtained plants to confirm the transformation event. Basic methods of DNA cloning, Agrobacterium-mediated transformation of Nicotiana tabacum L. by leaf disc method, selection of transformants in vitro, analysis of the transgene presence in plant DNA, detection of cry1Ab gene expression by PCR with reverse transcription were used. In the course of the study, the vectors pCB182 and pCB241 that contained the synthetic gene cry1Ab were constructed. Agrobacterium-mediated transformation of tobacco was carried out by created vectors and regenerant plants containing transgenes in their DNA were obtained. Expression of cry1Ab transgene in the obtained transformants of tobacco by the RT-PCR method was confirmed. As a result of the Agrobacterium-mediated transformation of plants with pCB182 and pCB241 vectors containing the synthetic cry1Ab lepidopteran resistance gene it is possible to obtain transgenic plants with expression of the transgene.
Key words: cry1Ab, Nicotiana tabacum L., Agrobacterium-mediated transformation, PCR-analysis, transgenesis.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Savary S., Willocquet L., Pethybridge S. J., Esker P., McRoberts N. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evolut. 2019, 3 (3), 430–439. https://doi.org/10.1038/s41559-018-0793-y
2. Rowe G. E., Margaritis A. Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis. CRC Crit. Rev. Biotechnol. 1987, 6 (1), 87–127. https://doi.org/10.3109/07388558709086986
3. Federici B. A., Park H.-W., Bideshi D. K. Overview of the basic biology of Bacillus thuringiensis with emphasis on genetic engineering of bacterial larvicides for mosquito control. Open Toxicol. J. 2010, 3, 154–171.
4. Sanahuja G., Banakar R., Twyman R. M., Capell T., Christou P. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 2011, 9 (3), 283–300. https://doi.org/10.1111/j.1467-7652.2011.00595.x
5. Rao K. Y. S., Pattanayak D., Sreevathsa R. Bt insecticidal crystal proteins: Role in insect management and crop improvement. In: Biocontrol of Lepidopteran Pests: Use of Soil Microbes and their Metabolites. Sree K. S., Varma A. (editors). Cham: Springer International Publishing. 2015, P. 53–70. https://doi.org/10.1007/978-3-319-14499-3_3
6. Ye G. Y., Yao H. W., Shu Q. Y., Cheng X., Hu C. High levels of stable resistance in transgenic rice with a cry1Ab gene from Bacillus thuringiensis Berliner to rice leaffolder, Cnaphalocrocis medinalis (Guen?e) under field conditions. Crop. Protect. 2003, 22 (1), 171–178.https://doi.org/10.1016/S0261-2194(02)00142-4
7. Buntin G. D. Corn expressing cry1Ab or cry1F endotoxin for fall armyworm and corn earworm (Lepidoptera: Noctuidae) management in field corn for grain production. Florida Entomol. 2008, 91(4), 523–530. https://doi.org/10.1653/0015-4040-91.4.523
8. Valldor P., Miethling-Graff R., Martens R., Tebbe C. C. Fate of the insecticidal Cry1Ab protein of GM crops in two agricultural soils as revealed by 14C-tracer studies. Appl. Microbiol. Biotechnol. 2015, 99 (17), 7333–7341. https://doi.org/10.1007/s00253-015-6655-5
9. ISAAA. Global status of commercialized biotech/GM crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years. Ithaca, NY: The International Service for the Acquisition of Agri-biotech Applications. 2018. http://www.isaaa.org/resources/publications/briefs/53/download/isaaa-brief-53-2017.pdf
10. Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. 1962, 15 (3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
11. Curtis I. S., Davey M. R., Power J. B. Leaf disk transformation. In: Agrobacterium Protocols. Gartland KMA, Davey MR (editors). Totowa, NJ: Springer. 1995, P. 59–70. https://doi.org/10.1385/0-89603-302-3:59
12. Somma M. Session 4. Extraction and purification of DNA. In: Training Course on the Analysis of Food Samples for the Presence of Genetically Modified Organisms – User Manual. Querci M., Jermini M., Van den Eede G. (editors). Luxembourg: Office for Official Publications of the European Communities. 2006, P. 229. http://gmo-crl.jrc.ec.europa.eu/capacitybuilding/manuals/Manual%20EN/User%20Manual%20EN%20full.pdf
13. Sambrook J. F., Russell D. W., editors. Molecular cloning: a laboratory manual. 3rd. ed. New York: Cold Spring Harbor Laboratory Press. 2001.
14. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G. Current protocols in molecular biology. New York: John Wiley & Sons, Inc. 2003.
15. Cannell M. E., Doherty A., Lazzeri P. A., Barcelo P. A population of wheat and tritordeum transformants showing a high degree of marker gene stability and heritability. Theoret. Appl. Genet. 1999, 99 (5), 772–784. https://doi.org/10.1007/s001220051296
16. Lipp Jo?o K. H., Brown T. A. Enhanced transformation of tomato co-cultivated with Agrobacterium tumefaciens C58C1Rif(r)::pGSFR1161 in the presence of acetosyringone. Plant Cell Rep. 1993, 12 (7–8), 422–425. https://doi.org/10.1007/BF00234705
17. Sakhno L. О., Morgun B. V., Kvasko О. Yu., Kuchuk N. V. Creation of transformed rape plants that express cyp11A1 cytochrome P450 gene of animal origin. Biotechnology. 2010, 3 (5), 74–82.
18. Morgun B. V., Stepanenko O. V., Stepanenko A. I., Taranenko A. M., Kuchuk M. V. Detection of transgenic herbicide resistant rapeseed plants in Kyiv region. Visnyk ukr. tov. henetykiv i selektsioneriv. 2014, 12 (2), 166–173.
19. Box M. S., Coustham V., Dean C., Mylne J. S. Protocol: A simple phenol-based method for 96-well extraction of high quality RNA from Arabidopsis. Plant Meth. 2011, 7 (1), 7. https://doi.org/10.1186/1746-4811-7-7
20. Matzke M. A., Mette M. F., Matzke A. J. M. Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol. Biol. 2000, 43 (2), 401–415. https://doi.org/10.1023/A:1006484806925
21. Dong J., Kharb P., Teng W., Hall T. C. Characterization of rice transformed via an Agrobacterium-mediated inflorescence approach. Mol. Breed. 2001, 7 (3), 187–194. https://doi.org/10.1023/A:1011357709073
22. Kohli A., Miro B., Twyman R. M. Transgene integration, expression and stability in plants: Strategies for improvements. In: Transgenic Crop Plants: Principles and Development. Kole C., Michler C. H., Abbott A. G., Hall T. C. (editors). Springer Berlin Heidelberg. 2010, Р. 201–237. https://doi.org/10.1007/978-3-642-04809-8_7
23. Chareonpornwattana S., Thara K. V., Wang L., Datta S. K., Panbangred W. Inheritance, expression, and silencing of a chitinase transgene in rice. Theoret. Appl. Genet. 1999, 98 (3), 371–378. https://doi.org/10.1007/s001220051082
24. Latham J. R., Love M., Hilbeck A. The distinct properties of natural and GM cry insecticidal proteins. Biotechnol. Genet. Engin. Rev. 2017, 33 (1), 62–96. https://doi.org/10.1080/02648725.2017.1357295
25. Wu G., Cui H., Ye G. Inheritance and expression of cry1Ab gene in Bt (Bacillus thuringiensis) transgenic rice. Theoret. Appl. Genet. 2002, 104, 727. https://doi.org/10.1007/s001220100689
26. Zhao Q., Liu M., Tan M., Gao J., Shen Z. Expression of Cry1Ab and Cry2Ab by a Polycistronic Transgene with a Self-Cleavage Peptide in Rice. PLoS ONE. 2014, 9 (10), e110006. https://doi.org/10.1371/journal.pone.0110006
27. Jabeen R., Khan M. S., Zafar Y. Codon optimization of cry1Ab gene for hyper expression in plant organelles. Mol. Biol. Rep. 2010, 37, 1011. https://doi.org/10.1007/s11033-009-9802-1
28. Rubie C., Schulze-Bahr E., Wedekind H., Borggrefe M., Haverkamp W. Multisteptouchdown vectorette-PCR – a rapid technique for the identification of IVS in genes. BioTechn. 1999, 27 (3), 414–418. https://doi.org/10.2144/99273bm03
29. Kohli A., Twyman R. M., Abranches R., Wegel E., Stoger E. Transgene integration, organization and interaction in plants. Plant Mol. Biol. 2003, 52 (2), 247–258. https://doi.org/10.1023/A:1023941407376